JPS59167695A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS59167695A
JPS59167695A JP4165283A JP4165283A JPS59167695A JP S59167695 A JPS59167695 A JP S59167695A JP 4165283 A JP4165283 A JP 4165283A JP 4165283 A JP4165283 A JP 4165283A JP S59167695 A JPS59167695 A JP S59167695A
Authority
JP
Japan
Prior art keywords
raised
air flow
cut
fin base
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4165283A
Other languages
Japanese (ja)
Other versions
JPS644118B2 (en
Inventor
Tetsuji Okada
哲治 岡田
Kiyoshi Sakuma
清 佐久間
Kisuke Yamazaki
山崎 起助
Yutaka Seshimo
裕 瀬下
Kazuhiro Maruyama
和弘 丸山
Yuichi Akiyama
雄一 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4165283A priority Critical patent/JPS59167695A/en
Publication of JPS59167695A publication Critical patent/JPS59167695A/en
Publication of JPS644118B2 publication Critical patent/JPS644118B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To increase the heat transmitting rate of a heat exchanger by sufficiently utilizing the front edge effect by not directing the growing direction of boundary layers to the same plane, by constituting a fin base board in such a manner that the edges of many raised pieces provided to the surface and the back side of a fin base board are bent in twice to the opposite side of the raised direction, and the sections of the raised pieces form steps to the direction of air flow, while the fin base board is positioned in parallel with the air flow between neighboring raised pieces. CONSTITUTION:The raised pieces 11 are formed by raising a number of raisings in parallel with the longitudinal direction of a fin base board 10 on the surface and the back side of a fin base board 10, and by bending both edges in twice on the opposite side of the raised direction, nearly in parallel with the flat fin base board 10, so that their sections are made stepwise to the direction of air flow as shown by arrows in the figure. A flat fin base plate 12 is arranged between neighboring raised pieces 11 so as to be in parallel with the air flow, respectively. Accordingly a raised piece 11 forms a waved air flow path having a plurality of bent parts together with a neighboring raised piece 11 which is arranged in parallel with it. The air flow, passing through these wave-formed flow paths, repeats turning of directions several times. Then the boundary layers are made thin as a whole by the repeated effect of approach run, as a result, the heat transmitting rate of a heat exchanger can be increased.

Description

【発明の詳細な説明】 本発明は空調、−冷凍機器等に用いられるプレートフィ
ンチューブ型熱交換器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plate-fin tube type heat exchanger used in air conditioning, refrigeration equipment, etc.

一般にプレートフィンチューブ型の熱交換器は、並設さ
れた複数枚のプレートフィンに対して直角方向に複数本
の伝熱管を貫通させ、この伝熱管を拡管等の手段によっ
てフィンと密着保持させている。前記伝熱管内には冷温
水、冷媒等の1次流体を流通させ、フィン間には空気等
の2次流体を流通させてこれら両流体間で熱交換を行な
わせるものである。
Generally, a plate-fin tube type heat exchanger has a plurality of heat exchanger tubes passing through a plurality of plate fins arranged in parallel in a direction perpendicular to the heat exchanger tubes, and holding the heat exchanger tubes in close contact with the fins by means such as tube expansion. There is. A primary fluid such as cold/hot water or a refrigerant is passed through the heat transfer tube, and a secondary fluid such as air is passed between the fins to exchange heat between the two fluids.

ところで、上記のフィン間を流れる空気流には、フィン
に沿って流れの境界層が発生し易い。この境界層内の温
度勾配は極めて大きい状態であり、これは該境界層部分
が大きな熱抵抗になっていることである。また境界層は
2次流体の流れ方向に従って厚く発達し、そのためフィ
ンの流れ方向の後流部ではその熱伝達率が著しく低下す
る。
Incidentally, in the airflow flowing between the fins, a boundary layer of flow tends to occur along the fins. The temperature gradient within this boundary layer is extremely large, which means that the boundary layer has a large thermal resistance. Further, the boundary layer develops thickly in the direction of flow of the secondary fluid, and therefore the heat transfer coefficient significantly decreases in the trailing portion of the fin in the direction of flow.

このようにプレートフィンチューブ熱交換器では、2次
流体側(フィン側)の熱伝達率が低いことが最も大きな
問題であシ、この熱伝達率を向上させるためには上述し
た境界層の形成、発達を防止することが有効で、これま
でにもプレートフィン面上の加工形状に関して種々の提
案がなされている。
In this way, the biggest problem with plate-fin tube heat exchangers is the low heat transfer coefficient on the secondary fluid side (fin side), and in order to improve this heat transfer coefficient, it is necessary to form a boundary layer as described above. It is effective to prevent the development of fins, and various proposals have been made regarding the processed shape on the plate fin surface.

これらの提案は大きくは2通りに分けることができる。These proposals can be broadly divided into two types.

即ちそのひとつにはフィンを折り曲げたり、フィン面に
凹凸部を形成することにより、フィンを積層した時に生
ずる空気流路の拡大、縮小及び方向転換等を行ない、助
走区間(前述した境界層の薄い部分)の繰り返し効果を
ねらったものがあり、これには波形フィン、台形フィン
等が代表的なものである。またもうひとつは、フィン面
を空気流方向に分断することにより、前記境界層をこま
切れにしてその厚い部分を無くする所謂前縁効果を利用
して熱伝達の向上を計るものである。
One way of doing this is by bending the fins or forming uneven parts on the fin surface to expand, contract, and change the direction of the air flow path that occurs when fins are stacked. There are some types of fins that aim to create a repeating effect (part), and typical examples include wave-shaped fins and trapezoidal fins. Another method is to improve heat transfer by dividing the fin surface in the air flow direction, thereby making use of the so-called leading edge effect, which cuts the boundary layer into small pieces and eliminates thick portions.

近年は主に後者の前縁効果を利用するものが、比較的高
い熱伝達率を得られるために一般的になっており、例え
ば第1図及び第2図に示すようなものがちる。これは伝
熱管(図示せず)を貫通させる管挿入孔1を有する平板
状のフィン基板2に、該管挿入孔1の管段方向と直角に
多数の切り込みを設け、この切り込みによって形成され
た細片を押し出して多数の橋状の切起し細片3(スト1
ノツプ)を形成し、フィン基板2が積層された時に該切
起し細片30群が、結果的に錯列配置されるように構成
したものである。
In recent years, devices that mainly utilize the latter leading edge effect have become popular because they can obtain relatively high heat transfer coefficients, such as those shown in FIGS. 1 and 2, for example. This is a flat fin board 2 having a tube insertion hole 1 through which a heat exchanger tube (not shown) is passed, and a large number of cuts perpendicular to the direction of the tube stages of the tube insertion hole 1. Extrude the pieces to create a number of bridge-like cut and raised strips 3 (stripe 1).
This structure is such that when the fin substrates 2 are stacked, the groups of cut and raised strips 30 are arranged in parallel rows.

このように構成された熱交換器は、切起し細片3が空気
流の境界層を分断し、その形成、発達を妨げるためフィ
ン側の熱伝達率は向上する。ところが切起し細片3は流
れ方向に対して平行で同一平面上に多数存在し、これら
が互いに近接し゛ているため、空気流における上流側の
切起し細片3によって形成された境界層の影響を後流側
の切起し細片3は受けてしまい、各々の切起し細片3の
前縁効果は十分に活用されず、また細片の集合体でフィ
ンが構成されているため該フィンには強度的な問題があ
った。
In the heat exchanger configured in this manner, the cut and raised strips 3 divide the boundary layer of the air flow and prevent its formation and development, so that the heat transfer coefficient on the fin side is improved. However, since there are many cut and raised strips 3 on the same plane parallel to the flow direction and they are close to each other, the boundary layer formed by the cut and raised strips 3 on the upstream side of the air flow The cut and raised strips 3 on the downstream side are affected by this, and the leading edge effect of each cut and raised strip 3 is not fully utilized, and the fin is composed of an aggregate of strips. Therefore, the fin had a strength problem.

第2の例としては第3図及び第4図に示すように実開昭
56−58’184号公報によって開示されたものがあ
る。これは、フィン基板4面を中JIL%軸としてその
空気流方向にそれぞれの切起し細片5を傾斜させて設置
したものである。この従来例はフィン1枚のみの場合を
考えれば前述した第1の従来例のような問題は生じない
。しかし熱交換器として用いるにはフィンが数ミリピッ
チ程で積層されるものであり、この場合空気流の主流方
向は切起↓細片5の傾斜に沿って屈曲するため、第4図
に示すように切起し細片5aと切起し細片5bとの位置
関係が流れ方向と平行な同一平面状に存在することにな
シ、第1の従来例と同様に、切起し細片5の前縁効果は
十分に活用されない。またこの例ではフィンの積層ピッ
チを小さくすると切起゛シ細片5の前縁効果がほとんど
失われてしまうため、該積層ピッチに制約がある等の問
題も有している。
A second example is disclosed in Japanese Utility Model Application No. 56-58'184, as shown in FIGS. 3 and 4. In this case, each of the cut and raised strips 5 is installed so as to be inclined in the airflow direction with the 4th surface of the fin board as the middle JIL% axis. This conventional example does not have the same problem as the first conventional example described above if only one fin is used. However, in order to use it as a heat exchanger, the fins are stacked at a pitch of several millimeters, and in this case, the main direction of the air flow is bent along the slope of the cut and raised strips 5, as shown in Figure 4. Since the positional relationship between the cut and raised strips 5a and 5b is on the same plane parallel to the flow direction, similarly to the first conventional example, the cut and raised strips 5 The leading edge effect of is underutilized. Further, in this example, if the stacking pitch of the fins is made small, the leading edge effect of the cut and raised strips 5 is almost completely lost, so there is a problem that the stacking pitch is limited.

更に上述した問題点を改良するため、第3の従来例とし
て実公昭52−35575号公報によって開示されてい
る提案がある。この提案は第5図及び第6図に示すよう
に、第1の従来例で示した切起し細片3を、その表面が
矢印で示す空気流一方向に対向するようフィン基板6に
対して傾斜させて設けたものである。
In order to further improve the above-mentioned problems, there is a proposal disclosed in Japanese Utility Model Publication No. 52-35575 as a third conventional example. In this proposal, as shown in FIGS. 5 and 6, the cut and raised strips 3 shown in the first conventional example are attached to a fin board 6 such that the surface thereof faces in one direction of the air flow shown by the arrow. It is installed at an angle.

この提案は前縁効果を十分に機能させるために、切起し
細片7をフィン基板6に対して傾斜させ、境界層の発達
方向に他の切起し細片7が配置されることのないように
し、また気流に乱れを生じさせて熱伝達の向上を計るよ
うにしたものであるが、空気流の主流方向に対する配慮
がなされていないため高い熱伝達率を得るのは困難であ
る。この点について空気流を模式的に示した第7図を参
照して説明する。
In this proposal, in order to fully utilize the leading edge effect, the cut and raised strips 7 are inclined with respect to the fin substrate 6, and other cut and raised strips 7 are arranged in the direction of boundary layer development. Although this method attempts to improve heat transfer by creating turbulence in the airflow, it is difficult to obtain a high heat transfer coefficient because no consideration is given to the mainstream direction of the airflow. This point will be explained with reference to FIG. 7, which schematically shows the air flow.

かかる提案では、矢印で示すような空気流と平行なフィ
ン基板6と9、傾斜している切起し細片7とが交互に混
在しているため、例えば第2の従来例の第4図で示すよ
うに傾斜した切起し細片5が整然と配列されて主流が該
切起し細片5に沿って流れるのではなく、切起し細片7
の裏面側に流れの剥離が生じる。この剥離の発生した部
分は、切起し細片7裏面近傍の流速が殆ど0になるのと
等しく、その部分での熱伝達は非常に小さくなり、かえ
って風圧損失が非常に増′大してしまうのである。この
ように前述ρ気流の乱れとは実際には剥離であるが、空
調機等層流領域で使用する場合、この剥離が生じること
により風圧損失の増大にっながシ熱伝達の向上は望み難
いのである。
In this proposal, the fin substrates 6 and 9 parallel to the air flow as shown by the arrows and the slanted cut and raised strips 7 are alternately mixed, for example, as shown in FIG. 4 of the second conventional example. As shown in , the inclined cut and raised strips 5 are arranged in an orderly manner and the main flow does not flow along the cut and raised strips 5, but rather the cut and raised strips 7
Separation of flow occurs on the back side. In the area where this separation occurs, the flow velocity near the back surface of the cut and raised strip 7 becomes almost zero, and the heat transfer in that area becomes extremely small, and on the contrary, the wind pressure loss increases significantly. be. In this way, the turbulence in the ρ airflow mentioned above is actually separation, but when used in laminar flow areas such as air conditioners, this separation increases wind pressure loss, but it is hoped that heat transfer will improve. It is difficult.

上記従来例の外には例えば実開昭56−144988号
公報に開示されたものがありこれを第4の従来例として
第8図及び第9図に示す。また同様な提案としては特開
昭55.−105194号、同57−131995号公
報等で開示されたものがある。
In addition to the above-mentioned conventional example, there is one disclosed in, for example, Japanese Utility Model Application Laid-Open No. 56-144988, which is shown in FIGS. 8 and 9 as a fourth conventional example. A similar proposal is published in Japanese Unexamined Patent Application Publication No. 1983. There are those disclosed in No. 105194, No. 57-131995, and the like.

これら第4の従来例は、第2の従来例として示した切起
し細片5の幅方向両端部をその端部方向に、空気流と平
行になるようそれぞれ屈曲させたものと見なし得、また
前述の波形フィン、台形フィンを分断したものであると
云える。尚8はフィン基板である。この提案の目的とす
るところは前記第2の従来例の欠点を改良しようとする
ものであるが、隣設するそれぞれの切起し細片9のうち
空気流(矢印で示す)に対して上流側の切起し細片9a
によって形成される境界成層速度場が後流側の切起し細
片9bに影響を及ぼし、この切起し細片9bの前縁効果
が十分に生かされず、熱伝達率も第2の従来例と比較し
て逆に低く、更には風圧損失が増大し送風動力の増大、
騒音の増加を招く等の欠点があった。
These fourth conventional examples can be regarded as having both ends in the width direction of the cut and raised strip 5 shown as the second conventional example bent in the direction of the ends so as to be parallel to the air flow. It can also be said that the fins are obtained by dividing the aforementioned waveform fins and trapezoidal fins. Note that 8 is a fin board. The purpose of this proposal is to improve the drawbacks of the second conventional example, but the upstream part of each of the adjacent cut and raised strips 9 with respect to the air flow (indicated by the arrow) Side cut and raised strip 9a
The boundary stratified velocity field formed by this affects the cut and raised strip 9b on the downstream side, and the leading edge effect of this cut and raised strip 9b is not fully utilized, and the heat transfer coefficient is also lower than that of the second conventional example. On the contrary, it is lower than that, and wind pressure loss increases and the blowing power increases.
There were drawbacks such as an increase in noise.

本発明は以上述べたような従来の欠点を除去するために
なされたもので、熱伝達率が大きくかつ風圧損失の小さ
い熱交換器を提供することを目的とする。
The present invention has been made in order to eliminate the conventional drawbacks as described above, and an object thereof is to provide a heat exchanger having a large heat transfer coefficient and a small wind pressure loss.

以下本発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第10図において10はフィン基板即ちグー?−トフイ
ンで、このフィン基板10には複数の伝熱管挿入孔10
aが設けられている。また11はフィン基板10のそれ
ぞれの伝熱管挿入孔10a間に形成された切起し細片で
ある。この切起し細片11は、前記フィン基板10の長
手方向に平行な切込みを多数設けてこれをフィン基板1
0の表裏にそれぞれ切起し、その両端縁部をフィン基板
10面に略平行に反切起し方向へ再屈曲させ、第11図
に示すように空気流方向(矢印で示す)に対してその断
面が階段状になるよう形成したものでアリ、また相隣る
切起し細片11間にはそれぞれ空気流に平行となるよう
平板状のフィン基板部12が配列された状態になってい
る。
In FIG. 10, 10 is the fin board, i.e. Goo? - This fin board 10 has a plurality of heat exchanger tube insertion holes 10.
A is provided. Further, reference numeral 11 denotes a cut and raised strip formed between each of the heat exchanger tube insertion holes 10a of the fin board 10. This cut and raised strip 11 is formed by providing a large number of cuts parallel to the longitudinal direction of the fin board 10, and
The front and back sides of the fin board 10 are cut and raised, and both edges thereof are re-bent in the direction opposite to the cut and raised approximately parallel to the surface of the fin board 10, and as shown in FIG. It is formed to have a step-like cross section, and flat fin substrate parts 12 are arranged between adjacent cut and raised strips 11 so as to be parallel to the air flow. .

このように構成されたフィン基板10を第11図に示す
ように積層した時、切起し細片11は階段状に形成され
ているため、この切起し細片11と並積された隣接する
フィンの切起し細片11とで複数の折れ曲りの波形流路
を形成する。この波形流路を通過する空気流は方向転換
を複数回行なうため、助走区間の操り返し効果により全
体の境界層が薄くな9熱伝達率は向上する。
When the fin substrates 10 configured in this way are stacked as shown in FIG. The cut and raised strips 11 of the fins form a plurality of bent wave-shaped channels. Since the air flow passing through this wave-shaped flow path changes direction multiple times, the overall boundary layer becomes thinner due to the steering effect of the run-up section, and the heat transfer coefficient improves.

また、前記切起し細片11間にはフィン基板部12が存
在しているため、それぞれの切起し細片11間の距離が
長くなり、その前縁部に影響を与える境界成層は、第4
の従来例等とは異なり殆ど消滅し、空気流の後流側の切
起し細片]1の前縁効果は十分に生かされ高熱伝i率を
得ることができる。また第11図に示すように並積され
た隣接するフィンの切起し細片11とは、前記従来例と
異なり互いに境界層の影響による前縁効果の阻害を生じ
させるようなことはない。
Furthermore, since the fin substrate portions 12 are present between the cut and raised strips 11, the distance between the cut and raised strips 11 becomes long, and the boundary stratification that affects the front edge of the cut and raised strips 11 becomes longer. Fourth
Unlike conventional examples, etc., the leading edge effect of the cut and raised strip on the downstream side of the airflow is fully utilized and a high thermal conductivity can be obtained. Further, as shown in FIG. 11, the cut and raised strips 11 of adjacent fins stacked in parallel do not interfere with each other's leading edge effect due to the influence of the boundary layer, unlike in the prior art example.

それぞれの切起し細片11及びフィン基板部12の前縁
部は流れ方向に対してすべて錯列に配置され、その上後
流側の切起し細片11及びフィン基板部12は境界層成
長方向が同一平面上に存在しないように配列されており
、たとえその成長方向が同一になったとしても、これら
の距離が離れており、前流部の境界層が殆ど消滅し、影
響しないようになつ゛ている。また伝熱特性の低下や風
圧損失増大の要因である流れの剥離や乱れを生じるよう
な無理な構成ではないため空気流も滑らかである0 尚、上記切起し細片11はその端縁部を再屈曲させてい
るので、フィンの強度も十分に得られる。
The front edges of each of the cut and raised strips 11 and the fin substrate portion 12 are all arranged in a parallel row with respect to the flow direction, and the cut and raised strips 11 and the fin substrate portion 12 on the upper and downstream sides are arranged in a boundary layer. The growth directions are arranged so that they are not on the same plane, and even if the growth directions are the same, they are far apart and the boundary layer in the front stream almost disappears, so that there is no influence. It's getting summer. In addition, the air flow is smooth because the structure is not forced to cause separation or turbulence in the flow, which is a cause of deterioration of heat transfer characteristics and increase of wind pressure loss. Since the fins are re-bent, sufficient strength can be obtained from the fins.

次に上記フィン基板10を積層して形成した実施例の熱
交換器と比較例として第4の従来例との性能の比較を第
12図に示す。図において曲線Aは実施例、曲線Bは比
較例である。このように実施例は比較例に較べ、平均表
面熱伝達率で25%以上大きく、風圧損失では30係程
度小さい(前面風速1 m/S付近)ものであり、実施
例が実用上優れていることが明らかである。
Next, FIG. 12 shows a performance comparison between the heat exchanger of the embodiment formed by laminating the fin substrates 10 and a fourth conventional example as a comparative example. In the figure, curve A is an example, and curve B is a comparative example. As described above, the average surface heat transfer coefficient of the example is more than 25% higher than the comparative example, and the wind pressure loss is about 30 coefficient lower (front wind speed around 1 m/s), so the example is practically superior. That is clear.

以上のように本発明は、熱交換器のフィン基板の伝熱管
相互間の部分に、空気流方向に直交する方向の切起し細
片をフィン基板の表裏に多数設けると共にこの切起し細
片の端縁部を反切起し方向へ再屈曲させ、空気流方向に
はその断面が階段状を呈しかつ相隣る切起し細片間に空
気流と平行にフィン基板部が存在するように構成したの
で、境界層の成長方向が同一平面上でなくな9、前縁効
果が十分に機能し、しかも空気流等の流れが滑らかに誘
導されて剥離等の乱れが生ぜず、風圧損失が小さくかつ
熱伝達率の非常に大きい熱交換器が得られる効果がある
As described above, the present invention provides a large number of cut and raised strips in a direction perpendicular to the air flow direction on the front and back sides of the fin board in the portion between the heat exchanger tubes of the fin board of a heat exchanger, and also provides the cut and raised strips on the front and back sides of the fin board. The end edge of the piece is bent again in the direction opposite to the cut and raised strips, so that the cross section is step-like in the air flow direction, and a fin board part exists between adjacent cut and raised strips in parallel to the air flow. Since the growth direction of the boundary layer is not on the same plane9, the leading edge effect functions sufficiently, and the air flow is guided smoothly, preventing disturbances such as separation, and reducing wind pressure loss. This has the effect of providing a heat exchanger with a small coefficient of heat transfer and a very large heat transfer coefficient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の従来例の熱交換器のプレートフィン面図
、第2図は同第1図■−■線断面図、第3図は第2の従
来例によるプレートフィン平面図、第4図は同第3図I
V−IV線断面図、第5図は第3の従来例によるプレー
トフィン平面図、第6図は同第5図Vl−Vl線断面図
、第7図は同フィンにおける空気流を模式的に示した図
、第8図は第4の従来例によるプレートフィン平面図、
第9図は同第8図IX−TX線断面図、第10図は本発
明の一実施例による熱交換器のプレートフィン平面図、
第11図は同第10図XI−XI線断面図、第12図は
実施例と比較例(第4の従来例)との特性図である。 10・・・プレートフィン、10a・・・伝熱管挿入孔
、11・・・切起し細片、12・・・フィン基板部。・
尚、図中同一符号は同一または相当部分を示す。 代理人  葛 野 信 − 第1図 第2図 第3図 第4図 −さ一一1− 1”th 第5図 第8図 第9図 第10図 第11図 11               1?第12図 筋面風番 m/S
Fig. 1 is a plate fin side view of the first conventional heat exchanger, Fig. 2 is a sectional view taken along the line ■-■ in Fig. 1, and Fig. 3 is a plate fin plan view of the second conventional heat exchanger. Figure 4 is the same figure 3 I.
5 is a plan view of the plate fin according to the third conventional example, FIG. 6 is a sectional view taken along the Vl-Vl line in FIG. 5, and FIG. 7 schematically shows the air flow in the fin. The figure shown in FIG. 8 is a plan view of a plate fin according to the fourth conventional example,
FIG. 9 is a sectional view taken along line IX-TX in FIG. 8, and FIG. 10 is a plan view of plate fins of a heat exchanger according to an embodiment of the present invention.
FIG. 11 is a sectional view taken along the line XI-XI in FIG. 10, and FIG. 12 is a characteristic diagram of the embodiment and a comparative example (fourth conventional example). DESCRIPTION OF SYMBOLS 10... Plate fin, 10a... Heat exchanger tube insertion hole, 11... Cut and raised strip, 12... Fin board part.・
Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Makoto Kuzuno - Figure 1 Figure 2 Figure 3 Figure 4 - Saichi 1- 1"th Figure 5 Figure 8 Figure 9 Figure 10 Figure 11 Figure 11 1? Figure 12 Wind number m/S

Claims (1)

【特許請求の範囲】[Claims] 多数列積層させたプレートフィンと、このプレートフィ
ンを貫通して保持されている伝熱管とから構成され、該
伝熱管内を流れる冷媒と前記プレートフィン間を通過す
る空気とを熱交換するプレートフィンチューブ型熱交換
器において、前記プレートフィン長手方向に隣設する伝
熱管相互間におけるプレートフィンに対し、空気流方向
に直交する方向の切起し細片を前記プレートフィンの表
裏に空気流方向に間隔をおいて多数設けると共に、該切
起し細片の両端縁部を前記プレートフィン面に°略平行
に反切起し方向へ再屈曲させ、前記切起し部の断面が空
気流方向に階段状を呈しかつ相隣る切起し細片間に空気
流に平行にフィン基板部が存在するようにしたことを特
徴とする熱交換器。
Plate fins are composed of plate fins stacked in multiple rows and heat transfer tubes held through the plate fins, and exchange heat between the refrigerant flowing inside the heat transfer tubes and the air passing between the plate fins. In the tube type heat exchanger, cut and raised strips in a direction perpendicular to the air flow direction are cut and raised in the air flow direction on the front and back of the plate fins between the heat transfer tubes adjacent to each other in the longitudinal direction of the plate fins. A large number of cut and raised strips are provided at intervals, and both end edges of the cut and raised strips are re-bent in the anti-cut and raised direction approximately parallel to the plate fin surface, so that the cross section of the cut and raised pieces is stepped in the air flow direction. What is claimed is: 1. A heat exchanger characterized in that the heat exchanger has a fin base portion parallel to the airflow between adjacent cut and raised strips.
JP4165283A 1983-03-14 1983-03-14 Heat exchanger Granted JPS59167695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4165283A JPS59167695A (en) 1983-03-14 1983-03-14 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4165283A JPS59167695A (en) 1983-03-14 1983-03-14 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS59167695A true JPS59167695A (en) 1984-09-21
JPS644118B2 JPS644118B2 (en) 1989-01-24

Family

ID=12614290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4165283A Granted JPS59167695A (en) 1983-03-14 1983-03-14 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS59167695A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144988U (en) * 1980-03-26 1981-10-31

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144988U (en) * 1980-03-26 1981-10-31

Also Published As

Publication number Publication date
JPS644118B2 (en) 1989-01-24

Similar Documents

Publication Publication Date Title
US4300629A (en) Cross-fin tube type heat exchanger
US5042576A (en) Louvered fin heat exchanger
US4550776A (en) Inclined radially louvered fin heat exchanger
JPS6238639B2 (en)
JPH0514194B2 (en)
US5062475A (en) Chevron lanced fin design with unequal leg lengths for a heat exchanger
JP4930413B2 (en) Heat exchanger
JPH0849870A (en) Heat exchanger for air conditioner
US20070137840A1 (en) Corrugated fin and heat exchanger using the same
JP2009204277A (en) Heat exchanger
JPH035511B2 (en)
JPS6346357B2 (en)
JPS5845495A (en) Heat transmitting fin
JP5921053B2 (en) Louver type corrugated insert for heat exchanger
JP2008215737A (en) Fin tube type heat exchanger and refrigerating cycle
JPS59167695A (en) Heat exchanger
JPS6020094A (en) Heat exchanger
KR19980031147A (en) Heat exchanger of air conditioner
JPS6361598B2 (en)
JPH01305297A (en) Heat exchanger
US5875839A (en) Heat exchanger for air conditioner
JPH01252899A (en) Heat transfer fin and heat exchanger
JPH10253278A (en) Finned heat exchanger
JPS5926879B2 (en) Heat exchanger
JPS59215596A (en) Heat exchanger