JPS645043B2 - - Google Patents

Info

Publication number
JPS645043B2
JPS645043B2 JP11468780A JP11468780A JPS645043B2 JP S645043 B2 JPS645043 B2 JP S645043B2 JP 11468780 A JP11468780 A JP 11468780A JP 11468780 A JP11468780 A JP 11468780A JP S645043 B2 JPS645043 B2 JP S645043B2
Authority
JP
Japan
Prior art keywords
reaction
sulfate
acid
oligosaccharides
acidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11468780A
Other languages
Japanese (ja)
Other versions
JPS5740502A (en
Inventor
Kinzo Nagasawa
Juko Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikagaku Corp
Original Assignee
Seikagaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikagaku Corp filed Critical Seikagaku Corp
Priority to JP11468780A priority Critical patent/JPS5740502A/en
Publication of JPS5740502A publication Critical patent/JPS5740502A/en
Publication of JPS645043B2 publication Critical patent/JPS645043B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

【発明の詳細な説明】 本発明は、酸性ムコ多糖類(Acidic
mucopolysaccharides.以下、AMPSと略記する)
の解重合方法に係り、特に、β−D−ヘキソサミ
ニド結合を選択的に切断するAMPSの解重合方
法に関する。 かかるAMPSとしては、例えばヒヤルロン酸、
コンドロイチン−4−硫酸、コンドロイチン−6
−硫酸、デルマタン硫酸などが存在する。これら
のAMPSは、ウロニド結合とβ−D−ヘキソサ
ミニド結合が交互に繰りかえされた多糖類である
が、本発明の解重合方法によると、β−D−ヘキ
ソサミニド結合が選択的に切断され、ウロニド結
合は切断されにくいため、還元末端にヘキソサミ
ンを有する構成単位二糖及びそれより成るオリゴ
糖が生成する。このとき、硫酸基を含むAMPS
においては、脱硫酸化が優先的に進行する。N−
アセチル基の脱離は起らない。 これらAMPSのうち、ヒヤルロン酸、コンド
ロイチン硫酸、デルマタン硫酸につき、表1に化
学構造と大体の分子量範囲、並びに本発明の方法
により得られるオリゴ糖を記した。なお、デルマ
タン硫酸は、数年前まではウロン酸成分としてL
−イズロン酸のみを含むと考えられていたが、現
在ではウロン酸成分としてL−イズロン酸とD−
グルクロン酸の両者を含み、デルマタン硫酸中の
両者の比率は原料によつて異なることが明らかに
なつている。従つて、デルマタン硫酸に由来する
構成単位二糖には2種類あり、さらにオリゴ糖は
両ウロン酸の含有比及び配列順序を異にして多様
に存在する。 【表】 このようなAMPSの構成単位二糖及びオリゴ
糖類は、様々な生理活性が期待される物質群の製
造原料として極めて重要であるにもかゝわらず、
これらを供給する製造方法が開発されなかつたた
め、これら酸性ムコ多糖由来のオリゴ糖類の医薬
領域への応用は殆んど絶無であつた。これらのオ
リゴ糖類の適当なる化学修飾により期待される生
理活性として、ヒヤルロン酸系では例えばビフイ
ダス因子(Bifidus factor)様活性、コンドロイ
チン硫酸およびデルマタン硫酸系ではこれらの系
のオリゴ糖類を多硫酸化することにより血液凝固
システムにおけるアンチトロンビンの活性増強
又は直接トロンビン活性阻害などによる血液凝固
阻止作用、また動脈硬化の主因とされる高脂血症
に対する効果的な脂血清澄活性などが挙げられ
る。さらに、これら二糖およびオリゴ糖類のりん
酸エステル化により、インターフエロン産生能誘
起物質群を合成することも出来よう。なお、これ
らオリゴ糖類にたいして複数の化学反応を適用し
た場合、さらに多くの可能性をもつた有用な物質
を製造することが出来るであろう。 このように、AMPSの構成単位二糖およびそ
れより成るオリゴ糖は医薬領域における活用が期
待される有用な物質であるため、これまでにも、
AMPSの塩酸・メタノールなどによるメタノリ
シス、または酸性水溶液中における加水分解が研
究室規模において行われて来た。しかしこれらの
方法はいずれもN−アセチル基の離脱を伴ない、
更に塩酸・メタノールの場合にはウロン酸のメチ
ルエステル化を伴なうという難点があつた。とり
わけ、これらの方法の最大の欠点は強酸性(約PH
1)系での反応であるためにウロン酸部分の分解
が著しいことであつた。結局、表1右欄記載のオ
リゴ糖類を初めとする、AMPSの構成単位二糖、
特にそれより成るオリゴ糖類は、その一部を除い
て従来の方法によつては得られておらず、本発明
の解重合方法により初めて得ることができた。 本発明の目的は、かかるAMPSのβ−D−ヘ
キソサミニド結合を選択的に切断し、上述のごと
く医薬領域における活用が期待される構成単位二
糖及びそれより成るオリゴ糖類の製造に有用な
AMPSの解重合方法を提供することにある。 本発明の解重合方法は、特に加水分解の処理条
件に特色があり、即ち、AMPSを、PH2以上5.5
以下の酸性条件下、水を含むジメチルスルホキシ
ド(以下、DMSOと略記する)中で処理するこ
とを特徴とするものである。 本発明において重要なことは、溶媒として含水
DMSOを用いること、及び反応過程をPH2以上
5.5以下の酸性条件に保持することである。この
条件に従えば、AMPSの脱硫酸化と、それに続
くβ−D−ヘキソサミニド結合の切断が進行し、
構成単位二糖及びそれより成るオリゴ糖類を生成
する解重合反応が進行する。この解重合反応は、
まず脱硫酸化反応が速やかに進行し、続いてβ−
D−ヘキソサミニド結合が選択的に切断されるも
のと考えられる。 もし、反応をPH2未満の強い酸性条件で行う
と、N−アセチル基の離脱、ウロニド結合の切断
が起り、更にはウロン酸部分の分解も起るため、
目的とするAMPSの構成単位二糖及びこれより
成るオリゴ糖類を得ることは極めて困難となる。 また、溶媒として含水DMSOを用いずに、水
のみを用いて反応を行わしめた場合には、脱硫酸
が進まず、β−D−ヘキソサミニド結合の切断及
びウロニド結合の切断の反応性に余り差違がなく
なるため、硫酸が結合した単糖及び各種のオリゴ
糖の混合物が生成する結果となる。 従つて、本発明においては、液性をPH2以上
5.5以下の酸性条件に保持し、かつ溶媒として含
水DMSOを用いることは不可欠の要件である。
なお、酸性条件であつてもPH値が高い程解重合の
速度が遅くなる傾向があるため、実用的にはPH3
〜5.5の酸性条件が一般に好ましい。 本発明の解重合方法により、β−D−ヘキソサ
ミニド結合が選択的に切断される理由は、
DMSOがこの結合の分解反応に触媒的に作用す
るためと考えられる。DMSOに含有される水の
量は、β−D−ヘキソサミニド結合、硫酸エステ
ル結合の加水分解に必要な理論量以上で20重量%
以下が好ましい。水が過度に存在すると、脱硫酸
が進まなくなり前記の糖鎖切断の選択性が低下し
ウロニド結合も切断され易くなるという不都合が
生じる。 AMPSは、通常ナトリウム塩の形で入手でき
るが、本発明の方法により処理するAMPSは、
このような塩の状態でも、遊離酸の状態であつて
もよい。反応過程におけるPH条件がPH2以上5.5
以下の酸性条件に保持され、溶媒に均一に溶解さ
れるならば、出発材料の状態は問題ではない。 反応溶液のPHの調節には、適宜の塩基、酸を用
いればよいが、弱塩基を用いると酸性域での緩衝
効果を期待することができるため、反応中におけ
るPH値の変動が抑制される利点がある。かかる弱
塩基としては、ピリジン、キノリン、コリジン、
ピコリン等の有機弱塩基が好ましい。 なお、L−イズロン酸含量の多いデルマタン硫
酸(例えばブタ皮膚由来のもの)では、他の
AMPSに比しL−イズロン酸(単糖)が副生し
易いため、反応溶液のPH値を若干高め、大体PH
4.0以上に調節した方がよい。かかる条件で解重
合を行えばL−イズロン酸の副生を抑制すること
ができる。 本発明の方法によるAMPSの解重合は室温に
おいても進行するが、温度依存性は大である。例
えば、コンドロイチン−6−硫酸ピリジニウム塩
を10%含水DMSO中(PH3.8〜4.0)、95℃または
105℃でそれぞれ18時間加熱した場合の反応生成
物のゲル過クロマトグラムを示すと図1のごと
くである(実線:95℃、破線:105℃)。反応温度
を95℃とした場合、単位二糖および四糖(表1−
2、n=0および1)を主生成物(22.3および
21.5%)とし、ほかにn≧2のオリゴ糖(56.2
%)が生成する。一方、反応温度を105℃とした
場合には単位二糖を主生成物(54.8%)とし、n
≧1のオリゴ糖(42.5%)が生成した。この例に
見るように、反応温度を選択することにより
AMPSの解重合度を調節することが出来る。デ
ルマタン硫酸(表1−3)は化学構造上、コンド
ロイチン−4−および6−硫酸に類似するが、解
重合にはより抵抗する。例えばニワトリ・トサカ
を原料とするデルマタン硫酸ピリジニウム塩を10
%含水DMSO中(PH3.8〜4.0)、105℃で18時間ま
たは30時間加熱した場合の反応生成物のゲル過
クロマトグラムを図3に示す(実線:105℃×
18hr、破線:105℃×30hr)。反応時間が18時間の
場合、単位二糖および四糖(表1−3、n=0、
1)を主生成物(20.4および23.1%)とし、ほか
にn≧2のオリゴ糖(34.7%)が生成する。一
方、30時間反応させた場合には単位二糖を主生成
物(63.4%)とし、四糖及び六糖を主成分とする
オリゴ糖(30.8%)を生成した(実施例3)。こ
の様に、反応時間を伸縮することによつても解重
合度を調節することが出来る。従つて、反応過程
のPH、反応温度および時間は出発物質である
AMPSの種類により、また目的とする製品によ
り選ばれるが、反応温度は室温〜120℃が適当で
あり、実用的には80〜120℃が好ましい。本発明
の解重合方法はウロン酸の分解を殆んど伴なわず
にβ−N−アセチルヘキソサミニド結合のみを切
断するから、上記の温度範囲において十分な反応
時間をかければ主生成物は単位二糖(表1−1〜
3、n=0)のみとなり、その収量は良好であ
り、生成した総オリゴ糖のウロン酸回収率はほぼ
100%である。 ヒヤルロン酸は、これら硫酸基を有する
AMPSよりはるかに高分子であるにもかゝわら
ず、近似の条件(含水量、PH、温度、時間)のも
とでは、単位二糖を主生成物とするオリゴ糖混合
物(表1−1、n=0およびn≧1)を生成する
(図4および実施例4参照)。 以下に実施例を示して本発明をさらに詳しく説
明する。 実施例 1 コンドロイチン−6−硫酸ピリジニウム塩
(500mg)を10%含水DMSO(200ml)に溶解し、
撹拌しながら105℃で18時間加熱した。この間反
応溶液のPHは3.8〜4.0であつた。反応終了後、等
量の水および0.5M NaOH溶液を加えてPH6.8と
し減圧濃縮した(約10ml)。これをセフアデツク
スG−25(商品名、フアルマシアAB製)カラム
(2×92cm)の上端に移し入れ、0.1MNaClで溶
出させた。図1に分析的規模(サンプル量10mg、
カラムサイズ1.6×88cm)で行なつたクロマトグ
ラムを示す。(破線‐‐‐‐)。二糖(Di)、四糖
(Tetra)、六糖(Hexa)に相当する各画分を集
め、凍結乾燥したのち個別に10%エタノールに溶
解し、セフアデツクスG−15(商品名、フアルマ
シアAB製)カラム(2.5×90cm)/10%エタノー
ルにより脱塩した。各画分を凍結乾燥することに
より二糖、四糖および六糖の各ナトリウム塩をそ
れぞれ193、97、53mgの収量で得た。 なお、コンドロイチン−6−硫酸ピリジニウム
塩を、95℃の温度で処理した以外は、上記実施例
と同じ条件で解重合させた場合の、前記に対応す
る分析的規模のクロマトグラム(セフアデツクス
G−25カラム、溶離度:0.1MNaCl)を図1に実
線――にて示した。 実施例 2 コンドロイチン−6−硫酸ピリジニウム塩
(500mg)を10%含水DMSO(125ml)に溶解し、
撹拌しながら90℃で14時間加熱した。この間反応
液のPHは3.6〜3.9の範囲にあつた。反応終了後、
等量の水および0.5MNaOH溶液を加えてPH6.8と
し、減圧濃縮した溶液(約10ml)を陰イオン交換
樹脂AG1×4(商品名、BIORADバイオラド社
製)Cl-型カラム(2.5×47cm)の上端に移し入
れ、溶離液LiCl溶液の濃度を図2−1に破線
(‐‐‐‐)で示す如く0Mから0.4Mまで直線的に
高めながら溶出させた。二糖(n=0)〜八糖
(n=3)の画分をそれぞれ分離し、濃縮して10
%エタノールに溶解させ、セフアデツクスG−15
カラム(2.5×90cm)/10%エタノールにより脱
塩したのち凍結乾燥して、それぞれ淡黄白色の粉
末として二糖、四糖、六糖および八糖の各リチウ
ム塩33.2、41.4、42.6、36.1mgを得た。 図2−1の十糖(n=4)以上の画分をセフア
デツクスG−15カラムで脱塩したのち濃縮して、
十糖以上のオリゴ糖混合物153mgを得た。これを
少量の水に溶解し、再び陰イオン交換樹脂AG1
×2(Cl-型)カラム(1.5×88cm)を用いて、溶
離液としてLiCl溶液を用い、その濃度を0.2Mか
ら0.4Mまで直線的に変えながら分離を行つた。
その結果、図2−2の如く十糖〜二十糖までの各
オリゴ糖画分が得られた。各画分をそれぞれ濃縮
し、10%エタノールに溶解してセフアデツクスG
−15カラム/10%エタノールにより脱塩したのち
凍結乾燥し、白色粉末としてそれぞれのリチウム
塩を35.3、33.4、26.8、16.0、8.7および7.3mgの収
量で得た。 本実施例で得られたコンドロイチン−6−硫酸
の脱硫酸された構成単位二糖(N−アセチルコン
ドロシン)及びそれより成るオリゴ糖(二〜二十
糖、表1−2のn=0〜9に相当)について次の
化学分析、物性測定を行つた。 (1) 〔α〕29 D溶媒:水、濃度:0.13〜0.15(g/100
ml) (2) RGluA(紙電気泳動法によるグルクロン酸
に対する相対移動度) 緩衝液:ピリジン−酢酸−1−ブタノール−水
(5:1:5:250容量比)、PH5.8、23V/
cm、時間60分、温度4℃ (3) 薄層クロマトグラフイ(Rf値) 上昇法展開、セルロースプレート使用 溶媒:
n−ブタン酸−0.5Nアンモニア水(5:3)
混合液 (4) ウロン酸及びヘキソサミンの含量 ●ウロン酸: 吉沢らの改良カルバゾール法(M.
Kosakai、Z.Yosizawa、Anal.Biochem.、
93(1979)295−298) ●ヘキソサミン: アントノポーロスの方法(C.A.
Antonopoulos、Arkiv.Kemi.、25(1966)
243) (5) ウロン酸に対するヘキソサミンのモル比 A.リンカーらの方法(A.Linker、K.Meyer、
P.Hoffman、J.Biol.Chem.、181(1949)149−
151)によりオリゴ糖を還元。 NaBH4による還元により、N−アセチルコ
ンドロシン及びそれより成るオリゴ糖の還元末
端位にあるN−アセチルガラクトサミンはN−
アセチルガラクトサミニトールとなり、その結
果前記(4)の方法によるアミノ糖の定量にかから
なくなる。従つて、還元前後のウロン酸/ヘキ
ソサミンモル比を測定することにより各オリゴ
糖の重合度を知ることができる。 (6) ウロン酸に対するN−アセチルヘキソサミン
のモル比 ●ライスイヒらの方法(J.L.Reissig、J.L.
Storominger、L.F.Leloir、J.Biol.Chem.、
217(1955)959−966)により、N−アセチ
ルヘキソサミンの含量を測定し、前記(4)の方
法で求めたウロン酸量とから、モル比を求め
た。 表2に測定結果をまとめて示す。遊離型のN−
アセチルコンドロシンの標準品(市販のコンドロ
シン標準品(生化学工業製)をダニシエフスキイ
(Danishefsky)らの方法でN−アセチル化して
得たもの)についての測定値も併記した。 【表】 【表】 *1、*2 括弧内は計算値
実施例 3 ニワトリ・トサカ由来デルマタン硫酸ピリジニ
ウム塩(200mg)を10%含水DMSO(100ml)に溶
解し、撹拌しながら105℃で30時間加熱した。こ
の間、反応溶液のPHは3.8〜4.0の範囲であつた。
反応終了後、等量の水および0.5MNaOH溶液を
加えてPH6.8とし、減圧濃縮した(約10ml)。セフ
アデツクスG−25/0.1M NaClによる分析的ゲ
ル過クロマトグラム(サンプル量10mg、カラム
サイズ1.6×88cm)(図3−1破線‐‐‐‐)によれ
ば、反応生成物は二糖を主成分とし四糖、六糖お
よび少量の単糖からなる混合物であつた。上に得
られた濃縮液を陰イオン交換樹脂AG1×4(Cl-
型)カラムを用いて実施例2と同様に処理し、二
糖、四糖、六糖画分に分離した(図3−2)。各
画分を凍結乾燥し、それぞれセフアデツクスG−
15カラム/10%エタノールにより脱塩したのち、
再び凍結乾燥し、二糖、四糖、六糖の各リチウム
塩をそれぞれ81、32.4、11.2mgの収量で得た。 なお、図3−1の実線――で示されたクロマト
グラムは、反応時間を18時間とした以外は上記の
実施例と同一条件で解重合させた場合の分析的ゲ
ル過クロマトグラムである。 実施例 4 ヒヤルロン酸(遊離型)(500mg)をDMSO
(225ml)に溶解し、これに0.05Mピリジン硫酸塩
水溶液(25ml)を加え、撹拌しながら105℃で30
時間加熱した。この間、反応溶液のPHは3.6〜3.9
であつた。反応後、等量の水および0.5M NaOH
溶液を加えてPH6.8とし、減圧濃縮した(約10
ml)。セフアデツクスG−25/0.1M NaClによる
分析的ゲル過クロマトグラム(サンプル量約
4.0mg、カラムサイズ1.6×84cm)によれば、二
糖、四糖および六糖の混合物である(図4、実線
――)。上に得られた濃縮液を陰イオン交換樹脂
AG1×4(Cl-型)カラムを用いて実施例3と同
様に処理し、二糖、四糖、六糖画分に分離した。
各画分を凍結乾燥し、それぞれセフアデツクスG
−15/10%エタノールにより脱塩したのち再び凍
結乾燥し、二糖、四糖、六糖の各リチウム塩をそ
れぞれ239、108、36mgの収量で得た。 なお、図4の破線‐‐‐‐で示されたクロマト
グラムはピリジン硫酸塩の代りにピリジン塩酸塩
を用いた以外は上記実施例と同一条件で解重合
(この間のPHは3.5〜3.8の範囲であつた)させた
場合のもので、同様にして得られた分析的ゲル
過クロマトグラムである。 実施例 5 ブタ・皮膚由来のデルマタン硫酸ピリジニウム
塩(100mg)を0.3%ピリジン水溶液/DMSO
(1:9)50mlに溶解し、撹拌しながら105℃で30
時間加熱した。この間、反応液のPHは4.4〜4.6の
範囲であつた。反応終了後、実施例3と同様に処
理し、セフアデツクスG−25/0.1M NaClによ
る分析的ゲル過クロマトグラフイーにかけた結
果(図5)によれば、二糖を主成分とする四糖、
六糖および少量の八糖と単糖からなる混合物であ
る。上記反応で得た生成物の全量を陰イオン交換
樹脂AG1×4(HCOO-型)カラム(1.6×90cm)
に載せ、0.3M HCOOHおよび1M HCOOHで溶
出し、図6に示す如く、二糖(N−アセチルデル
モシン(a)およびN−アセチルコンドロシン(b)に分
離されている)、四糖、六糖および単糖(L−イ
ズロン酸(c)およびD−グルクロン酸(d))のそれぞ
れが分画された。各分画は凍結乾燥され、遊離型
のオリゴ糖および単糖が下記の収量で得られた。 N−アセチルデルモシン(20.5mg)、N−アセ
チルコンドロシン(6.7mg)、L−イズロン酸
(6.1mg)、四糖(2ピーク)18.1mg、六糖(11.2
mg)。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides acidic mucopolysaccharides
mucopolysaccharides (hereinafter abbreviated as AMPS)
In particular, the present invention relates to a method for depolymerizing AMPS that selectively cleaves β-D-hexosaminide bonds. Such AMPS include, for example, hyaluronic acid,
chondroitin-4-sulfate, chondroitin-6
- Sulfuric acid, dermatan sulfate, etc. are present. These AMPS are polysaccharides in which uronide bonds and β-D-hexosaminide bonds are alternately repeated, but according to the depolymerization method of the present invention, the β-D-hexosaminide bonds are selectively cleaved and the uronide bonds are Since the bond is difficult to cleave, disaccharide constituent units having hexosamine at the reducing end and oligosaccharides composed thereof are produced. At this time, AMPS containing sulfate groups
In this case, desulfation proceeds preferentially. N-
Elimination of the acetyl group does not occur. Among these AMPS, Table 1 shows the chemical structures and approximate molecular weight ranges of hyaluronic acid, chondroitin sulfate, and dermatan sulfate, as well as oligosaccharides obtained by the method of the present invention. In addition, dermatan sulfate was used as a uronic acid component until a few years ago.
-It was thought to contain only iduronic acid, but now it contains L-iduronic acid and D-iduronic acid as uronic acid components.
It has been revealed that dermatan sulfate contains both glucuronic acid and the ratio of both in dermatan sulfate varies depending on the raw material. Therefore, there are two types of constituent disaccharides derived from dermatan sulfate, and a variety of oligosaccharides exist with different content ratios and arrangement orders of both uronic acids. [Table] Although these disaccharides and oligosaccharides, the constituent units of AMPS, are extremely important as raw materials for the production of a group of substances expected to have various physiological activities,
Since a manufacturing method for supplying these has not been developed, there has been almost no application of oligosaccharides derived from these acidic mucopolysaccharides to the pharmaceutical field. Physiological activities expected by appropriate chemical modification of these oligosaccharides include, for example, bifidus factor-like activity in the case of hyaluronic acid, and polysulfation of the oligosaccharides of these systems in the case of chondroitin sulfate and dermatan sulfate. These include anti-coagulation effects such as enhancement of antithrombin activity in the blood coagulation system or direct inhibition of thrombin activity, and effective lipid serum clarifying activity against hyperlipidemia, which is a major cause of arteriosclerosis. Furthermore, by phosphoric acid esterification of these disaccharides and oligosaccharides, it would be possible to synthesize a group of substances that induce interferon production ability. In addition, if multiple chemical reactions are applied to these oligosaccharides, it will be possible to produce useful substances with even more possibilities. In this way, the disaccharide that constitutes AMPS and the oligosaccharide composed of it are useful substances that are expected to be used in the pharmaceutical field.
Methanolysis of AMPS using hydrochloric acid, methanol, etc., or hydrolysis in an acidic aqueous solution has been carried out on a laboratory scale. However, all of these methods involve removal of the N-acetyl group,
Furthermore, in the case of hydrochloric acid/methanol, there was a problem in that it involved methyl esterification of uronic acid. Above all, the biggest drawback of these methods is the presence of strong acids (approximately PH
1) Since the reaction was carried out in a system, the decomposition of the uronic acid moiety was significant. In the end, the constituent unit disaccharides of AMPS, including the oligosaccharides listed in the right column of Table 1,
In particular, oligosaccharides made of these oligosaccharides, with the exception of some of them, have not been obtained by conventional methods, and could be obtained for the first time by the depolymerization method of the present invention. The purpose of the present invention is to selectively cleave the β-D-hexosaminide bond of such AMPS, and to produce a disaccharide as a constituent unit and an oligosaccharide composed thereof, which are expected to be used in the pharmaceutical field as described above.
The object of the present invention is to provide a method for depolymerizing AMPS. The depolymerization method of the present invention is particularly characterized by the treatment conditions for hydrolysis.
It is characterized by treatment in dimethyl sulfoxide (hereinafter abbreviated as DMSO) containing water under the following acidic conditions. What is important in the present invention is that the solvent contains water.
Using DMSO and controlling the reaction process to a pH of 2 or higher
It is to maintain acidic conditions below 5.5. According to these conditions, desulfation of AMPS and subsequent cleavage of the β-D-hexosaminide bond proceed.
A depolymerization reaction proceeds to produce constituent disaccharides and oligosaccharides composed of them. This depolymerization reaction is
First, the desulfation reaction proceeds rapidly, followed by β-
It is believed that the D-hexosaminide bond is selectively cleaved. If the reaction is carried out under strongly acidic conditions with a pH of less than 2, the N-acetyl group will be removed, the uronide bond will be broken, and the uronic acid moiety will also be decomposed.
It is extremely difficult to obtain the desired disaccharide, which is the constituent unit of AMPS, and oligosaccharides composed of it. In addition, when the reaction is carried out using only water without using aqueous DMSO as a solvent, desulfation does not proceed and there is not much difference in the reactivity of cleavage of β-D-hexosaminide bonds and cleavage of uronide bonds. As a result, a mixture of sulfuric acid-bonded monosaccharides and various oligosaccharides is produced. Therefore, in the present invention, the liquid property is adjusted to pH2 or higher.
Maintaining acidic conditions below 5.5 and using aqueous DMSO as the solvent are essential requirements.
In addition, even under acidic conditions, the higher the PH value, the slower the depolymerization rate tends to be, so for practical purposes, PH3
Acidic conditions of ~5.5 are generally preferred. The reason why β-D-hexosaminide bonds are selectively cleaved by the depolymerization method of the present invention is as follows.
This is thought to be because DMSO acts catalytically on the decomposition reaction of this bond. The amount of water contained in DMSO is 20% by weight, which is more than the theoretical amount required for hydrolysis of β-D-hexosaminide bonds and sulfate bonds.
The following are preferred. Excessive presence of water causes disadvantages in that desulfation does not proceed, the selectivity of the cleavage of sugar chains decreases, and uronide bonds are also more likely to be cleaved. AMPS is usually available in the form of sodium salt, but the AMPS treated by the method of the present invention is
It may be in the form of such a salt or in the form of a free acid. PH condition during reaction process is PH2 or higher 5.5
The condition of the starting materials does not matter, provided they are kept under acidic conditions and uniformly dissolved in the solvent. Appropriate bases and acids can be used to adjust the PH of the reaction solution, but using a weak base can be expected to have a buffering effect in the acidic region, thereby suppressing fluctuations in the PH value during the reaction. There are advantages. Such weak bases include pyridine, quinoline, collidine,
Organic weak bases such as picoline are preferred. Note that dermatan sulfate with a high content of L-iduronic acid (for example, derived from pig skin)
Compared to AMPS, L-iduronic acid (monosaccharide) is more easily produced as a by-product, so the PH value of the reaction solution is slightly increased, and the PH
It is better to adjust it to 4.0 or higher. If depolymerization is carried out under such conditions, the by-product of L-iduronic acid can be suppressed. Although the depolymerization of AMPS by the method of the present invention proceeds even at room temperature, it is highly temperature dependent. For example, chondroitin-6-pyridinium sulfate salt in 10% aqueous DMSO (PH3.8-4.0) at 95°C or
Figure 1 shows the gel permeation chromatogram of the reaction product when heated at 105°C for 18 hours (solid line: 95°C, broken line: 105°C). When the reaction temperature was 95℃, the unit disaccharide and tetrasaccharide (Table 1-
2, n=0 and 1) as main products (22.3 and
21.5%), and oligosaccharides with n≧2 (56.2%).
%) is generated. On the other hand, when the reaction temperature was 105°C, the main product was unit disaccharide (54.8%), and n
≧1 oligosaccharide (42.5%) was produced. As seen in this example, by choosing the reaction temperature
The degree of depolymerization of AMPS can be adjusted. Dermatan sulfate (Tables 1-3) is similar in chemical structure to chondroitin-4- and 6-sulfate, but is more resistant to depolymerization. For example, dermatan sulfate pyridinium salt made from chicken crest is 10%
Figure 3 shows the gel permeation chromatogram of the reaction product when heated at 105°C for 18 or 30 hours in DMSO containing 10% water (PH3.8-4.0) (solid line: 105°C x
18hr, dashed line: 105℃ x 30hr). When the reaction time is 18 hours, the units disaccharide and tetrasaccharide (Table 1-3, n=0,
1) is the main product (20.4 and 23.1%), and oligosaccharides with n≧2 (34.7%) are also produced. On the other hand, when the reaction was carried out for 30 hours, unit disaccharides were the main products (63.4%), and oligosaccharides containing tetrasaccharides and hexasaccharides as main components (30.8%) were produced (Example 3). In this way, the degree of depolymerization can also be adjusted by extending or contracting the reaction time. Therefore, the PH, reaction temperature and time of the reaction process are the starting materials
Although the reaction temperature is selected depending on the type of AMPS and the intended product, a suitable reaction temperature is room temperature to 120°C, and practically 80 to 120°C is preferable. Since the depolymerization method of the present invention cleaves only the β-N-acetylhexosaminide bond with almost no decomposition of uronic acid, the main product can be obtained by allowing a sufficient reaction time in the above temperature range. is a unit disaccharide (Table 1-1~
3, n = 0), the yield is good, and the recovery rate of uronic acid from the total oligosaccharides produced is almost
It is 100%. Hyaluronic acid has these sulfate groups
Although it has a much higher molecular weight than AMPS, under similar conditions (water content, pH, temperature, time), oligosaccharide mixtures with unit disaccharide as the main product (Table 1-1 , n=0 and n≧1) (see FIG. 4 and Example 4). The present invention will be explained in more detail by showing examples below. Example 1 Chondroitin-6-pyridinium sulfate salt (500 mg) was dissolved in 10% aqueous DMSO (200 ml),
Heated at 105° C. for 18 hours with stirring. During this time, the pH of the reaction solution was 3.8 to 4.0. After the reaction was completed, equal amounts of water and 0.5M NaOH solution were added to adjust the pH to 6.8, and the mixture was concentrated under reduced pressure (approximately 10 ml). This was transferred to the upper end of a Cephadex G-25 (trade name, manufactured by Pharmacia AB) column (2 x 92 cm) and eluted with 0.1M NaCl. Figure 1 shows the analytical scale (sample amount 10 mg,
A chromatogram performed using a column size of 1.6 x 88 cm) is shown. (Dashed line ---). Fractions corresponding to disaccharides (Di), tetrasaccharides (Tetra), and hexasaccharides (Hexa) were collected, lyophilized, and then individually dissolved in 10% ethanol. ) Column (2.5 x 90 cm)/Desalted with 10% ethanol. By lyophilizing each fraction, sodium salts of disaccharide, tetrasaccharide, and hexasaccharide were obtained in yields of 193, 97, and 53 mg, respectively. In addition, an analytical scale chromatogram corresponding to the above (Sephadex G-25 Column, elution degree: 0.1M NaCl) is shown in Figure 1 by a solid line. Example 2 Chondroitin-6-pyridinium sulfate salt (500 mg) was dissolved in 10% aqueous DMSO (125 ml),
Heated at 90° C. for 14 hours with stirring. During this time, the pH of the reaction solution was in the range of 3.6 to 3.9. After the reaction is complete,
Add equal amounts of water and 0.5 M NaOH solution to adjust the pH to 6.8, concentrate the solution under reduced pressure (approximately 10 ml), and apply the anion exchange resin AG1 x 4 (trade name, BIORAD, manufactured by BioRad) to a Cl - type column (2.5 x 47 cm). The concentration of the eluent LiCl solution was increased linearly from 0M to 0.4M as shown by the broken line (---) in Figure 2-1. The disaccharide (n=0) to octasaccharide (n=3) fractions were separated and concentrated to 10
% ethanol, Sephadex G-15
Column (2.5 x 90 cm): Desalted with 10% ethanol and then lyophilized to give 33.2, 41.4, 42.6, and 36.1 mg of each lithium salt of disaccharide, tetrasaccharide, hexasaccharide, and octasaccharide as pale yellow-white powder, respectively. I got it. The fraction containing more than 10 saccharides (n = 4) in Figure 2-1 was desalted using a Sephadex G-15 column, and then concentrated.
153 mg of an oligosaccharide mixture containing more than 10 saccharides was obtained. Dissolve this in a small amount of water and use the anion exchange resin AG1 again.
Separation was performed using a ×2 (Cl - type) column (1.5 × 88 cm) using a LiCl solution as an eluent while linearly changing the concentration from 0.2 M to 0.4 M.
As a result, various oligosaccharide fractions from decasaccharides to decasaccharides were obtained as shown in FIG. 2-2. Concentrate each fraction, dissolve in 10% ethanol and use Sephadex G.
-15 column/10% ethanol and then lyophilized to obtain the respective lithium salts as white powders in yields of 35.3, 33.4, 26.8, 16.0, 8.7, and 7.3 mg. Desulfated structural unit disaccharide (N-acetylchondrosin) of chondroitin-6-sulfate obtained in this example and oligosaccharide (disaccharide to 20 saccharide, n=0 to 2 in Table 1-2) 9) was subjected to the following chemical analysis and physical property measurements. (1) [α] 29 D Solvent: Water, Concentration: 0.13-0.15 (g/100
ml) (2) RGluA (relative mobility to glucuronic acid by paper electrophoresis) Buffer: Pyridine-acetic acid-1-butanol-water (5:1:5:250 volume ratio), PH5.8, 23V/
cm, time 60 minutes, temperature 4℃ (3) Thin layer chromatography (Rf value) Ascent method development, cellulose plate used Solvent:
n-Butanoic acid-0.5N ammonia water (5:3)
Mixed liquid (4) Content of uronic acid and hexosamine ●Uronic acid: Yoshizawa et al.'s improved carbazole method (M.
Kosakai, Z.Yosizawa, Anal.Biochem.
93 (1979) 295-298) ●Hexosamine: Antonopoulos method (CA
Antonopoulos, Arkiv.Kemi., 25 (1966)
243) (5) Molar ratio of hexosamine to uronic acid The method of A. Linker et al. (A. Linker, K. Meyer,
P.Hoffman, J.Biol.Chem., 181 (1949) 149−
151) to reduce oligosaccharides. By reduction with NaBH 4 , N-acetylgalactosamine at the reducing end position of N-acetylchondrosin and oligosaccharides consisting of it is converted to N-acetylgalactosamine.
It becomes acetylgalactosaminitol, and as a result, it is no longer necessary to quantify amino sugars by the method (4) above. Therefore, the degree of polymerization of each oligosaccharide can be determined by measuring the uronic acid/hexosamine molar ratio before and after reduction. (6) Molar ratio of N-acetylhexosamine to uronic acid ●Method of Reissig et al. (JLReissig, JL
Strominger, LFLeloir, J.Biol.Chem.
217 (1955) 959-966), the content of N-acetylhexosamine was measured, and the molar ratio was determined from the amount of uronic acid determined by the method (4) above. Table 2 summarizes the measurement results. Free N-
Measured values for a standard product of acetylchondrosin (obtained by N-acetylating a commercially available standard product of chondrosin (manufactured by Seikagaku Corporation) by the method of Danishefsky et al.) are also listed. [Table] [Table] *1, *2 Examples of calculated values are in parentheses 3 Dermatan sulfate pyridinium salt derived from chicken crest (200 mg) was dissolved in 10% aqueous DMSO (100 ml) and heated at 105°C for 30 hours with stirring. Heated. During this time, the pH of the reaction solution was in the range of 3.8 to 4.0.
After the reaction was completed, equal amounts of water and 0.5M NaOH solution were added to adjust the pH to 6.8, and the mixture was concentrated under reduced pressure (approximately 10 ml). According to the analytical gel perchromatogram (sample amount 10 mg, column size 1.6 x 88 cm) using Sephadex G-25/0.1M NaCl (dashed line in Figure 3-1), the reaction product mainly consists of disaccharides. It was a mixture of tetrasaccharides, hexasaccharides, and a small amount of monosaccharides. The concentrated solution obtained above was treated with anion exchange resin AG1×4 (Cl -
The product was treated in the same manner as in Example 2 using a column (type), and separated into disaccharide, tetrasaccharide, and hexasaccharide fractions (Figure 3-2). Each fraction was lyophilized and each fraction was
After desalting with 15 columns/10% ethanol,
Lyophilization was performed again to obtain lithium salts of disaccharides, tetrasaccharides, and hexasaccharides in yields of 81, 32.4, and 11.2 mg, respectively. The chromatogram indicated by the solid line in FIG. 3-1 is an analytical gel permeation chromatogram obtained when depolymerization was carried out under the same conditions as in the above example except that the reaction time was 18 hours. Example 4 Hyaluronic acid (free form) (500mg) was added to DMSO
(225 ml), add 0.05 M pyridine sulfate aqueous solution (25 ml), and heat at 105°C for 30 minutes with stirring.
heated for an hour. During this time, the pH of the reaction solution is 3.6-3.9
It was hot. After the reaction, equal volumes of water and 0.5M NaOH
The solution was added to adjust the pH to 6.8, and concentrated under reduced pressure (approximately 10
ml). Analytical gel perchromatogram using Sephadex G-25/0.1M NaCl (sample volume approx.
4.0 mg, column size 1.6 x 84 cm), it is a mixture of disaccharides, tetrasaccharides, and hexasaccharides (Fig. 4, solid line --). The concentrate obtained above is treated with anion exchange resin.
It was treated in the same manner as in Example 3 using an AG1×4 (Cl type) column and separated into disaccharide, tetrasaccharide, and hexasaccharide fractions.
Each fraction was lyophilized and each fraction was
After desalting with -15/10% ethanol, the mixture was freeze-dried again to obtain lithium salts of disaccharide, tetrasaccharide, and hexasaccharide in yields of 239, 108, and 36 mg, respectively. The chromatogram indicated by the broken line in Figure 4 shows depolymerization under the same conditions as in the above example except that pyridine hydrochloride was used instead of pyridine sulfate (PH during this period was in the range of 3.5 to 3.8). This is an analytical gel permeation chromatogram obtained in the same manner. Example 5 Dermatan sulfate pyridinium salt derived from pig skin (100 mg) was added to 0.3% pyridine aqueous solution/DMSO
(1:9) dissolved in 50 ml and heated to 105℃ for 30 minutes with stirring.
heated for an hour. During this time, the pH of the reaction solution was in the range of 4.4 to 4.6. After the reaction was completed, it was treated in the same manner as in Example 3 and subjected to analytical gel perchromatography using Cephadex G-25/0.1M NaCl (Figure 5).
It is a mixture of hexasaccharides, small amounts of octasaccharides, and monosaccharides. The entire amount of the product obtained in the above reaction was transferred to an anion exchange resin AG1 x 4 (HCOO - type) column (1.6 x 90 cm).
As shown in Figure 6, disaccharides (separated into N-acetyldermosine (a) and N-acetylchondrosine (b)), tetrasaccharides, and hexasaccharides were eluted with 0.3M HCOOH and 1M HCOOH. Each of the sugars and monosaccharides (L-iduronic acid (c) and D-glucuronic acid (d)) was fractionated. Each fraction was lyophilized and free oligosaccharides and monosaccharides were obtained in the following yields. N-acetyldermosine (20.5mg), N-acetylchondrosin (6.7mg), L-iduronic acid (6.1mg), tetrasaccharide (2 peaks) 18.1mg, hexasaccharide (11.2
mg).

【図面の簡単な説明】[Brief explanation of the drawing]

図1はコンドロイチン−6−硫酸ピリジニウム
塩の10%含水DMSO中95℃、18時間および105
℃、18時間のそれぞれの反応生成物のセフアデツ
クスG−25ゲル過クロマトグラムであり、図2
−1および2−2は同じく90℃、14時間の反応生
成物の陰イオン交換クロマトグラムである。図3
−1はニワトリ・トサカ由来のデルマタン硫酸ピ
リジニウム塩の10%含水DMSO中105℃、18時間
および105℃、30時間のそれぞれの反応生成物の
ゲル過クロマトグラムである。図3−2は同じ
く105℃、30時間の反応生成物の陰イオン交換ク
ロマトグラムである。図4はヒヤルロン酸(遊離
型)のピリジン硫酸塩水溶液:DMSO(1:9)、
105℃、30hr及びピリジン塩酸塩水溶液・DMSO
(1:9)、105℃、30hrにおけるそれぞれの反応
生成物のゲル過クロマトグラムである。図5は
ブタ・皮膚由来のデルマタン硫酸ピリジニウム塩
の0.3%ピリジン水溶液/DMSO(1:9)中、
105℃、30時間の反応生成物のゲル過クロマト
グラムである。図6は同じく105℃、30時間の反
応生成物の陰イオン交換クロマトグラムである。
Figure 1 shows chondroitin-6-pyridinium sulfate salt in 10% aqueous DMSO at 95°C for 18 hours and at 105°C.
Figure 2 is a Sephadex G-25 gel permeation chromatogram of each reaction product at
-1 and 2-2 are anion exchange chromatograms of the reaction products at 90°C for 14 hours. Figure 3
-1 is a gel permeation chromatogram of the reaction product of dermatan sulfate pyridinium salt derived from chicken crest in 10% aqueous DMSO at 105°C for 18 hours and at 105°C for 30 hours. Figure 3-2 is an anion exchange chromatogram of the reaction product obtained at 105°C for 30 hours. Figure 4 shows a pyridine sulfate aqueous solution of hyaluronic acid (free form): DMSO (1:9),
105℃, 30hr and pyridine hydrochloride aqueous solution/DMSO
(1:9), 105° C., and gel permeation chromatogram of each reaction product for 30 hours. Figure 5 shows dermatan sulfate pyridinium salt derived from pig skin in 0.3% pyridine aqueous solution/DMSO (1:9).
This is a gel permeation chromatogram of the reaction product at 105°C for 30 hours. Figure 6 is an anion exchange chromatogram of the reaction product obtained at 105°C for 30 hours.

Claims (1)

【特許請求の範囲】 1 酸性ムコ多糖類を、PH2以上5.5以下の酸性
条件下、水を含むジメチルスルホキシド中で処理
することを特徴とする酸性ムコ多糖類の解重合方
法。 2 酸性ムコ多糖類が、基本的にウロン酸とヒキ
ソサミンから成る構成単位二糖から構成されたも
のである特許請求の範囲第1項に記載の解重合方
法。 3 酸性ムコ多糖類が、ヒヤルロン酸、コンドロ
イチン−4−硫酸、コンドロイチン−6−硫酸、
又はデルマタン硫酸である特許請求の範囲第2項
に記載の解重合方法。 4 ジメチルスルホキシド中の水含量が、β−D
−ヘキソサミニド結合及び硫酸エステル結合の加
水分解に必要な理論量以上20重量%以下である特
許請求の範囲第1項に記載の解重合方法。 5 酸性条件が、PH3〜5.5である特許請求の範
囲第1項に記載の解重合方法。
[Scope of Claims] 1. A method for depolymerizing acidic mucopolysaccharides, which comprises treating acidic mucopolysaccharides in dimethyl sulfoxide containing water under acidic conditions with a pH of 2 or more and 5.5 or less. 2. The depolymerization method according to claim 1, wherein the acidic mucopolysaccharide is composed of a constituent disaccharide consisting basically of uronic acid and hixosamine. 3 Acidic mucopolysaccharides include hyaluronic acid, chondroitin-4-sulfate, chondroitin-6-sulfate,
or dermatan sulfate, the depolymerization method according to claim 2. 4 The water content in dimethyl sulfoxide is β-D
- The depolymerization method according to claim 1, wherein the amount is more than the theoretical amount necessary for hydrolysis of the hexosaminide bond and the sulfuric ester bond and less than 20% by weight. 5. The depolymerization method according to claim 1, wherein the acidic conditions are PH3 to 5.5.
JP11468780A 1980-08-22 1980-08-22 Depolymerization of acidic mucopolysaccharide Granted JPS5740502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11468780A JPS5740502A (en) 1980-08-22 1980-08-22 Depolymerization of acidic mucopolysaccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11468780A JPS5740502A (en) 1980-08-22 1980-08-22 Depolymerization of acidic mucopolysaccharide

Publications (2)

Publication Number Publication Date
JPS5740502A JPS5740502A (en) 1982-03-06
JPS645043B2 true JPS645043B2 (en) 1989-01-27

Family

ID=14644120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11468780A Granted JPS5740502A (en) 1980-08-22 1980-08-22 Depolymerization of acidic mucopolysaccharide

Country Status (1)

Country Link
JP (1) JPS5740502A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5320296B2 (en) * 2007-10-01 2013-10-23 生化学工業株式会社 Novel low molecular weight chondroitin sulfate and its use

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609043B2 (en) * 1976-06-22 1985-03-07 生化学工業株式会社 Method for producing desulfated mucopolysaccharide

Also Published As

Publication number Publication date
JPS5740502A (en) 1982-03-06

Similar Documents

Publication Publication Date Title
Taylor et al. Uronic acid composition of heparins and heparan sulfates
Maruyama et al. Conformational changes and anticoagulant activity of chondroitin sulfate following its O-sulfonation
Cifonelli The relationship of molecular weight, and sulfate content and distribution to anticoagulant activity of heparin preparations
Polat et al. Anomeric reactivity-based one-pot synthesis of heparin-like oligosaccharides
Pervin et al. Preparation and structural characterization of large heparin-derived oligosaccharides
US5380716A (en) Sulfated polysaccharides as inhibitors of smooth muscle cell proliferation
Fransson et al. Structure of Dermatan Sulfate: VII. THE COPOLYMERIC STRUCTURE OF DERMATAN SULFATE FROM HORSE AORTA
Mascellani et al. Structure and contribution to the heparin cofactor II-mediated inhibition of thrombin of naturally oversulphated sequences of dermatan sulphate
Wessler The nature of the non-ultrafilterable glycosaminoglycans of normal human urine
JPH0629282B2 (en) Depolymerization and supersulfated heparin, method for producing the same and pharmaceutical composition
Razi et al. Structural and functional properties of heparin analogues obtained by chemical sulphation of Escherichia coli K5 capsular polysaccharide
CN113583151A (en) Heparin molecule containing AT binding sequence and continuous 2-O-glucuronic acid residue, and preparation method and application thereof
JP3929486B2 (en) Process for producing desulfated polysaccharide and desulfated heparin
Hansen et al. Scalable synthesis of L-iduronic acid derivatives via stereocontrolled cyanohydrin reaction for synthesis of heparin-related disaccharides
Rele et al. Design and synthesis of dimeric heparinoid mimetics
Garg et al. Effect of fully sulfated glycosaminoglycans on pulmonary artery smooth muscle cell proliferation
Fugedi The potential of the molecular diversity of heparin and heparan sulfate for drug development
Linhardt et al. New methodologies in heparin structure analysis and the generation of LMW heparins
JPS6259711B2 (en)
EP0642533A1 (en) Heparan sulphate oligosaccharides having hepatocyte growth factor binding affinity
JPH06506973A (en) Sulfated polysaccharides as inhibitors of smooth muscle cell proliferation
Prihar et al. Biosynthesis of heparin. Hydrogen exchange at carbon 5 of the glycuronosyl residues
Jeanloz The chemistry of heparin
Cifonelli Acid hydrolysis of acidic mucopolysaccharides
Liu et al. Synthesis of Anticoagulant Pentasaccharide Fondaparinux via 3, 5-Dimethyl-4-(2′-phenylethynylphenyl) phenyl Glycosides