JPS644241Y2 - - Google Patents

Info

Publication number
JPS644241Y2
JPS644241Y2 JP1978021773U JP2177378U JPS644241Y2 JP S644241 Y2 JPS644241 Y2 JP S644241Y2 JP 1978021773 U JP1978021773 U JP 1978021773U JP 2177378 U JP2177378 U JP 2177378U JP S644241 Y2 JPS644241 Y2 JP S644241Y2
Authority
JP
Japan
Prior art keywords
storage battery
variable
voltage
power supply
variable voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978021773U
Other languages
Japanese (ja)
Other versions
JPS53116917U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1978021773U priority Critical patent/JPS644241Y2/ja
Publication of JPS53116917U publication Critical patent/JPS53116917U/ja
Application granted granted Critical
Publication of JPS644241Y2 publication Critical patent/JPS644241Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Description

【考案の詳細な説明】 本考案は車体に搭載される蓄電池群の接続変化
による電圧制御を伴う蓄電池車の可変直流電源に
関するものである。
[Detailed Description of the Invention] The present invention relates to a variable DC power source for a storage battery vehicle that involves voltage control by changing the connection of a group of storage batteries mounted on the vehicle body.

従来、蓄電池車の電源としての蓄電池は何らの
接続替を行わずに用いられ、速度制御として○イ直
流電動機の直巻界磁巻線の巻線数をタツプの一部
短絡制御をするか、○ロ複巻電動機を採用し、その
分巻界磁巻線への電流を可変抵抗の作用に基づい
て制御する等の手段に電動機の回転数を制御する
方法が採用されているが、この方法では電源とし
ての蓄電池群の電圧が不変であることに伴い特に
低速領域における速度制御が制限を受け全速度範
囲にわたり円滑なる速度制御ができない。このた
めに蓄電池群を構成する蓄電池をいくつかのブロ
ツクに分けて、これらの各ブロツクを、スイツチ
ング素子の作用によつて直列接続制御をして電圧
制御を行うようにしているが、このような直並列
制御においては各蓄電池ブロツクの放電状態が一
様にすることが、特別の制御装置を用いない限り
不可能であり、ひいては充電に際して全てを均等
に充電することができず、充電を個々のブロツク
ごとにすることが強いられ充電に際しての工数が
著しく大となる重大な欠点があつた。
Conventionally, the storage battery as a power source for a storage battery car is used without any connection change, and the speed control is performed by short-circuiting a portion of the series field winding of the DC motor by tapping the number of turns, or ○B) A method is adopted in which a compound-wound electric motor is used and the number of revolutions of the motor is controlled by means such as controlling the current to the field winding based on the action of a variable resistor. In this case, since the voltage of the storage battery group as a power source remains unchanged, speed control is limited particularly in the low speed range, and smooth speed control cannot be performed over the entire speed range. For this purpose, the storage batteries that make up the storage battery group are divided into several blocks, and each of these blocks is connected in series and controlled by the action of a switching element to control the voltage. In series-parallel control, it is impossible to make the discharge state of each storage battery block uniform without using a special control device. This has the serious disadvantage that charging must be performed block by block, which significantly increases the number of man-hours required for charging.

本考案の目的は蓄電池車の電源をなす蓄電池を
複数のブロツクに分け、独特の接続手段と電流抑
制用リアクトルの組合せによつていく種類かの電
圧制御が各蓄電池ブロツクの放電状態を均等に保
ちつつ行うことができ、充電に際しての作業工数
を減少させることにある。
The purpose of this invention is to divide the storage batteries that form the power source of storage battery cars into multiple blocks, and use a combination of unique connection means and current suppressing reactors to maintain the uniform discharge state of each storage battery block through various types of voltage control. The purpose is to reduce the number of man-hours required for charging.

以下、図示する実施例について具体的に説明す
る。第1図は本考案の実施例を示す回路図であ
る。1は可変直流電源で、本考案の要部をなし、
後述する蓄電池、ダイオード及びスイツチング素
子から構成されている。2aは直流電動機電機
子、2bは直巻界磁巻線で、両者にて直流直巻電
動機2を構成している。そして、この直流直巻電
動機2は電流抑制用リアクトル3及び電源開閉用
接触器4を順次介して上記可変直流電源1に接続
されている。5a1,5a2,5a3は開閉器接点で、
それぞれ直巻界磁巻線2bに設けたタツプ2b1
2b2,2b3とタツプ2bとの間に図示のように接
続されている。6は制御器で、上記開閉器接点5
a1,5a2,5a3の開閉制御を行い、速度制御を行
わせるものである。即ち、アクセル装置7からの
指令に基づいて上記開閉器接点5a1,5a2,5a3
の開閉制御をなし、直巻界磁巻線2bの実効巻線
を増減させるものである。一方、この制御器6は
可変直流電源1中のスイツチング素子を制御する
ように作用する。次に本考案の主体をなす可変直
流電源1の詳細を第2図及び第3図に従つて説明
する。まず第2図は最も本考案の基本となる回路
構成を示し、同図においてもE1,E2はいくつか
の単位蓄電池からなる蓄電池で同一電圧、同一容
量を有している。そして蓄電池E1の+端子は可
変直流電源1の+端子に直接、蓄電池E2の+端
子はダイオードD1を当該蓄電池E2に対し順方向
に介して可変直流電源1の+端子に接続されてい
る。一方、蓄電池E2の−端子は可変直流電源1
の−端子に直接、蓄電池E1の−端子はダイオー
ドD2を当該蓄電池E1に対して逆方向に介して可
変直流電源1の端子にそれぞれ接続されている。
Sはスイツチング素子で、蓄電池E1の−端子と
蓄電池E2の+端子間に接続され、機械的電磁接
触器接点でもよく、またトランジスタ等の無接点
スイツチング素子でもよい。但し、後者を採用す
る際、蓄電池E1,E2の充電を考慮し、両方向導
通スイツチング素子とすることが必要である。こ
の第2図に示す回路は電圧の2段切替回路で、各
蓄電池E1,E2の電圧値をそれぞれeとすれば可
変直流電源1の出力としてe、2eの2種類の電
圧制御に限られ、この限りにおいては本考案の眼
目としている回路ではなく、この電圧制御範囲を
さらに一段拡大された、本考案の最も簡単な回路
構成を第3図に示す。同第3図において、蓄電池
E1′,E2′、ダイオードD1′,D2′、スイツチング素
子S1′を第2図と均等な接続にて得られる可変電
圧回路1aと、蓄電池E3′,E4′、ダイオードD3′,
D4′及びスイツチング素子S2′を同様な接続で得ら
れる可変電圧回路1bとを得て、これらの可変電
圧回路1a,1bにダイオードD5′,D6′、スイツ
チング素子S3′を附加し、それぞれを第2図にお
ける蓄電池E1,E2、ダイオードD1,D2及びスイ
ツチング素子Sに対応させる接続方法により可変
直流電源1が構成される。さらに第3図に示す回
路を第2図に示す蓄電池E1,E2に対応する接続
をすれば、より幅広い電圧制御が得られる。即
ち、e,2e,4e,8e…2neと一つの級数をなす電
圧値を得ることのできる回路が構成される。但
し、最大電圧を一定に保つに際しては、例えば第
3図の蓄電池E1′〜E4′はそれぞれe/2(第2図
中のE1,E2の電圧値をeとして)に設定すれば
良い。なお、本件考案に係る構成においては普通
考えられる第2図を基にした縦続接続と異なり、
電圧の微動変化が期待し得ないことに関連して電
圧変化に際しての衝激電流を防止すべく第1図示
の電流抑制用リアクトル3は必要欠くことのでき
ないものとなる。
The illustrated embodiment will be specifically described below. FIG. 1 is a circuit diagram showing an embodiment of the present invention. 1 is a variable DC power supply, which is the main part of the invention,
It is composed of a storage battery, a diode, and a switching element, which will be described later. 2a is a DC motor armature, and 2b is a series field winding, both of which constitute a DC series motor 2. The DC series motor 2 is connected to the variable DC power supply 1 via a current suppressing reactor 3 and a power supply switching contactor 4 in this order. 5a 1 , 5a 2 , 5a 3 are switch contacts,
Taps 2b 1 provided on the series field winding 2b, respectively.
It is connected between 2b 2 and 2b 3 and tap 2b as shown. 6 is a controller, and the above-mentioned switch contact 5
Opening/closing control of a 1 , 5a 2 , and 5a 3 is performed to control speed. That is, based on the command from the accelerator device 7, the switch contacts 5a 1 , 5a 2 , 5a 3
The opening/closing control is performed to increase or decrease the effective winding of the series field winding 2b. On the other hand, this controller 6 acts to control the switching elements in the variable DC power supply 1. Next, details of the variable DC power supply 1, which is the main body of the present invention, will be explained with reference to FIGS. 2 and 3. First, FIG. 2 shows the circuit configuration that is the most basic of the present invention, and in the same figure, E 1 and E 2 are storage batteries consisting of several unit storage batteries, and have the same voltage and the same capacity. The + terminal of the storage battery E 1 is connected directly to the + terminal of the variable DC power supply 1, and the + terminal of the storage battery E 2 is connected to the + terminal of the variable DC power supply 1 via the diode D 1 in the forward direction with respect to the storage battery E 2 . ing. On the other hand, the - terminal of storage battery E 2 is connected to variable DC power supply 1.
The - terminal of the storage battery E 1 is directly connected to the - terminal of the storage battery E 1 , and the - terminal of the storage battery E 1 is connected to the terminal of the variable DC power supply 1 via a diode D 2 in the opposite direction to the storage battery E 1 .
S is a switching element connected between the negative terminal of the storage battery E1 and the positive terminal of the storage battery E2 , and may be a mechanical electromagnetic contactor contact or a non-contact switching element such as a transistor. However, when adopting the latter method, it is necessary to consider the charging of storage batteries E 1 and E 2 and use a bidirectional conduction switching element. The circuit shown in FIG. 2 is a two-stage voltage switching circuit, and if the voltage values of the storage batteries E 1 and E 2 are respectively e, the output of the variable DC power supply 1 is limited to two types of voltage control, e and 2e. In this respect, it is not the circuit that is the focus of the present invention, but the simplest circuit configuration of the present invention, in which the voltage control range is further expanded, is shown in FIG. In Figure 3, the storage battery
A variable voltage circuit 1a obtained by connecting E 1 ′, E 2 ′, diodes D 1 ′, D 2 ′, and switching element S 1 ′ evenly as shown in FIG. 2, storage batteries E 3 ′, E 4 ′, and diodes D 3 ′,
A variable voltage circuit 1b obtained by connecting D 4 ′ and switching element S 2 ′ in the same way is obtained, and diodes D 5 ′, D 6 ′ and switching element S 3 ′ are added to these variable voltage circuits 1a and 1b. The variable DC power supply 1 is configured by a connection method in which the storage batteries E 1 , E 2 , the diodes D 1 , D 2 , and the switching element S shown in FIG. 2 correspond to each other. Furthermore, if the circuit shown in FIG. 3 is connected to the storage batteries E 1 and E 2 shown in FIG. 2, a wider range of voltage control can be obtained. That is, a circuit is constructed that can obtain voltage values forming a series of e, 2e, 4e, 8e... 2ne . However, in order to keep the maximum voltage constant, for example, each of the storage batteries E 1 ' to E 4 ' in Figure 3 should be set to e/2 (the voltage values of E 1 and E 2 in Figure 2 are assumed to be e). Good. In addition, in the configuration related to the present invention, unlike the cascade connection based on Fig. 2, which is usually considered,
Since minute changes in voltage cannot be expected, the current suppressing reactor 3 shown in FIG. 1 is indispensable in order to prevent an impulse current when the voltage changes.

上記構成において、まず、可変直流電源1を最
小電圧に設定する。即ち、第3図に示す回路にお
いてスイツチング素子S1′,S2′S3′を全て開路して
おくことによりE1′〜E4′の電圧を各e/2とし
て、接触器4を投入すると、アクセル装置7を作
動させない状態においては開閉器接点5a1,5
a2,5a3はいずれも開路状態に設定することによ
り直巻界磁巻線2bの実効巻数を最大にすること
とも関連して極低速度にて円滑に蓄電池車を発進
させる。次いで、アクセル装置7を作動させる
と、開閉器接点5a1,5a2,5a3は順次投入さ
れ、直巻界磁巻線2bの実効巻数を減少させ速度
を上昇させるように作用する。これと同時に可変
直流電源1内の第3図中のスイツチング素子S1′,
S2′,S3′を、S1′,S2′は同時に次いでS3′を順次投
入することにより蓄電池E1′〜E4′の各電圧値e′に
対し、e′,2e′,4e′と可変直流電源1の有する
最大電圧値まで可変電圧制御を行う。このように
して蓄電池車が高速駆動されている状態において
アクセル装置7を解放すると、可変直流電源1の
最大電圧即ち、第3図中のスイツチング素子S1′,
S2′,S3′を全部投入した際の電圧に比して直流電
動機2の端子電圧が大となり直流電動機2から可
変直流電源1に向けて回生電流が流入し、回生制
動作用をなす。一方、放電した蓄電池E1′〜E4′を
充電するに際してはスイツチング素子S1′,S2′,
S3′を全て閉路したうえ充電器を介して別途電源
により行うものとする。この蓄電池E1′〜E4′の充
放電は本考案の構成により各蓄電池につき均等に
なされるものである。
In the above configuration, first, the variable DC power supply 1 is set to the minimum voltage. That is, in the circuit shown in FIG. 3, by keeping all the switching elements S 1 ′, S 2 ′ and S 3 ′ open, the voltages of E 1 ′ to E 4 ′ are set to e/2, and the contactor 4 is turned on. Then, when the accelerator device 7 is not activated, the switch contacts 5a 1 , 5
By setting both a 2 and 5a 3 in an open state, the effective number of turns of the series field winding 2b is maximized, and the battery car is smoothly started at an extremely low speed. Next, when the accelerator device 7 is actuated, the switch contacts 5a 1 , 5a 2 , and 5a 3 are sequentially closed, acting to reduce the effective number of turns of the series field winding 2b and increase the speed. At the same time, the switching elements S 1 ′ in FIG. 3 in the variable DC power supply 1,
By sequentially charging S 2 ′, S 3 ′, S 1 ′, S 2 ′ at the same time, and sequentially charging S 3 ′, e′, 2e′ for each voltage value e′ of storage batteries E 1 ′ to E 4 ′ , 4e' and variable voltage control is performed up to the maximum voltage value of the variable DC power supply 1. When the accelerator device 7 is released while the storage battery car is being driven at high speed in this manner, the maximum voltage of the variable DC power supply 1, that is, the switching element S 1 ′ in FIG.
The terminal voltage of the DC motor 2 becomes larger than the voltage when S 2 ′ and S 3 ′ are all turned on, and a regenerative current flows from the DC motor 2 toward the variable DC power supply 1 for regenerative braking. On the other hand, when charging the discharged storage batteries E 1 ′ to E 4 ′, the switching elements S 1 ′, S 2 ′,
S 3 ′ shall be completely closed and a separate power source will be used via a charger. The charging and discharging of the storage batteries E 1 ′ to E 4 ′ is performed equally for each storage battery due to the structure of the present invention.

なお、上記実施例においては直巻界磁巻線の実
効巻数を制御する例を示したものであるが、例え
ば直流電動機として複巻直流電動機を採用し、分
巻界磁巻線の電流制御を行う回路にも応用できる
ことは明らかで、上記第1図に示す実施例に限定
されるものではない。
Although the above embodiment shows an example in which the effective number of turns of the series-wound field winding is controlled, for example, a compound-wound DC motor is adopted as the DC motor, and current control of the shunt-wound field winding is performed. It is obvious that the present invention can also be applied to circuits for carrying out the present invention, and is not limited to the embodiment shown in FIG. 1 above.

以上述べたように本考案に係る蓄電池車の可変
直流電源は駆動用直流電動機に対し電力を供給す
る直流電源を可変電圧とし、この可変電圧を2n
(nは2以上の自然数)個の蓄電池をダイオード、
スイツチング素子とで単位蓄電池電圧をeoとし
た際にeo,2eo,4eo,8eo…の一つの級数をなす
電圧を得るように構成したものである。これによ
つて可変直流電源の最大電圧の範囲内において2
のべき乗の電圧が得られるが、この際可変蓄電池
を構成する各単位蓄電池の放電度は全体が均一に
負荷電流を担持することに関連して完全に一致を
みることができる。従つて、放電後の蓄電池は一
様に充電することができ、放電状態を異にするい
くつかのブロツクごとに異なる状態にて充電する
余地がなく充電に際しての工数を著しく減少させ
ることのできる特長を有しているものである。
As described above, the variable DC power supply for the storage battery vehicle according to the present invention has a variable voltage DC power supply that supplies power to the drive DC motor, and this variable voltage is 2 n
(n is a natural number of 2 or more) storage batteries as diodes,
The switching element is configured to obtain a voltage that forms one series of eo, 2eo, 4eo, 8eo, etc. when the unit storage battery voltage is eo. As a result, within the maximum voltage range of the variable DC power supply, 2
At this time, the discharge degree of each unit storage battery constituting the variable storage battery can be perfectly matched because the entire unit carries the load current uniformly. Therefore, the storage battery can be charged uniformly after being discharged, and there is no room for charging blocks with different discharge states in different states, which is a feature that can significantly reduce the number of man-hours required for charging. It has the following.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例を示す回路図、第2図
は本考案の回路を構成するための基本回路図、第
3図本考案に係る最も簡単な回路図である。 1……可変直流電源、2……直流直巻電動機、
E1′〜E4′……蓄電池、S1′〜S3′……スイツチング
素子、D1′〜D6′……ダイオード。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is a basic circuit diagram for configuring the circuit of the present invention, and FIG. 3 is the simplest circuit diagram according to the present invention. 1... variable DC power supply, 2... DC series motor,
E 1 ′ to E 4 ′... Storage battery, S 1 ′ to S 3 ′... Switching element, D 1 ′ to D 6 ′... Diode.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 2n個(以下nは2以上の自然数)の同一電圧、
同一容量を有する蓄電池を備え、これらの蓄電池
を、2個ずつ一組とし、各組の蓄電池の同極同志
間に各別のダイオードを、一方の蓄電池の両極に
カソードが連らなるように接続し、上記各ダイオ
ードのうち蓄電池の一極側に接続されるダイオー
ドのカソードと他のダイオードのアノード間をス
イツチング素子を介して接続し、蓄電池の+極側
に接続されるダイオードのカソードを+極、蓄電
池の一極側に接続されるダイオードのアノードを
一極として直流出力を得る2n-1個の第1の可変電
圧蓄電池体を構成し、上記第1の可変電圧蓄電池
体を、当該第1の可変電圧蓄電池体の各蓄電池に
置換えて構成される2n-2個の第2の可変電圧蓄電
池体を構成し、以下、同様に第nの可変電圧蓄電
池体を構成することを特徴とする蓄電池車の可変
直流電源。
2 n pieces (hereinafter n is a natural number of 2 or more) of the same voltage,
Equipped with storage batteries having the same capacity, these storage batteries are made into a set of two, and different diodes are connected between the same poles of the storage batteries in each set so that the cathodes are connected to both poles of one storage battery. Among the above diodes, the cathode of the diode connected to one pole side of the storage battery and the anode of the other diode are connected via a switching element, and the cathode of the diode connected to the + pole side of the storage battery is connected to the + pole. , constitute 2n -1 first variable voltage storage battery bodies that obtain a DC output with the anode of the diode connected to one pole side of the storage battery as one pole, and the first variable voltage storage battery body is connected to the first variable voltage storage battery body 2n -2 second variable voltage storage battery bodies are configured by replacing each storage battery of the first variable voltage storage battery body, and hereinafter, an nth variable voltage storage battery body is configured in the same manner. Variable DC power supply for storage battery vehicles.
JP1978021773U 1975-12-18 1978-02-21 Expired JPS644241Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978021773U JPS644241Y2 (en) 1975-12-18 1978-02-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP50151554A JPS5275718A (en) 1975-12-18 1975-12-18 Control apparatus of battery car
JP1978021773U JPS644241Y2 (en) 1975-12-18 1978-02-21

Publications (2)

Publication Number Publication Date
JPS53116917U JPS53116917U (en) 1978-09-18
JPS644241Y2 true JPS644241Y2 (en) 1989-02-03

Family

ID=15521049

Family Applications (2)

Application Number Title Priority Date Filing Date
JP50151554A Pending JPS5275718A (en) 1975-12-18 1975-12-18 Control apparatus of battery car
JP1978021773U Expired JPS644241Y2 (en) 1975-12-18 1978-02-21

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP50151554A Pending JPS5275718A (en) 1975-12-18 1975-12-18 Control apparatus of battery car

Country Status (1)

Country Link
JP (2) JPS5275718A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3387194A (en) * 1967-10-31 1968-06-04 Donald S. Banks Electric motor control system including a bank of batteries for series/parallel operation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145770Y2 (en) * 1971-09-16 1976-11-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3387194A (en) * 1967-10-31 1968-06-04 Donald S. Banks Electric motor control system including a bank of batteries for series/parallel operation

Also Published As

Publication number Publication date
JPS53116917U (en) 1978-09-18
JPS5275718A (en) 1977-06-25

Similar Documents

Publication Publication Date Title
JP2536140B2 (en) Engine starter
EP3118445B1 (en) Engine starting device
US3886426A (en) Battery switching circuit
US6828757B2 (en) Circuit for adjusting charging rate of cells in combination
JPH061067B2 (en) Engine starter
JP2004507996A5 (en)
JPWO2009057277A1 (en) Power supply
US10220721B2 (en) System and method for controlling a relay of an auxiliary battery
JP2011126431A (en) On-vehicle power supply device
JPH08340641A (en) Battery power circuit
US20210203232A1 (en) Power supply control device and power supply device
JPS644241Y2 (en)
JP3541238B2 (en) Power supply for motor drive
WO1995010704A1 (en) Power-supply controller for vehicle propelled by internal combustion engine
US3987349A (en) Control systems of electric motors for driving electric motor cars
JP4025678B2 (en) Charging apparatus and charging method
JP2002369404A (en) Motor drive circuit for power tool
WO2020241215A1 (en) Backup power supply device for vehicle
JP6787271B2 (en) Power system
JPH07143607A (en) Power supply for electric motor vehicle
JPS588202B2 (en) Electric vehicle control device
JPH0888025A (en) Charging/discharging device for battery-jar formation of lead-acid battery
JPH021006Y2 (en)
JPS63190504A (en) Chopper apparatus
SU929472A1 (en) Self-sustained vehicle speed control system