JPS644531B2 - - Google Patents

Info

Publication number
JPS644531B2
JPS644531B2 JP6230181A JP6230181A JPS644531B2 JP S644531 B2 JPS644531 B2 JP S644531B2 JP 6230181 A JP6230181 A JP 6230181A JP 6230181 A JP6230181 A JP 6230181A JP S644531 B2 JPS644531 B2 JP S644531B2
Authority
JP
Japan
Prior art keywords
solvent
resin composition
free
laminate
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6230181A
Other languages
Japanese (ja)
Other versions
JPS57177026A (en
Inventor
Atsushi Fujioka
Yasuo Myadera
Tomio Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP6230181A priority Critical patent/JPS57177026A/en
Publication of JPS57177026A publication Critical patent/JPS57177026A/en
Publication of JPS644531B2 publication Critical patent/JPS644531B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は印刷配線用銅張積層板等、種々の積層
板を製造する方法に係り、その目的とする所は、
従来の溶剤塗工、長時間硬化の要する積層板の製
造方法に比較し、省資源、省エネルギーの観点か
ら、無溶剤速硬化製造方法で、優れた特性を有す
る積層板を提供できるようにしたものである。 従来、電気絶縁用積層板は主として、いわゆる
乾式法によつて製造されている。すなわちエポキ
シ樹脂、硬化剤、硬化促進剤等を溶剤にとかし、
均一混合してワニスを作成し、これをガラスクロ
ス等の基材に含浸、加熱乾燥することによつてB
ステージのプリプレグをつくり、ついでこれを加
熱加圧することによつて積層板を得ている。 しかし、この方法によるとプリプレグをつくる
工程においてワニスに含まれている溶剤を除去す
る必要があり、そのためこの工程中に多量の溶剤
蒸気が発生し、作業環境が著しく悪化するばかり
か、火災、爆発の危険もある。更には、溶剤を除
去するのに加熱工程を経る必要がある事と、プリ
プレグとして保管する必要がある事とから、潜在
性のある硬化剤、例えばジシアンジアミド等を使
用するため、加熱加圧する際、長時間、通常60分
から90分間プレスする必要があるという欠点を有
している。 又、ジシアンジアミドを用いて無溶剤樹脂組成
物を作成しようとすると、ジシアンジアミドのエ
ポキシ樹脂への相溶性が悪いため、均一分散がで
きない。そのため、これを用いて積層板を作成し
ても硬化が均一でなく、又、ブラウンスポツトが
発生しやすいという欠点を有している。 本発明者らはこれらの点をかんがみエポキシ樹
脂と硬化剤の組み合わせ、樹脂組成物の基材への
含浸方法等種々検討した結果本発明にいたつた。
本発明は1分子あたり平均で2個以上のエポキシ
基を有するエポキシ樹脂に硬化剤として環状脂肪
族アミンを使用し、無溶剤系とするため、各々液
状で均一混合させて、無溶剤樹脂組成物を作成
し、この無溶剤樹脂組成物を基材に含浸させた
後、加熱加圧する無溶剤型積層板の製造法に関
し、短時間成形で無溶剤で積層板を製造する方法
を提供するものである。 次に本発明について更に具体的に説明する。 本発明に用いられるエポキシ樹脂は1分子あた
り平均で2個以上のエポキシ基を有していればよ
く、特に制限はないが、例えば、ビスフエノール
Aのジグリシジルエーテル型エポキシ樹脂、ブタ
ジエンジエポキサイド、4,4′―ジ(1,2―エ
ポキシエチル)ジフエニルエーテル、4,4′―ジ
(エポキシエチル)ビフエニル、レゾルシンのジ
グリシジルエーテル、フロログリシンのジグリシ
ジルエーテル、p―アミノフエノールのトリグリ
シジルエーテル、1,3,5―トリ(1,2―エ
ポキシエチル)ベンゼン、2,2′,4,4′―テト
ラグリシドキシベンゾフエノン、テトラグリシド
キシテトラフエニルエタン、フエノールホルムア
ルデヒドノボラツクのポリグリシジルエーテル、
トリメチロールプロパンのトリグリシジルエーテ
ル、クレゾールホルムアルデヒドノボラツクのポ
リグリシジルエーテル、グリセリンのトリグリシ
ジルエーテル、ハロゲン化ビスフエノールAのジ
グリシジルエーテル型エポキシ樹脂、ハロゲン化
フエノールホルムアルデヒドノボラツクのポリグ
リシジルエーテル、トリグリシジルイソシアヌレ
ート、ヒダントインエポキシ樹脂(チバガイギー
社製、商品名CY350、CY362)などがある。 硬化剤として用いる環状脂肪族アミンには4,
4′―ジアミノジシクロヘキシルメタン、3,3′―
ジメチル4,4′―ジアミノジシクロヘキシルメタ
ン、4,4′―ジアミノジシクロヘキシルエタン、
メンセンジアミン、イソフオロンジアミンなどが
ある。 エポキシ樹脂と硬化剤の添加量は1エポキシ当
量のエポキシ樹脂に対し、0.8から1.2アミン当量
の硬化剤量が望ましく、この範囲外であると、硬
化した積層板の特性に悪影響を及ぼす。好ましく
は1.0アミン当量である。 本発明に用いられる無溶剤樹脂組成物は可使時
間が非常に短かいので、均一混合工程、基材含浸
工程、加熱加圧の際の型締め工程は短時間に行な
うのが好ましい。 又、この樹脂組成物を用いて、溶剤を使用する
従来法で積層板を製造しようとすると、溶剤を除
去するための加熱乾燥工程中に硬化が進みすぎ、
プリプレグの状態で硬化してしまい、積層板の製
造は不可能となる。 なお本発明でいう無溶剤樹脂組成物とは従来法
のような溶剤除去行程を必要とするような量の溶
剤を使用しないということであつて、微量の溶剤
を使用することは差しつかえない。 基材としては、ガラスクロス、ガラス不織布、
紙、ポリエステル布等従来知られている基材はい
ずれも使用可能である。 上記エポキシ樹脂、硬化剤の他に必要に応じて
硬化促進剤、変性剤、充填材、顔料等を添加して
もよい。 エポキシ樹脂と硬化剤を各々液状均一混合する
方法としては、好ましくはまず各々が液状になる
まで加温する。ただし、室温で液状であれば加熱
する必要はないし、又混合時に直ちに硬化してし
まう様な高温加熱は適当でない。 次に短時間に均一に混合する方法としては、撹
拌モーターにより高速撹拌する方法、液状樹脂計
量混合吐出装置を用いる方法、リアクシヨンイン
ジエクシヨンモールデイング装置を用いる方法等
が適切である。 無溶剤樹脂組成物を基材に含浸させる方法とし
ては、1枚の基板上に無溶剤樹脂組成物を塗布し
た後、必要枚数重ねて加熱加圧してもよく、必要
枚数重ねた基材上に無溶剤樹脂組成物を塗布して
もよく、又は基材と基材の間に無溶剤樹脂組成物
をサンドイツチ状にはさむ様に塗布してもよい。
又、低分子量液状エポキシ樹脂を用いた場合の様
に無溶剤樹脂組成物の粘度が室温でも低ければ、
含浸に適する粘度になる温度にまで高めた後、含
溶剤ワニスと同様に基材を無溶剤樹脂組成物中に
浸漬することによつて基材に含浸させることも可
能である。高分子量のエポキシ樹脂を用いた無溶
剤樹脂組成物の場合高粘度のため、大気圧下にお
いて反応を十分に進めることなく、基材に含浸す
ることが不可能な場合があるが、この場合、無溶
剤樹脂組成物を基材に塗布した後の加熱加圧工程
において、基材に含浸することが出来るので何ら
不都合は生じない。 加熱加圧成形する方法は、通常行なわれている
鏡板による成形でもよいが、Bステージ状態を経
ないため、鏡板と鏡板の間にスペーサを入れる
か、又は、エツジが付いている金型による成形の
方が、未硬化樹脂が流れ出ないで、内部に圧力が
かかり、好ましい。 又、成形時間は従来の溶剤型積層板製造方法で
は、前述の様に通常60分から90分間プレスする必
要があるのに対し、本発明による硬化剤として環
状脂肪族アミンを使用する方法では、速硬化性を
有するため、5分から10分間プレスするだけで硬
化が完了するので、非常に短時間で成形すること
が可能である。 この様にして積層板を製造する際、基材の両
側、あるいは片側に銅等の金属箔を重ねて加熱加
圧成形し、金属箔張積層板とするのが通常である
が、金属箔がなくてもさしつかえない。使用され
る金属箔としては銅箔、アルミ箔等である。 以下本発明について実施例をもつて詳細に説明
する。但し、本発明は以下の実施例に限定される
ものではない。 実施例 1 チバガイギー社製臭素化ビスフエノールA型エ
ポキシ樹脂、商品名アラルダイト8011(エポキシ
当量490g/eq)100gを130℃で加熱溶融した。
一方、別個に新日本理化製4,4′ジアミノジシク
ロヘキシルメタン、商品名ワンダミンHM(アミ
ン当量52.6g/eq)10.7gを80℃で加熱溶融し
た。加熱された上記アラルダイト8011を撹拌モー
ターを用いて高速撹拌しておき、加熱しておいた
上記ワンダミンHMをすばやく加えた。20秒間撹
拌後、直ちに重ねられたガラスクロス(サイズ
190mm×270mm)4枚の上に全量塗布し、その上に
ガラスクロス4枚を重ね、更にその上に35μTAI
処理銅箔を1枚重ねた。高さ1.6mmのエツヂがつ
いた金型を用い、170℃で5分間プレスし、片面
銅張積層板を得た。無溶剤樹脂組成物および積層
板の諸特性を表1に示した。 実施例 2 アラルダイト8011、83.6gとダウケミカル社製
高臭素化ビスフエノールA型エポキシ樹脂、商品
名DER―542(エポキシ当量375g/eq)16.4gを
130℃で加熱溶融した。一方ワンダミンHM11.3
gを80℃で加熱溶融した。これらを使用して実施
例1と同様にして銅張積層板を得た。無溶剤樹脂
組成物、積層板の諸特性を表1に示した。 比較例 1 アラルダイト8011、100重量部をメチルエチル
ケトン25重量部に溶解させた溶液Aと、ジシアン
ジアミド4重量部をジメチルホルムアミド15重量
部およびメチルセロソルブ15重量部に溶解させた
溶液Bとベンジルジメチルアミン0.2重量部Cと
を室温において均一混合し、含溶剤ワニスを作成
した。この含溶剤ワニスをガラスクロスに含浸さ
せた後、160℃で4分間熱風乾燥機により、溶剤
を除去するため乾燥し、プリプレグと得た。この
プリプレグ8枚と35μTAI処理銅箔1枚を重ね
て、これらを2枚の鏡板にはさみ、170℃で90分
間プレスし、銅張積層板を得た。含溶剤ワニスと
積層板の諸特性を表1に示した。 プレス時間を90分間のかわりに5分間としてと
り出すと樹脂は未だ硬化が充分ではなく、鏡板に
樹脂が付着してしまつた。 以上の実施例、比較例より本発明による積層板
は無溶剤でしかも速硬化で製造でき、その特性も
従来法による積層板と遜色ないことがわかる。
The present invention relates to a method for manufacturing various laminates such as copper-clad laminates for printed wiring, and its purpose is to:
Compared to conventional methods of manufacturing laminates that require solvent coating and long curing times, this method is able to provide laminates with superior properties using a solvent-free, fast-curing manufacturing method that saves resources and energy. It is. Conventionally, electrically insulating laminates have been mainly manufactured by a so-called dry method. In other words, epoxy resin, curing agent, curing accelerator, etc. are dissolved in a solvent,
By uniformly mixing the varnish, impregnating it into a base material such as glass cloth, and heating and drying it, B.
A laminate is obtained by making stage prepreg and then heating and pressurizing it. However, according to this method, it is necessary to remove the solvent contained in the varnish during the prepreg manufacturing process, which generates a large amount of solvent vapor during this process, which not only significantly deteriorates the working environment but also causes fires and explosions. There is also a danger of Furthermore, since it is necessary to go through a heating process to remove the solvent and it is necessary to store it as a prepreg, a latent curing agent such as dicyandiamide is used, so when heating and pressurizing it, It has the disadvantage of requiring long pressing times, typically 60 to 90 minutes. Furthermore, when attempting to create a solvent-free resin composition using dicyandiamide, uniform dispersion cannot be achieved because dicyandiamide has poor compatibility with epoxy resins. Therefore, even if a laminate is made using this, the curing is not uniform and brown spots are likely to occur. In view of these points, the present inventors conducted various studies including the combination of an epoxy resin and a curing agent, the method of impregnating a base material with a resin composition, and as a result, arrived at the present invention.
The present invention uses a cycloaliphatic amine as a curing agent for an epoxy resin having an average of two or more epoxy groups per molecule, and in order to make it a solvent-free system, each is uniformly mixed in liquid form to form a solvent-free resin composition. The present invention relates to a method for producing a solvent-free laminate in which a base material is impregnated with this solvent-free resin composition and then heated and pressed. be. Next, the present invention will be explained in more detail. The epoxy resin used in the present invention is not particularly limited as long as it has two or more epoxy groups per molecule on average, but examples include diglycidyl ether type epoxy resin of bisphenol A, butadiene diepoxide, 4,4'-di(1,2-epoxyethyl) diphenyl ether, 4,4'-di(epoxyethyl) biphenyl, diglycidyl ether of resorcinol, diglycidyl ether of phloroglycin, triglycidyl p-aminophenol Ether, 1,3,5-tri(1,2-epoxyethyl)benzene, 2,2',4,4'-tetraglycidoxybenzophenone, tetraglycidoxytetraphenylethane, phenol formaldehyde novolac polyglycidyl ether,
Triglycidyl ether of trimethylolpropane, polyglycidyl ether of cresol formaldehyde novolak, triglycidyl ether of glycerin, diglycidyl ether type epoxy resin of halogenated bisphenol A, polyglycidyl ether of halogenated phenol formaldehyde novolak, triglycidyl isocyanate Nurate, hydantoin epoxy resin (manufactured by Ciba Geigy, product names CY350, CY362), etc. The cycloaliphatic amine used as a curing agent contains 4,
4'-diaminodicyclohexylmethane, 3,3'-
Dimethyl 4,4'-diaminodicyclohexylmethane, 4,4'-diaminodicyclohexylethane,
Examples include menzendiamine and isophoronediamine. The amount of the epoxy resin and curing agent added is desirably 0.8 to 1.2 amine equivalents per 1 epoxy equivalent of the epoxy resin, and if it is outside this range, the properties of the cured laminate will be adversely affected. Preferably it is 1.0 amine equivalent. Since the solvent-free resin composition used in the present invention has a very short pot life, it is preferable to carry out the uniform mixing step, the substrate impregnation step, and the mold clamping step during heating and pressing in a short time. Furthermore, when attempting to manufacture a laminate using this resin composition using a conventional method using a solvent, the curing progresses too much during the heat drying process to remove the solvent.
It hardens in the prepreg state, making it impossible to manufacture a laminate. Note that the term "solvent-free resin composition" as used in the present invention means that an amount of solvent that would require a solvent removal step as in conventional methods is not used, and a trace amount of solvent may be used. Base materials include glass cloth, glass nonwoven fabric,
Any conventionally known base material such as paper or polyester cloth can be used. In addition to the above-mentioned epoxy resin and curing agent, a curing accelerator, modifier, filler, pigment, etc. may be added as necessary. As a method for uniformly mixing the epoxy resin and the curing agent in liquid form, it is preferable to first heat them until each becomes liquid. However, if it is liquid at room temperature, there is no need to heat it, and high-temperature heating that would cause immediate hardening during mixing is not appropriate. Next, suitable methods for uniformly mixing in a short time include a method of high-speed stirring using a stirring motor, a method of using a liquid resin metering and mixing discharge device, a method of using a reaction injector molding device, and the like. As a method for impregnating the base material with the solvent-free resin composition, the solvent-free resin composition may be applied onto one substrate, and then the required number of sheets may be stacked and heated and pressurized. The solvent-free resin composition may be applied, or the solvent-free resin composition may be applied between two substrates in a sandwich-like manner.
In addition, if the viscosity of the solvent-free resin composition is low even at room temperature, as in the case of using a low molecular weight liquid epoxy resin,
It is also possible to impregnate a base material by raising the temperature to a temperature at which the viscosity is suitable for impregnation, and then immersing the base material in a solvent-free resin composition in the same manner as with a solvent-containing varnish. In the case of a solvent-free resin composition using a high molecular weight epoxy resin, due to its high viscosity, it may be impossible to impregnate the substrate without sufficiently proceeding with the reaction under atmospheric pressure. In the heating and pressing step after applying the solvent-free resin composition to the base material, the base material can be impregnated with the composition, so no inconvenience occurs. The heating and pressure forming method can be done by using the usual end plate, but in order to avoid going through the B stage state, it is necessary to insert a spacer between the end plates or to use a mold with edges. This is preferable because the uncured resin does not flow out and pressure is applied inside. In addition, in the conventional solvent-based laminate manufacturing method, it is usually necessary to press for 60 to 90 minutes as described above, whereas in the method of the present invention using a cycloaliphatic amine as a curing agent, the molding time is fast. Since it has hardening properties, it can be completely cured by pressing for 5 to 10 minutes, so it can be molded in a very short time. When manufacturing a laminate in this way, it is normal to stack metal foil such as copper on both sides or one side of the base material and heat and pressure mold it to make a metal foil-clad laminate. I can do without it. The metal foil used is copper foil, aluminum foil, etc. The present invention will be described in detail below using examples. However, the present invention is not limited to the following examples. Example 1 100 g of a brominated bisphenol A type epoxy resin manufactured by Ciba Geigy, trade name Araldite 8011 (epoxy equivalent: 490 g/eq) was heated and melted at 130°C.
Separately, 10.7 g of 4,4' diamino dicyclohexylmethane manufactured by Shin Nippon Rika, trade name Wandamine HM (amine equivalent: 52.6 g/eq), was heated and melted at 80°C. The heated Araldite 8011 was stirred at high speed using a stirring motor, and the heated Wondermine HM was quickly added. After stirring for 20 seconds, immediately remove a layered glass cloth (size
190mm x 270mm), apply the entire amount on top of 4 sheets, layer 4 sheets of glass cloth on top of that, and then apply 35μTAI on top of that.
One sheet of treated copper foil was stacked. Using a mold with an edge of 1.6 mm in height, pressing was performed at 170°C for 5 minutes to obtain a single-sided copper-clad laminate. Table 1 shows the properties of the solvent-free resin composition and the laminate. Example 2 83.6 g of Araldite 8011 and 16.4 g of highly brominated bisphenol A type epoxy resin manufactured by Dow Chemical Company, trade name DER-542 (epoxy equivalent: 375 g/eq) were added.
It was heated and melted at 130°C. Meanwhile Wondermin HM11.3
g was heated and melted at 80°C. Using these materials, a copper-clad laminate was obtained in the same manner as in Example 1. Table 1 shows the properties of the solvent-free resin composition and the laminate. Comparative Example 1 Solution A in which 100 parts by weight of Araldite 8011 was dissolved in 25 parts by weight of methyl ethyl ketone, Solution B in which 4 parts by weight of dicyandiamide was dissolved in 15 parts by weight of dimethylformamide and 15 parts by weight of methyl cellosolve, and 0.2 parts by weight of benzyldimethylamine. Part C was uniformly mixed at room temperature to prepare a solvent-containing varnish. A glass cloth was impregnated with this solvent-containing varnish and then dried in a hot air dryer at 160° C. for 4 minutes to remove the solvent, thereby obtaining a prepreg. Eight sheets of this prepreg and one sheet of 35 μTAI-treated copper foil were stacked, sandwiched between two mirror plates, and pressed at 170° C. for 90 minutes to obtain a copper-clad laminate. Table 1 shows the properties of the solvent-containing varnish and the laminate. When the pressing time was set to 5 minutes instead of 90 minutes, the resin was not yet fully cured and the resin adhered to the mirror plate. From the above Examples and Comparative Examples, it can be seen that the laminate according to the present invention can be produced without a solvent and can be cured quickly, and its properties are comparable to those of the laminate produced by the conventional method.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 1分子あたり平均で2個以上のエポキシ基を
有するエポキシ樹脂と、硬化剤としての環状脂肪
族アミンを各々液状で均一混合させて無溶剤樹脂
組成物を作成し、この無溶剤樹脂組成物を基材に
含浸させた後、加熱加圧成形することを特徴とす
る無溶剤型積層板製造方法。 2 環状脂肪族アミンが4,4′ジアミノジシクロ
ヘキシルメタンである特許請求範囲第1項記載の
無溶剤型積層板製造方法。
[Claims] 1. A solvent-free resin composition is prepared by uniformly mixing an epoxy resin having two or more epoxy groups per molecule and a cycloaliphatic amine as a curing agent in liquid form. A method for producing a solvent-free laminate, which comprises impregnating a base material with a solvent-free resin composition and then performing heating and pressure molding. 2. The method for producing a solvent-free laminate according to claim 1, wherein the cycloaliphatic amine is 4,4'diaminodicyclohexylmethane.
JP6230181A 1981-04-23 1981-04-23 Manufacture of solvent-free laminated board Granted JPS57177026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6230181A JPS57177026A (en) 1981-04-23 1981-04-23 Manufacture of solvent-free laminated board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6230181A JPS57177026A (en) 1981-04-23 1981-04-23 Manufacture of solvent-free laminated board

Publications (2)

Publication Number Publication Date
JPS57177026A JPS57177026A (en) 1982-10-30
JPS644531B2 true JPS644531B2 (en) 1989-01-26

Family

ID=13196162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6230181A Granted JPS57177026A (en) 1981-04-23 1981-04-23 Manufacture of solvent-free laminated board

Country Status (1)

Country Link
JP (1) JPS57177026A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963300A (en) * 1987-12-15 1990-10-16 Ciba-Geigy Corporation Process for the preparation of laminates

Also Published As

Publication number Publication date
JPS57177026A (en) 1982-10-30

Similar Documents

Publication Publication Date Title
US5492722A (en) Process and apparatus for resin impregnation of a fibrous substrate
US3523037A (en) Epoxy resin composition containing brominated polyglycidyl ether of bisphenol a and a polyglycidyl ether of tetrakis(hydroxyphenyl) ethane
US4749614A (en) Process for coating fibers, use thereof, and product
JP2001031838A (en) Epoxy resin composition for self-adhesive facing material and prepreg
US5976699A (en) Insulating adhesive for multilayer printed circuit board
JPH05163373A (en) Production of laminate board
JPS644531B2 (en)
JP3363388B2 (en) Epoxy resin composition, prepreg and metal foil-clad laminate
JPH0369372B2 (en)
JPS643224B2 (en)
JPH1177892A (en) Manufacture of copper-card laminate
JPH09316219A (en) Pre-preg, its production and laminated board
JPH0226579B2 (en)
JPH0226580B2 (en)
JP7400258B2 (en) FRP precursor manufacturing method, FRP precursor, laminate, multilayer printed wiring board, and semiconductor package
JPH0416337A (en) Epoxy resin foamable sheet, foamed cured body and composite material
JPS6124176B2 (en)
CN115960442A (en) Curing sheet, preparation method and application thereof, and packaging carrier tape
JPH0381383A (en) Film adhesive
JPS6178843A (en) Production of epoxy resin laminated sheet
JPS58104734A (en) Preparation of thermosetting resin sheet body
JPS61199947A (en) Manufacture of copper lined laminated board for printed wiring board
JPH07297552A (en) Manufacture of multilayer printed wiring board
EP0436746B1 (en) Process of manufacture for high performance epoxy based laminating adhesives
JPH04296542A (en) Manufacture of laminated sheet