JPS644118B2 - - Google Patents

Info

Publication number
JPS644118B2
JPS644118B2 JP4165283A JP4165283A JPS644118B2 JP S644118 B2 JPS644118 B2 JP S644118B2 JP 4165283 A JP4165283 A JP 4165283A JP 4165283 A JP4165283 A JP 4165283A JP S644118 B2 JPS644118 B2 JP S644118B2
Authority
JP
Japan
Prior art keywords
cut
raised
fin
air flow
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4165283A
Other languages
Japanese (ja)
Other versions
JPS59167695A (en
Inventor
Tetsuji Okada
Kyoshi Sakuma
Kisuke Yamazaki
Yutaka Seshimo
Kazuhiro Maruyama
Juichi Akyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4165283A priority Critical patent/JPS59167695A/en
Publication of JPS59167695A publication Critical patent/JPS59167695A/en
Publication of JPS644118B2 publication Critical patent/JPS644118B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 本発明は空調、冷凍機器等に用いられるプレー
トフインチユーブ型熱交換器に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plate finch tube heat exchanger used in air conditioners, refrigeration equipment, etc.

一般にプレートフインチユーブ型の熱交換器
は、並設された複数枚のプレートフインに対して
直角方向に複数本の伝熱管を貫通させ、この伝熱
管を拡管等の手段によつてフインと密着保持させ
ている。前記伝熱管内には冷温水、冷媒等の1次
流体を流通させ、フイン間には空気等の2次流体
を流通させてこれら両流体間で熱交換を行なわせ
るものである。
In general, a plate finch tube type heat exchanger has a plurality of heat transfer tubes passing through the plate fins arranged in parallel in a direction perpendicular to the heat transfer tubes, and the heat transfer tubes are held in close contact with the fins by means such as tube expansion. I'm letting you do it. A primary fluid such as cold/hot water or a refrigerant is passed through the heat transfer tube, and a secondary fluid such as air is made to flow between the fins to exchange heat between the two fluids.

ところで、上記のフイン間を流れる空気流に
は、フインに沿つて流れの境界層が発生し易い。
この境界層内の温度勾配は極めて大きい状態であ
り、これは該境界層部分が大きな熱抵抗になつて
いることである。また境界層は2次流体の流れ方
向に従つて厚く発達し、そのためフインの流れ方
向の後流部ではその熱伝達率が著しく低下する。
Incidentally, in the air flow flowing between the fins, a boundary layer of the flow tends to occur along the fins.
The temperature gradient within this boundary layer is extremely large, which means that the boundary layer portion has a large thermal resistance. Further, the boundary layer develops thickly in the flow direction of the secondary fluid, and therefore the heat transfer coefficient is significantly reduced in the trailing portion of the fin in the flow direction.

このようにプレートフインチユーブ熱交換器で
は、2次流体側(フイン側)の熱伝達率が低いこ
とが最も大きな問題であり、この熱伝達率を向上
させるためには上述した境界層の形成、発達を防
止することが有効で、これまでにもプレートフイ
ン面上の加工形状に関して種々の提案がなされて
いる。
As described above, the biggest problem with plate fin fin heat exchangers is the low heat transfer coefficient on the secondary fluid side (fin side), and in order to improve this heat transfer coefficient, the formation of the boundary layer described above, It is effective to prevent this growth, and various proposals have been made regarding the processed shape on the plate fin surface.

これらの提案は大きくは2通りに分けることが
できる。即ちそのひとつにはフインを折り曲げた
り、フイン面に凹凸部を形成することにより、フ
インを積層した時に生ずる空気流路の拡大、縮小
及び方向転換等を行ない、助走区間(前述した境
界層の薄い部分)の繰り返し効果をねらつたもの
があり、これには波形フイン、台形フイン等が代
表的なものである。またもうひとつは、フイン面
を空気方向に分断することにより、前記境界層を
こま切れにしてその厚い部分を無くする所謂前縁
効果を利用して熱伝達の向上を計るものである。
These proposals can be broadly divided into two types. One way to do this is by bending the fins or forming uneven parts on the fin surface to expand, contract, and change the direction of the air flow path that occurs when the fins are stacked. There are some types that aim to create a repeating effect (part), and typical examples include wave-shaped fins and trapezoidal fins. Another method is to divide the fin surface in the air direction to improve heat transfer by utilizing the so-called leading edge effect, which cuts the boundary layer into pieces and eliminates the thick portions.

近年は主に後者の前縁効果を利用するものが、
比較的高い熱伝達率を得られるために一般的にな
つており、例えば第1図及び第2図に示すような
ものがある。これは伝熱管(図示せず)を貫通さ
せる管挿入孔1を有する平板状のフイン基板2
に、該管挿入孔1の管段方向と直角に多数の切り
込みを設け、この切り込みによつて形成された細
片を押し出して多数の橋状の切起し細片3(スト
リツプ)を形成し、、フイン基板2が積層された
時に該切起し細片3の群が、結果的に錯列配置さ
れるように構成したものである。
In recent years, the latter type of leading edge effect has been mainly used.
It has become popular because it can obtain a relatively high heat transfer coefficient, and there are, for example, those shown in FIGS. 1 and 2. This is a flat fin substrate 2 having a tube insertion hole 1 through which a heat transfer tube (not shown) is inserted.
A large number of cuts are made perpendicular to the direction of the pipe stage of the tube insertion hole 1, and the strips formed by the cuts are extruded to form a large number of bridge-like cut and raised strips 3 (strips). The structure is such that when the fin substrates 2 are stacked, the groups of cut and raised strips 3 are arranged in a parallel array.

このように構成された熱交換器は、切起し細片
3が空気流の境界層を分断し、その形成、発達を
妨げるためフイン側の熱伝達率は向上する。とこ
ろが切起し細片3は流れ方向に対して平行で同一
平面上に多数存在し、これらが互いに近接してい
るため、空気流における上流側の切起し細片3に
よつて形成された境界層の影響を後流側の切起し
細片3は受けてしまい、各々の切起し細片3の前
縁効果は十分に活用されず、また細片の集合体で
フインが構成されているため該フインには強度的
な問題があつた。
In the heat exchanger configured in this manner, the cut and raised strips 3 divide the boundary layer of the air flow and prevent its formation and development, so that the heat transfer coefficient on the fin side is improved. However, since there are many cut and raised strips 3 on the same plane parallel to the flow direction and these are close to each other, the air flow is formed by the cut and raised strips 3 on the upstream side of the air flow. The cut and raised strips 3 on the wake side are affected by the boundary layer, and the leading edge effect of each cut and raised strip 3 is not fully utilized, and the fins are made up of an aggregate of strips. Because of this, the fins had strength problems.

第2の例としては第3図及び第4図に示すよう
に実開昭56−58184号公報によつて開示されたも
のがある。これは、フイン基板4面を中心軸とし
てその空気流方向にそれぞれの切起し細片5を傾
斜させて設置したものである。この従来例はフイ
ン1枚のみの場合を考えれば前述した第1の従来
例のような問題は生じない。しかし熱交換器とし
て用いるにはフインが数ミリピツチ程で積層され
るものであり、この場合空気流の主流方向は切起
し細片5の傾斜に沿つて屈曲するため、第4図に
示すように切起し細片5aと切起し細片5bとの
位置関係が流れ方向と平行な同一平面状に存在す
ることになり、第1の従来例と同様に、切起し細
片5の前縁効果は十分に活用されない。またこの
例ではフインの積層ピツチを小さくすると切起し
細片5の前縁効果がほとんど失われてしまうた
め、該積層ピツチに制約がある等の問題も有して
いる。
A second example is disclosed in Japanese Utility Model Application No. 56-58184, as shown in FIGS. 3 and 4. In this case, the cut and raised strips 5 are installed so as to be inclined in the air flow direction with the surface of the fin board 4 as the central axis. In this conventional example, if only one fin is used, the problem similar to the first conventional example described above does not occur. However, in order to use it as a heat exchanger, the fins are stacked at a pitch of several millimeters, and in this case, the main direction of the air flow is bent along the slope of the cut and raised strips 5, as shown in FIG. The positional relationship between the cut and raised strips 5a and the cut and raised strips 5b is on the same plane parallel to the flow direction, and as in the first conventional example, the cut and raised strips 5 are Leading edge effects are underutilized. Further, in this example, if the stacking pitch of the fins is made small, the leading edge effect of the cut and raised strips 5 is almost completely lost, so there is a problem that the stacking pitch is limited.

更に上述した問題点を改良するため、第3の従
来例として実公昭52−35575号公報によつて開示
されている提案がある。この提案は第5図及び第
6図に示すように、第1の従来例で示した切起し
細片3を、その表面が矢印で示す空気流方向に対
向するようフイン基板6に対して傾斜させて設け
たものである。
In order to further improve the above-mentioned problems, there is a proposal disclosed in Japanese Utility Model Publication No. 52-35575 as a third conventional example. In this proposal, as shown in FIGS. 5 and 6, the cut and raised strip 3 shown in the first conventional example is attached to a fin board 6 so that its surface faces the air flow direction shown by the arrow. It is installed at an angle.

この提案は前縁効果を十分に機能させるため
に、切起し細片7をフイン基板6に対して傾斜さ
せ、境界層の発達方向に他の切起し細片7が配置
されることのないようにし、また気流に乱れを生
じさせて熱伝達の向上を計るようにしたものであ
るが、空気流の主流方向に対する配慮がなされて
いないため高い熱伝達率を得るのは困難である。
この点について空気流を模式的に示した第7図を
参照して説明する。
In this proposal, in order to fully utilize the leading edge effect, the cut and raised strips 7 are inclined with respect to the fin substrate 6, and other cut and raised strips 7 are arranged in the direction of boundary layer development. Although this method attempts to improve heat transfer by creating turbulence in the airflow, it is difficult to obtain a high heat transfer coefficient because no consideration is given to the mainstream direction of the airflow.
This point will be explained with reference to FIG. 7, which schematically shows the air flow.

かかる提案では、矢印で示すような空気流と平
行なフイン基板6と、傾斜している切起し細片7
とが交互に混在しているため、例えば第2の従来
例の第4図で示すように傾斜した切起し細片5が
整然と配列されて主流が該切起し細片5に沿つて
流れるのではなく、切起し細片7の裏面側に流れ
の剥離が生じる。この剥離の発生した部分は、切
起し細片7の裏面近傍の流速が殆ど0になるのと
等しく、その部分での熱伝達は非常に小さくな
り、かえつて風圧損失が非常に増大してしまうの
である。このように前述の気流の乱れとは実際に
は剥離であるが、空調機等層流領域で使用する場
合、この剥離が生じることにより風圧損失の増大
につながり熱伝達の向上は望み難いのである。
In such a proposal, a fin substrate 6 parallel to the air flow as shown by an arrow, and an inclined cut and raised strip 7 are used.
For example, as shown in FIG. 4 of the second conventional example, the inclined cut and raised strips 5 are arranged in an orderly manner, and the main flow flows along the cut and raised strips 5. Instead, flow separation occurs on the back side of the cut and raised strip 7. In the area where this separation occurs, the flow velocity near the back surface of the cut and raised strip 7 becomes almost zero, and the heat transfer in that area becomes extremely small, and on the contrary, the wind pressure loss increases significantly. It's put away. In this way, the aforementioned airflow turbulence is actually separation, but when used in laminar flow areas such as air conditioners, this separation increases wind pressure loss and makes it difficult to improve heat transfer. .

上記従来例の外には例えば実開昭56−144988号
公報に開示されたものがありこれを第4の従来例
として第8図及び第9図に示す。また同様な提案
としては特開昭55−105194号、同57−131995号公
報等で開示されたものがある。
In addition to the above-mentioned conventional example, there is one disclosed in, for example, Japanese Utility Model Application Publication No. 56-144988, which is shown in FIGS. 8 and 9 as a fourth conventional example. Further, similar proposals are disclosed in Japanese Patent Application Laid-open Nos. 55-105194 and 57-131995, etc.

これら第4の従来例は、第2の従来例として示
した切起し細片5の幅方向両端部をその端部方向
に、空気流と平行になるようそれぞれ屈曲させた
ものと見なし得、また前述の波形フイン、台形フ
インを分断したものであると云える。尚8はフイ
ン基板である。この提案の目的とするところは前
記第2の従来例の欠点を改良しようとするもので
あるが、隣設するそれぞれの切起し細片9のうち
空気流(矢印で示す)に対して上流側の切起し細
片9aによつて形成される境界成層速度場が後流
側の切起し細片9bに影響を及ぼし、この切起し
細片9bの前縁効果が十分に生かされず、熱伝達
率も第2の従来例と比較して逆に低く、更には風
圧損失が増大し送風動力の増大、騒音の増加を招
く等の欠点があつた。
These fourth conventional examples can be regarded as having both ends in the width direction of the cut and raised strip 5 shown as the second conventional example bent in the direction of the ends so as to be parallel to the air flow. It can also be said that the fins are obtained by dividing the waveform fins and trapezoidal fins described above. Note that 8 is a fin board. The purpose of this proposal is to improve the drawbacks of the second conventional example, but the upstream part of each of the adjacent cut and raised strips 9 with respect to the air flow (indicated by the arrow) The boundary stratified velocity field formed by the side cut and raised strips 9a influences the downstream cut and raised strips 9b, and the leading edge effect of this cut and raised strips 9b is not fully utilized. The heat transfer coefficient was also lower than that of the second conventional example, and there were also disadvantages such as an increase in wind pressure loss, an increase in blowing power, and an increase in noise.

本発明は以上述べたような従来の欠点を除去す
るためになされたもので、熱伝達率が大きくかつ
風圧損失の小さい熱交換器を提供することを目的
とする。
The present invention has been made in order to eliminate the conventional drawbacks as described above, and an object thereof is to provide a heat exchanger having a large heat transfer coefficient and a small wind pressure loss.

以下本発明の一実施例を図について説明する。
第10図において10はフイン基板即ちプレート
フインで、このフイン基板10には複数の伝熱管
挿入孔10aが設けられている。また11はフイ
ン基板10のそれぞれの伝熱管挿入孔10a間に
形成された切起し細片である。この切起し細片1
1は、前記フイン基板10の長手方向に平行な切
込みを多数設けてこれをフイン基板10の表裏に
それぞれ平担部を残して切起し、その両端縁部を
フイン基板10面に略平行に反切起し方向へ再屈
曲させ、第11図に示すように空気流方向(矢印
で示す)に対してその断面が階段状になるよう形
成したものであり、また相隣る切起し細片11間
にはそれぞれ空気流に平行となるよう平板状のフ
イン基板部12が配列された状態になつている。
An embodiment of the present invention will be described below with reference to the drawings.
In FIG. 10, 10 is a fin substrate, that is, a plate fin, and this fin substrate 10 is provided with a plurality of heat exchanger tube insertion holes 10a. Further, reference numeral 11 denotes a cut and raised strip formed between each of the heat exchanger tube insertion holes 10a of the fin board 10. This cut and raised strip 1
1, a large number of notches parallel to the longitudinal direction of the fin board 10 are provided, and these are cut and raised leaving flat portions on the front and back sides of the fin board 10, respectively, and both end edges thereof are made approximately parallel to the surface of the fin board 10. It is bent again in the direction opposite to the cut and raised pieces, and is formed so that its cross section becomes step-like in the air flow direction (indicated by the arrow) as shown in Figure 11, and the adjacent cut and raised strips are Planar fin substrate portions 12 are arranged between the fin substrates 11 so as to be parallel to the air flow.

このように構成されたフイン基板10を第11
図に示すように積層した時、切起し細片11は階
段状に形成されているため、この切起し細片11
と並積された隣接するフインの切起し細片11と
で複数の折れ曲りの波形流路を形成する。また、
階段状のため切起し細片11一枚の流路長が小さ
くなつている。この波形流路を通過する空気流は
方向転換を複数回行なうため、助走区間の繰り返
し効果により全体の境界層が薄くなり熱伝達率は
向上する。
The fin substrate 10 configured in this way is
As shown in the figure, when stacked, the cut and raised strips 11 are formed in a stepped shape, so the cut and raised strips 11
A plurality of bent wave-shaped channels are formed by the cut and raised strips 11 of adjacent fins stacked in parallel. Also,
Because of the stepped shape, the flow path length of each cut and raised strip 11 is small. Since the airflow passing through this wave-shaped flow path changes direction multiple times, the overall boundary layer becomes thinner due to the effect of repeating the run-up section, and the heat transfer coefficient improves.

また、前記切起し細片11間にはフイン基板部
12が存在しているため、それぞれの切起し細片
11間の距離が長くなり、その前縁部に影響を与
える境界成層は、第4の従来例等とは異なり殆ど
消滅し、空気流の後流側の切起し細片11の前縁
効果は十分に生かされ高熱伝達率を得ることがで
きる。また第11図に示すように並積された隣接
するフインの切起し細片11とは、前記従来例と
異なり互いに境界層の影響による前縁効果の阻害
を生じさせるようなことはない。
Furthermore, since the fin substrate portions 12 are present between the cut and raised strips 11, the distance between the cut and raised strips 11 becomes long, and the boundary stratification that affects the front edge of the cut and raised strips 11 becomes longer. Unlike the fourth conventional example, etc., the leading edge effect of the cut and raised strip 11 on the downstream side of the airflow is fully utilized, and a high heat transfer coefficient can be obtained. Further, as shown in FIG. 11, the cut and raised strips 11 of adjacent fins stacked in parallel do not interfere with each other's leading edge effect due to the influence of the boundary layer, unlike in the prior art example.

それぞれの切起し細片11及びフイン基板部1
2の前縁部は流れ方向に対してすべて錯列に配置
され、その上後流側の切起し細片11及びフイン
基板部12は境界層成長方向が同一平面上に存在
しないように配列されており、たとえその成長方
向が同一になつたとしても、これらの距離が離れ
ており、前流部の境界層が殆ど消滅し、影響しな
いようになつている。また伝熱特性の低下や風圧
損失増大の要因である流れの剥離や乱れを生じる
ような無理な構成ではないため空気流も滑らかで
ある。
Each cut and raised strip 11 and fin board part 1
The leading edge portions of No. 2 are all arranged in parallel rows with respect to the flow direction, and the cut and raised strips 11 and the fin substrate portion 12 on the upper and downstream sides are arranged so that the boundary layer growth direction is not on the same plane. Even if they grow in the same direction, the distance between them is far enough that the boundary layer in the front stream almost disappears and has no influence. In addition, the air flow is smooth because it does not have an unreasonable configuration that would cause separation or turbulence in the flow, which would cause a decrease in heat transfer characteristics or an increase in wind pressure loss.

尚、上記切起し細片11はその端縁部を再屈曲
させているので、フインの強度も十分に得られ
る。次に上記フイン基板10を積層して形成した
実施例の熱交換器と比較例として第4の従来例と
の性能の比較を第12図に示す。図において曲線
Aは実施例、曲線Bは比較例である。このように
実施例は比較例に較べ、平均表面熱伝達率で25%
以上大きく、風圧損失では30%程度小さい(前面
風速1m/S付近)ものであり、実施例が実用上
優れていることが明らかである。
Incidentally, since the edges of the cut and raised strips 11 are bent again, sufficient strength of the fins can be obtained. Next, FIG. 12 shows a performance comparison between the heat exchanger of the embodiment formed by laminating the fin substrates 10 and a fourth conventional example as a comparative example. In the figure, curve A is an example, and curve B is a comparative example. In this way, the example has an average surface heat transfer coefficient of 25% compared to the comparative example.
However, the wind pressure loss is about 30% smaller (front wind speed around 1 m/s), and it is clear that the example is superior in practical terms.

以上のように本発明は、熱交換器のフイン基板
の伝熱管相互間の部分に、空気流方向に直交する
方向の切起し細片をフイン基板の表裏に多数設け
ると共にこの切起し細片の端縁部を反切起し方向
へ再屈曲させ、空気流方向にはその断面が階段状
をを呈しかつ相隣る切起し細片間に空気流と平行
にフイン基板部が存在するように構成したので、
境界層の成長方向が同一平面上でなくなり、前縁
効果が十分に機能し、しかも空気流等の流れが滑
らかに誘導されて剥離等の乱れが生ぜず、風圧損
失が小さくかつ熱伝達率の非常に大きい熱交換器
が得られる効果がある。
As described above, the present invention provides a large number of cut and raised strips in a direction perpendicular to the airflow direction on the front and back sides of the fin board in the portion between the heat exchanger tubes of the fin board of a heat exchanger, and the cut and raised strips are provided on the front and back sides of the fin board. The edge of the piece is re-bent in the direction opposite to the cut-and-raised direction, so that its cross section has a step-like shape in the air flow direction, and a fin substrate portion exists between adjacent cut-and-raised pieces in parallel to the air flow. I configured it like this,
The growth direction of the boundary layer is no longer on the same plane, the leading edge effect is fully functional, air flows are guided smoothly, no disturbances such as separation occur, wind pressure loss is small, and the heat transfer coefficient is low. This has the effect of providing a very large heat exchanger.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の従来例の熱交換器のプレートフ
イン面図、第2図は同第1図−線断面図、第
3図は第2の従来例によるプレートフイン平面
図、第4図は同第3図−線断面図、第5図は
第3の従来例によるプレートフイン平面図、第6
図は同第5図−線断面図、第7図は同フイン
における空気流を模式的に示した図、第8図は第
4の従来例によるプレートフイン平面図、第9図
は同第8図−線断面図、第10図は本発明の
一実施例による熱交換器のプレートフイン平面
図、第11図は同第10図XI−XI線断面図、第1
2図は実施例と比較例(第4の従来例)との特性
図である。 10……プレートフイン、10a……伝熱管挿
入孔、11……切起し細片、12……フイン基板
部。尚、図中同一符号は同一または相当部分を示
す。
Fig. 1 is a plate fin surface view of a first conventional heat exchanger, Fig. 2 is a sectional view taken along the line shown in Fig. 1, Fig. 3 is a plate fin plan view of a second conventional heat exchanger, and Fig. 4 3 is a sectional view taken along the line in FIG. 3, FIG. 5 is a plan view of the plate fin according to the third conventional example, and FIG.
The figure is a sectional view taken along the line shown in FIG. 5, FIG. 7 is a diagram schematically showing the air flow in the same fin, FIG. 8 is a plan view of the plate fin according to the fourth conventional example, and FIG. 10 is a plan view of the plate fins of a heat exchanger according to an embodiment of the present invention, FIG. 11 is a sectional view taken along the line XI-XI of FIG.
FIG. 2 is a characteristic diagram of the example and the comparative example (fourth conventional example). DESCRIPTION OF SYMBOLS 10... Plate fin, 10a... Heat exchanger tube insertion hole, 11... Cut and raised strip, 12... Fin substrate portion. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 多数列積層させたプレートフインと、このプ
レートフインを貫通して保持されている伝熱管と
から構成され、該伝熱管内を流れる冷媒と前記プ
レートフイン間を通過する空気とを熱交換するプ
レートフインチユーブ型熱交換器において、前記
プレートフイン長手方向に隣接する伝熱管相互間
におけるプレートフインに対し、空気流方向に直
交する方向の切起し細片を前記プレートフインの
表裏に空気流方向に間隔をおいて多数設けると共
に、該切起し細片の両端縁部を前記プレートフイ
ン面に略平行に反切起し方向へ再屈曲させ、前記
切起し部の断面が平担部を中心にして空気流方向
に階段状を呈しかつ相隣る切起し細片間に空気流
に平行にフイン基板部が存在するようにしたこと
を特徴とする熱交換器。
1 A plate that is composed of plate fins stacked in multiple rows and heat transfer tubes held through the plate fins, and that exchanges heat between the refrigerant flowing inside the heat transfer tubes and the air passing between the plate fins. In the finch-tube heat exchanger, cut and raised strips in a direction perpendicular to the air flow direction are cut and raised on the front and back sides of the plate fins in the direction of the air flow between the heat transfer tubes adjacent to each other in the longitudinal direction of the plate fins. A large number of the cut and raised strips are provided at intervals, and both end edges of the cut and raised strips are re-bent in the anti-cut and raised direction substantially parallel to the plate fin surface, so that the cross section of the cut and raised pieces is centered on the flat part. 1. A heat exchanger characterized by having a stepped shape in the air flow direction, and a fin base plate portion existing parallel to the air flow between adjacent cut and raised strips.
JP4165283A 1983-03-14 1983-03-14 Heat exchanger Granted JPS59167695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4165283A JPS59167695A (en) 1983-03-14 1983-03-14 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4165283A JPS59167695A (en) 1983-03-14 1983-03-14 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS59167695A JPS59167695A (en) 1984-09-21
JPS644118B2 true JPS644118B2 (en) 1989-01-24

Family

ID=12614290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4165283A Granted JPS59167695A (en) 1983-03-14 1983-03-14 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS59167695A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144988U (en) * 1980-03-26 1981-10-31

Also Published As

Publication number Publication date
JPS59167695A (en) 1984-09-21

Similar Documents

Publication Publication Date Title
US5042576A (en) Louvered fin heat exchanger
US4365667A (en) Heat exchanger
US4300629A (en) Cross-fin tube type heat exchanger
US4830102A (en) Turbulent heat exchanger
JPH0514194B2 (en)
US5062475A (en) Chevron lanced fin design with unequal leg lengths for a heat exchanger
JP3048541B2 (en) Air conditioner heat exchanger
JP2009204277A (en) Heat exchanger
CN105403090A (en) Heat exchanger fin and heat exchanger
JPS6346357B2 (en)
CN110081764B (en) Heat exchanger fin and heat exchanger thereof
JP3132413B2 (en) Plate fin coil
JPS644118B2 (en)
JPS628718B2 (en)
JPS62112997A (en) Heat exchanger
JPS6020094A (en) Heat exchanger
JPS6361598B2 (en)
JPH0330718Y2 (en)
JP3440796B2 (en) Heat exchanger
JP2002031434A (en) Heat exchanger for air conditioner
KR19980031147A (en) Heat exchanger of air conditioner
JPH01305297A (en) Heat exchanger
JPH0145000B2 (en)
JPH10253278A (en) Finned heat exchanger
JPS6215667Y2 (en)