JPS643849B2 - - Google Patents

Info

Publication number
JPS643849B2
JPS643849B2 JP55030247A JP3024780A JPS643849B2 JP S643849 B2 JPS643849 B2 JP S643849B2 JP 55030247 A JP55030247 A JP 55030247A JP 3024780 A JP3024780 A JP 3024780A JP S643849 B2 JPS643849 B2 JP S643849B2
Authority
JP
Japan
Prior art keywords
granulocyte
fatty acid
granulocytes
separation material
acid derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55030247A
Other languages
Japanese (ja)
Other versions
JPS56128717A (en
Inventor
Katsunori Horikoshi
Tsutomu Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP3024780A priority Critical patent/JPS56128717A/en
Priority to GB8106111A priority patent/GB2077137B/en
Priority to US06/239,259 priority patent/US4370381A/en
Priority to FR8104873A priority patent/FR2477882A1/en
Priority to DE3109493A priority patent/DE3109493C2/en
Publication of JPS56128717A publication Critical patent/JPS56128717A/en
Priority to US06/425,039 priority patent/US4476023A/en
Publication of JPS643849B2 publication Critical patent/JPS643849B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 本発明は、血液、体液等の血球浮遊液から顆粒
球を高収率、高純度で簡便に分離できる顆粒球分
離材、および該分離材を充填してなる顆粒球採取
器に関するものである。 近年輸血療法は、全血輸血のみならず、赤血球
輸注、顆粒球輸注、血小板輸注、そして血漿輸注
と多様な展開をみせている。中でも顆粒球輸注
は、無顆粒球血症、各種白血病、再生不良性貧血
に伴う感染症、そして制癌剤投与や放射線照射に
よる顆粒球減少症に対して、最近積極的に適用さ
れつゝある。末梢血顆粒球の寿命は極めて短いた
め、顆粒球輸注に供する顆粒球は、体外循環法に
より健常な供血者よりとどこおりなく採取する必
要がある。 この顆粒球採取方法は、大別して連続遠心分離
法と繊維による吸脱着法の二方法がある。 連続遠心分離法は、血球損傷が少ない優れた方
法であるが、装置が複雑で高価なこと、採取した
顆粒球浮遊液中にリンパ球混入が多く収率が低い
という問題がある。 一方、繊維による吸脱着法は、簡便安価な装置
で目的が達成でき、リンパ球混入が少ない利点が
ある。しかし、現在繁用されている繊維による吸
脱着法では、繊維に付着した顆粒球を回収するに
際し、回収液を流しながら繊維を充填した容器を
叩く操作が不可欠であり、獲得した顆粒球は殺菌
能、遊走能などの機能低下や、形態的変性が指摘
されている。また、この容器を叩く操作を医療従
事者に強いるなどの問題点も有している。 本発明者らは、この問題に着目し、顆粒球の固
体表面への粘着(もしくは吸着)挙動に詳細な検
討を加えた。その結果、固体表面に前もつて炭素
数10〜22の脂肪酸誘導体を付着せしめることによ
り、顆粒球の粘着力が弱まり、容易に顆粒球が回
収可能であり、採取した顆粒球の変形も少ないこ
とを発見し、本発明を完成するに至つた。 すなわち、本発明は、炭素数10〜22の脂肪酸を
有する脂肪酸誘導体を担持体に付着してなる顆粒
球分離材であり、さらに、本発明は、前記顆粒球
分離材を、血液流入口および流出口を有する容器
に充填してなる顆粒球採取器である。 本発明の顆粒球分離材は、例えば次のようにし
て製造される。 すなわち、脂肪酸誘導体0.1〜10gを100mlの有
機溶媒に溶解し、これに該有機溶媒および水に不
溶性の担持体、例えば繊維1〜10gを浸漬する。
1〜60分の浸漬処理後、有機溶媒を完全に乾燥除
去し、該脂肪酸誘導体を0.1〜100mg/g―繊維の
比率で付着せしめた担持体を得る。 本発明で使用される炭素数10〜22の脂肪酸から
なる脂肪酸誘導体とは、脂肪酸のアルコールエス
テル、アミドなどであり、例えば、脂肪酸のメタ
ノール、エタノール、プロバノール、長鎖アルコ
ールなどとのアルコールエステル・グリコールエ
ステル、グリセリンエステル、ポリエチレングリ
コールエステルなどのグリコールエステル類、単
糖類および多糖類とのエステル、α―,β―およ
びγ―アミノ酸とのアミド、スフインゴシンとの
アミド、アミド糖とのアミドなどがある。 これら脂肪酸誘導体を構成する脂肪酸は、不飽
和脂肪酸であることが担持体表面に良好に付着す
るので好ましい。例えば、ミリストレイン酸、パ
ルミトレイン酸、オレイン酸、リノール酸、リノ
レイン酸などが好ましい。また、より好ましく
は、炭素数18の不飽和脂肪酸であるオレイン酸、
リノール酸、リノレイン酸などがある。 脂肪酸誘導体の固体から液体もしくは液晶状態
への相転移温度が45℃以下であることが、固体表
面へ良好な付着性を示し好ましい。 脂肪酸誘導体を溶解させる有機溶媒は、該脂肪
酸誘導体を十分に溶解でき、かつ担持体を溶解変
性せしめないものであればいずれでもよい。例え
ば、エタノール、ジエチルエーテル、クロロホル
ム、四塩化炭素、二塩化エチレン、アセトンなど
が用いられる。 担持体の形態としては、膜状、顆粒状、粉末
状、繊維状などいずれでもよいが、繊維を綿状と
したものが取扱いやすく好ましい。 担持体の材質としては、ナイロン、ポリエステ
ル、ポリプロピレン、ポリアクリロニトリル、木
綿、レーヨン、銅アンモニアレーヨンなどいずれ
も用いられる。 本発明の基礎となる現象の解明は十分ではない
が、次のような機序が考えられる。 脂肪酸誘導体を付着せしめた顆粒球分離材は、
フイブリノーゲン等の血漿蛋白質を吸着させにく
い。顆粒球の強固な粘着には、これら血漿蛋白質
が介与していることから、上記事実により、顆粒
球の分離材表面への粘着が抑制され、機能をあま
り損傷させずに顆粒球を回収することが可能にな
つたと思われる。 本発明の表面処理効果は、機械的刺激により、
分離材に粘着した顆粒球を回収する場合にも顕著
に認められる。 通常行なわれている分離材に粘着した顆粒球を
叩き出して回収する方法では、叩き方の強弱によ
り結果は異なるが、最も強く叩いた場合、粘着し
た顆粒球の90%以上を回収することが可能であ
る。しかし、一般には、70%程度の回収を目安と
して、粘着変形や機能低下の少ない顆粒球の採取
をはかつている。 叩き出しよりも弱い刺激を与える拍動流による
回収方法も実施可能である。しかし、この方法で
は、一般に分離材に粘着した顆粒球の20〜30%程
度の顆粒球しか回収できない。この現象は、粘着
した顆粒球のうち、最も弱く粘着し、最も機能低
下の少ない部分のみが回収できることを示唆して
いる。 本発明の顆粒球分離材を用いれば、分離材に粘
着した顆粒球を容易に叩き出すことが可能であ
り、拍動流ポンプを用いたより緩かな条件下での
顆粒球回収方法に際しても、20%以上の顆粒球回
収の増加が認められる。 このように本発明の顆粒球分離材を用いること
により、叩き出し方法のみならず、拍動流方法に
よつても初めて実用的な顆粒球採取が可能となつ
た。 本発明の分離材によつて顆粒球を分離する際の
被処理液中には、顆粒球の粘着に主要な役割を果
すカルシウムイオンをキレート化するクエン酸
塩、および顆粒球の機能維持に有効な血清蛋白質
を含有することが好ましい。健常者から体外循環
法により、顆粒球の採取を行う場合は、AB型血
清を上記の血清蛋白質として用いることが好まし
い。 また、叩き出しに代り、拍動流ポンプを用いる
ことは、医療従事者の労働の軽減にもつながると
思われる。 次に本発明の顆粒球採取器は、上記説明の顆粒
球分離材を血液流入口および流出口を有する容器
に充填し、血液が顆粒球分離材と接触しつゝ通過
するようにしたものである。 顆粒球分離材の充填密度は、担持体が繊維状で
ある場合は0.05〜0.20g/cm3が好ましい。 本発明の顆粒球採取器の具体例を第1図および
第2図に基いて説明すると、顆粒球分離材1は円
筒2に充填され、円筒2の両端開口部には、周辺
をリング3で溶着固定したメツシユ4が配設さ
れ、リング3をはさんで設けられたシリコンパツ
キング5,6で締付けられることによつて固定さ
れるようになつている。そして、中央に血液導出
入管7を設けた蓋8が前記メツシユ4の外側から
被せられ、円筒2の両端外周に螺着した締付リン
グ9により、メツシユ4と共に締付け固定され
る。 顆粒球分離材1はメツシユ4によつて円筒2内
に固定保持され、血液導出入管7はノズル形状と
なつており、チユーブを差し込むことができる。
血液は顆粒球採取器内を流通し、顆粒球分離材1
と接触し、こゝで顆粒球は顆粒球分離材1に付着
保持され、血液中の他成分と分離される。 本発明の顆粒球採取器は、体外に取出された抗
凝固剤を含む血液から顆粒球を採取することも、
体外循環法により連続的に潅流する血液から顆粒
球を採取することも可能である。 本発明の顆粒球採取器を大型動物もしくはヒト
の体外循環に用いる際には、該容器の前後に市販
の人工腎臓用回路を接続する。使用に先立ちへパ
リン添加した生理的食塩水にて、回路および顆粒
球採取器を充填する。体重1Kgあたり100〜200単
位のヘパリンを負荷した動物の体表部血管より連
続的に血液を取出し、市販の人工腎臓用ポンプに
て、通常50ml/min以下の流速にて2時間潅流す
る。潅流終了後、500mlのヘパリン添加した生理
的食塩水を容器内に流し、非粘着性の赤血球、リ
ンパ球等を流し出す。 次に拍動ポンプ(株式会社イワキ製EP―B25
型など)を用い、500mlの回収液〔300mlの生理的
食塩水、150mlの血清もしくは血漿、50mlの抗凝
固剤(クエン酸、クエン酸ナトリウム、グルコー
スから構成されるACD―A液)よりなる〕を容
器に流し、顆粒球を回収する。回収液を流す方向
は、血液を流した方向の逆方向に流すことが好ま
しい。拍動数は40〜120パルス/分が好ましい。 次に実施例を挙げて説明する。 実施例 1 オレイン酸モノグリセリンエステル(融点35.5
℃)1gをジエチルエーテル100mlに溶解し、5
gのポリエステル繊維(3デニール)を該溶液に
30分間浸漬した。余分な溶液を紙で吸着した
後、室温で3時間減圧乾燥し、ジエチルエーテル
を完全に除去した。 この顆粒球採取材5gを第1および第2図に示
す直径40mm、長さ40mmの容器(内容積50cm3)に均
一に充填し、入口および出口にシリコンチユーブ
を接続し、ヘパリン添加した生理的食塩水を充填
した。 1単位/ml血液のヘパリンを加え37℃に加温し
た牛新鮮血(顆粒球数4.2×103個/mm3、顆粒球
純度52%)1を10ml/minの流速でローラーポ
ンプにより送液し、次に100mlのヘパリン添加し
た生理的食塩水により、顆粒球採取器内を洗浄し
た。 続いて拍動ポンプ(株式会社イワキ製電磁定量
ポンプEP―B25型)を用い、60パルス/分にて
500mlの回収液を流し、顆粒球を回収した。流す
方向は、血液と逆方向とした。 回収液組成は、生理的食塩300ml、自己血漿150
ml、抗凝固液(ACD―A液)50mlから構成され
ている。 結果は第1表に示した。こゝで、顆粒球回収率
は、 回収液中の顆粒球数/顆粒球採取器に入る前の全顆粒球
数×100(%) である。 顆粒球純度とは全白血球数に対する顆粒球数の
比率を%表示した。 顆粒球生存率とは、回収した液の顆粒球の中で
トリパンブルー染色に抗抵性を示す生存顆粒球の
比率を%表示した。 繊維に付着した脂肪酸誘導体の付着量は、有機
溶媒にて抽出した後、有機溶媒を乾燥除去し、重
量を測定することにより求めた。 比較例 1 実施例1のオレイン酸モノグリセリンエステル
の付着処理を行なかつた以外は、全て同条件で比
較実験を行つた結果を第1表に示す。 比較例 2 カプリル酸メチルエステル(融点−34℃)を用
い、実施例1と同条件で比較実験を行つた結果を
第1表に示す。 比較例 3 リグノセリン酸エチル(融点54.8℃)を用い、
実施例1と同条件で比較実験を行つた結果を第1
表に示す。 実施例 2 ステアリン酸トリグリセリドを実施例1と同様
の方法でナイロン繊維(2デニール)に付着せし
め、実施例1と同一の実験を行つた。結果を第1
表に示す。 実施例 3 ラウリン酸オクタデシル(融点37℃)を実施例
1と同様の方法でポリアクリロニトリル繊維(5
デニール)に付着せしめ、実施例1と同一の実験
を行つた。結果を第1表に示す。 実施例 4 パルミチン酸ドデシル(融点30℃)を実施例1
と同様の方法でポリプロピレン繊維(7デニー
ル)に付着せしめ、実施例1と同一の実験を行つ
た。結果を第1表に示す。 【表】
Detailed Description of the Invention The present invention provides a granulocyte separation material that can easily separate granulocytes from blood cell suspensions such as blood and body fluids with high yield and high purity, and a granulocyte separation material filled with the separation material. It concerns a sampling device. In recent years, blood transfusion therapy has expanded to include not only whole blood transfusion, but also red blood cell transfusion, granulocyte transfusion, platelet transfusion, and plasma transfusion. Among these, granulocyte infusion has recently been actively applied to agranulocytemia, various leukemias, infections associated with aplastic anemia, and granulocytopenia caused by anticancer drug administration or radiation irradiation. Since the lifespan of peripheral blood granulocytes is extremely short, the granulocytes used for granulocyte transfusion must be collected from healthy blood donors by extracorporeal circulation. This method for collecting granulocytes can be roughly divided into two methods: continuous centrifugation method and adsorption/desorption method using fibers. Continuous centrifugation is an excellent method that causes little damage to blood cells, but it has problems in that the equipment is complicated and expensive, and the collected granulocyte suspension is often contaminated with lymphocytes, resulting in a low yield. On the other hand, the adsorption/desorption method using fibers has the advantage that the purpose can be achieved with a simple and inexpensive device, and there is less lymphocyte contamination. However, in the currently frequently used adsorption/desorption method using fibers, in order to collect the granulocytes attached to the fibers, it is essential to tap a container filled with fibers while running a collection solution, and the collected granulocytes are sterilized. Functional declines such as migratory and migratory abilities, as well as morphological degeneration, have been noted. There are also other problems, such as forcing medical personnel to tap the container. The present inventors focused on this problem and conducted a detailed study on the adhesion (or adsorption) behavior of granulocytes to solid surfaces. As a result, by pre-adhering a fatty acid derivative having 10 to 22 carbon atoms to the solid surface, the adhesive force of the granulocytes is weakened, the granulocytes can be easily recovered, and the collected granulocytes are less deformed. This discovery led to the completion of the present invention. That is, the present invention provides a granulocyte separation material in which a fatty acid derivative having a fatty acid having 10 to 22 carbon atoms is adhered to a carrier. This is a granulocyte collector filled in a container with an outlet. The granulocyte separation material of the present invention is produced, for example, as follows. That is, 0.1 to 10 g of a fatty acid derivative is dissolved in 100 ml of an organic solvent, and a carrier insoluble in the organic solvent and water, such as 1 to 10 g of fiber, is immersed in the solution.
After the immersion treatment for 1 to 60 minutes, the organic solvent is completely removed by drying to obtain a carrier to which the fatty acid derivative is attached at a ratio of 0.1 to 100 mg/g of fiber. The fatty acid derivatives consisting of fatty acids having 10 to 22 carbon atoms used in the present invention include alcohol esters and amides of fatty acids, such as alcohol esters and glycols of fatty acids with methanol, ethanol, probanol, long-chain alcohols, etc. Examples include esters, glycol esters such as glycerin esters and polyethylene glycol esters, esters with monosaccharides and polysaccharides, amides with α-, β-, and γ-amino acids, amides with sphingosine, and amides with amidosaccharides. The fatty acids constituting these fatty acid derivatives are preferably unsaturated fatty acids because they adhere well to the surface of the carrier. For example, preferred are myristoleic acid, palmitoleic acid, oleic acid, linoleic acid, linoleic acid, and the like. More preferably, oleic acid, which is an unsaturated fatty acid having 18 carbon atoms,
These include linoleic acid and linoleic acid. It is preferable that the phase transition temperature of the fatty acid derivative from a solid state to a liquid or liquid crystal state is 45° C. or lower, since this shows good adhesion to solid surfaces. The organic solvent for dissolving the fatty acid derivative may be any organic solvent as long as it can sufficiently dissolve the fatty acid derivative and does not cause dissolution denaturation of the support. For example, ethanol, diethyl ether, chloroform, carbon tetrachloride, ethylene dichloride, acetone, etc. are used. The carrier may be in any form such as membrane, granule, powder, or fiber, but it is preferable to use fibers in the form of cotton because they are easy to handle. As the material of the carrier, nylon, polyester, polypropylene, polyacrylonitrile, cotton, rayon, copper ammonia rayon, etc. can be used. Although the phenomenon underlying the present invention has not been fully elucidated, the following mechanism is considered. The granulocyte separation material attached with fatty acid derivatives is
Difficult to adsorb plasma proteins such as fibrinogen. Since these plasma proteins are involved in the strong adhesion of granulocytes, the above fact suppresses the adhesion of granulocytes to the surface of the separation material, allowing the collection of granulocytes without significantly damaging their functions. It seems that this is now possible. The surface treatment effect of the present invention is achieved by mechanical stimulation.
It is also noticeable when collecting granulocytes that have adhered to the separation material. In the conventional method of collecting granulocytes by knocking them out from the separation material, the results vary depending on the strength of the beating method, but when hitting the strongest, it is possible to recover more than 90% of the granulocytes that have stuck to the separation material. It is possible. However, in general, the goal is to collect granulocytes with less adhesive deformation and less functional loss, with a recovery of around 70%. A recovery method using pulsatile flow, which provides a weaker stimulation than knocking out, is also possible. However, with this method, generally only about 20 to 30% of the granulocytes adhered to the separation material can be recovered. This phenomenon suggests that only the portion of adherent granulocytes that is the weakest and has the least functional decline can be recovered. By using the granulocyte separation material of the present invention, it is possible to easily knock out granulocytes that have adhered to the separation material, and even when using a granulocyte collection method under milder conditions using a pulsatile flow pump, it is possible to easily knock out granulocytes that have adhered to the separation material. An increase in granulocyte recovery of more than % is observed. As described above, by using the granulocyte separating material of the present invention, it has become possible for the first time to collect granulocytes practically not only by the knockout method but also by the pulsatile flow method. When separating granulocytes using the separation material of the present invention, the liquid to be treated contains citrate, which chelates calcium ions that play a major role in the adhesion of granulocytes, and is effective in maintaining the function of granulocytes. It is preferable that the serum protein contains serum proteins such as: When collecting granulocytes from a healthy person by extracorporeal circulation, it is preferable to use type AB serum as the above-mentioned serum protein. In addition, using a pulsatile flow pump instead of pumping out would also lead to less labor for medical personnel. Next, in the granulocyte collector of the present invention, the granulocyte separating material described above is filled into a container having a blood inlet and an outlet, so that the blood passes through while coming into contact with the granulocyte separating material. be. The packing density of the granulocyte separating material is preferably 0.05 to 0.20 g/cm 3 when the carrier is fibrous. A specific example of the granulocyte collector of the present invention will be explained based on FIGS. 1 and 2. A granulocyte separation material 1 is filled in a cylinder 2, and rings 3 are placed around the openings at both ends of the cylinder 2. A mesh 4 fixed by welding is provided, and is fixed by being tightened with silicone packings 5 and 6 provided with the ring 3 sandwiched therebetween. Then, a lid 8 having a blood inlet/outlet tube 7 provided in the center is placed over the mesh 4 from the outside, and is tightened and fixed together with the mesh 4 by tightening rings 9 screwed onto the outer periphery of both ends of the cylinder 2. The granulocyte separating material 1 is fixedly held within the cylinder 2 by a mesh 4, and the blood inlet/outlet tube 7 has a nozzle shape into which a tube can be inserted.
The blood flows through the granulocyte collector, and the granulocyte separation material 1
The granulocytes are adhered to and held on the granulocyte separating material 1 and separated from other components in the blood. The granulocyte collector of the present invention can also collect granulocytes from blood containing an anticoagulant taken out of the body.
It is also possible to collect granulocytes from blood that is continuously perfused by extracorporeal circulation. When the granulocyte collector of the present invention is used for extracorporeal circulation in large animals or humans, commercially available artificial kidney circuits are connected before and after the container. Fill the circuit and granulocyte collector with heparinized saline prior to use. Blood is continuously drawn from the body surface blood vessels of animals loaded with 100 to 200 units of heparin per kg of body weight, and perfused for 2 hours using a commercially available artificial kidney pump at a flow rate of usually 50 ml/min or less. After perfusion, 500 ml of heparin-added physiological saline is poured into the container to flush out non-adhesive red blood cells, lymphocytes, etc. Next, a pulsating pump (EP-B25 manufactured by Iwaki Co., Ltd.)
500 ml of collection solution [consisting of 300 ml of physiological saline, 150 ml of serum or plasma, and 50 ml of anticoagulant (ACD-A solution consisting of citric acid, sodium citrate, and glucose)] into a container and collect the granulocytes. It is preferable that the recovery liquid is flowed in the opposite direction to the direction in which the blood was flowed. The beat rate is preferably 40 to 120 pulses/min. Next, an example will be given and explained. Example 1 Oleic acid monoglycerin ester (melting point 35.5
℃) in 100 ml of diethyl ether,
g of polyester fiber (3 denier) was added to the solution.
Soaked for 30 minutes. After adsorbing excess solution with paper, it was dried under reduced pressure at room temperature for 3 hours to completely remove diethyl ether. 5 g of this granulocyte collection material was uniformly filled into a container with a diameter of 40 mm and a length of 40 mm (inner volume of 50 cm 3 ) shown in Figs. Filled with saline. Fresh bovine blood (granulocyte count 4.2 x 10 3 cells/mm 3 , granulocyte purity 52%) 1 with heparin added at 1 unit/ml blood and heated to 37°C was pumped at a flow rate of 10 ml/min using a roller pump. Then, the inside of the granulocyte collector was washed with 100 ml of heparin-added physiological saline. Then, using a pulsating pump (electromagnetic metering pump EP-B25 type manufactured by Iwaki Co., Ltd.) at 60 pulses/min.
500 ml of the collection solution was poured into the tube to collect the granulocytes. The direction of flow was opposite to that of blood. Recovered liquid composition: 300 ml of physiological saline, 150 ml of autologous plasma.
ml, and 50 ml of anticoagulant solution (ACD-A solution). The results are shown in Table 1. Here, the granulocyte recovery rate is the number of granulocytes in the recovery solution/total number of granulocytes before entering the granulocyte collector x 100 (%). Granulocyte purity is the ratio of the number of granulocytes to the total number of white blood cells expressed as a percentage. The granulocyte survival rate is the percentage of viable granulocytes showing resistance to trypan blue staining among the granulocytes in the collected fluid. The amount of fatty acid derivatives attached to the fibers was determined by extracting with an organic solvent, removing the organic solvent by drying, and measuring the weight. Comparative Example 1 Table 1 shows the results of a comparative experiment conducted under the same conditions as in Example 1, except that the oleic acid monoglycerol ester adhesion treatment was not performed. Comparative Example 2 Table 1 shows the results of a comparative experiment conducted under the same conditions as in Example 1 using caprylic acid methyl ester (melting point -34°C). Comparative Example 3 Using ethyl lignocerate (melting point 54.8°C),
The results of a comparative experiment conducted under the same conditions as Example 1 are shown in the first example.
Shown in the table. Example 2 Stearic acid triglyceride was attached to nylon fibers (2 denier) in the same manner as in Example 1, and the same experiment as in Example 1 was conducted. Results first
Shown in the table. Example 3 Octadecyl laurate (melting point 37°C) was added to polyacrylonitrile fiber (5°C) in the same manner as in Example 1.
The same experiment as in Example 1 was conducted. The results are shown in Table 1. Example 4 Dodecyl palmitate (melting point 30°C) was added to Example 1.
The same experiment as in Example 1 was conducted by attaching it to polypropylene fiber (7 denier) in the same manner as in Example 1. The results are shown in Table 1. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明の顆粒球採取器
の1例を示すもので、第1図はその1部切損斜視
図、第2図は縦断側面図を示す。 1…顆粒球分離材、2…円筒、3…リング、4
…メツシユ、5,6…シリコンパツキング、7…
血液導出入管、8…蓋、9…締付リング。
FIGS. 1 and 2 show an example of the granulocyte collector of the present invention, with FIG. 1 showing a partially cutaway perspective view and FIG. 2 showing a longitudinal side view. 1... Granulocyte separation material, 2... Cylinder, 3... Ring, 4
... mesh, 5, 6... silicon packing, 7...
Blood lead-in/out tube, 8...lid, 9...tightening ring.

Claims (1)

【特許請求の範囲】 1 炭素数10〜22の脂肪酸を有する脂肪酸誘導体
を担持体に付着してなる顆粒球分離材。 2 脂肪酸誘導体が不飽和脂肪酸を有する脂肪酸
誘導体である特許請求の範囲第1項記載の顆粒球
分離材。 3 脂肪酸誘導体が炭素数18の不飽和脂肪酸のグ
リセリンエステルである特許請求の範囲第2項記
載の顆粒球分離材。 4 脂肪酸誘導体の固体から液体もしくは液晶状
態への相転移温度が45℃以下の範囲である特許請
求の範囲第1項ないし第3項のいずれかに記載の
顆粒球分離材。 5 脂肪酸誘導体を付着せしめる担持体が繊維状
である特許請求の範囲第1項ないし第4項のいず
れかに記載の顆粒球分離材。 6 炭素数10〜22の脂肪酸を有する脂肪酸誘導体
を担持体に付着した顆粒球分離材を、血液流入口
および流出口を有する容器に充填してなる顆粒球
採取器。 7 担持体が繊維状であり、容器への充填密度が
0.05〜0.20g/cm3である特許請求の範囲第6項記
載の顆粒球採取器。
[Scope of Claims] 1. A granulocyte separation material comprising a fatty acid derivative having a fatty acid having 10 to 22 carbon atoms attached to a carrier. 2. The granulocyte separation material according to claim 1, wherein the fatty acid derivative is a fatty acid derivative having an unsaturated fatty acid. 3. The granulocyte separation material according to claim 2, wherein the fatty acid derivative is a glycerin ester of an unsaturated fatty acid having 18 carbon atoms. 4. The granulocyte separation material according to any one of claims 1 to 3, wherein the fatty acid derivative has a phase transition temperature from solid to liquid or liquid crystal state in a range of 45°C or lower. 5. The granulocyte separation material according to any one of claims 1 to 4, wherein the carrier to which the fatty acid derivative is attached is fibrous. 6. A granulocyte collector, in which a container having a blood inlet and an outlet is filled with a granulocyte separating material in which a fatty acid derivative having a fatty acid having 10 to 22 carbon atoms is attached to a carrier. 7 The carrier is fibrous and the packing density in the container is
The granulocyte collector according to claim 6, wherein the granulocyte concentration is 0.05 to 0.20 g/cm 3 .
JP3024780A 1980-03-12 1980-03-12 Granulocyte-separating material and granvlocyte collector Granted JPS56128717A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3024780A JPS56128717A (en) 1980-03-12 1980-03-12 Granulocyte-separating material and granvlocyte collector
GB8106111A GB2077137B (en) 1980-03-12 1981-02-26 Granulocyte-separating material and granulocyte separator
US06/239,259 US4370381A (en) 1980-03-12 1981-03-02 Granulocyte-separating material and granulocyte separator
FR8104873A FR2477882A1 (en) 1980-03-12 1981-03-11 GRANULOCYTE SEPARATION MATERIAL, GRANULOCYTE COLLECTOR AND METHOD OF USE
DE3109493A DE3109493C2 (en) 1980-03-12 1981-03-12 Material for separating granulocytes
US06/425,039 US4476023A (en) 1980-03-12 1982-09-27 Granulocyte-separating material and granulocyte separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3024780A JPS56128717A (en) 1980-03-12 1980-03-12 Granulocyte-separating material and granvlocyte collector

Publications (2)

Publication Number Publication Date
JPS56128717A JPS56128717A (en) 1981-10-08
JPS643849B2 true JPS643849B2 (en) 1989-01-23

Family

ID=12298373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3024780A Granted JPS56128717A (en) 1980-03-12 1980-03-12 Granulocyte-separating material and granvlocyte collector

Country Status (1)

Country Link
JP (1) JPS56128717A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193645A (en) * 1986-02-19 1987-08-25 Agency Of Ind Science & Technol Adsorbent
CA2216718C (en) * 1996-01-31 2003-07-22 Kaneka Corporation Adsorbent for disease-related factors in body fluids, method of elimination by adsorption, body fluid purifier, and apparatus for purifying body fluids

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923666B2 (en) * 1978-08-25 1984-06-04 日本電信電話株式会社 Calling subscriber information identification method

Also Published As

Publication number Publication date
JPS56128717A (en) 1981-10-08

Similar Documents

Publication Publication Date Title
US4370381A (en) Granulocyte-separating material and granulocyte separator
US7182865B2 (en) Device for separating whole blood under gravitational force
Barroso-Aranda et al. Granulocytes and no-reflow phenomenon in irreversible hemorrhagic shock.
US4197847A (en) Method and apparatus for collecting transfusable granulocytes
US4898573A (en) Blood components collector unit
JP4138488B2 (en) Body fluid treatment device capable of direct blood perfusion
EP3335744B1 (en) Leukocyte preparation and method for producing a leukocyte preparation
WO1987005812A1 (en) Filter medium for selectively removing leucocytes
JP6196222B2 (en) Method for producing cell concentrate
JP2001500753A (en) Method for removing tumor cells from stem cell products contaminated with tumor cells
CH658376A5 (en) DEVICE FOR DETECTING REGULATORS IN THE BLOOD.
JPH0659304B2 (en) Blood component separation method
JPS643849B2 (en)
JP2003304865A (en) Method for separating cell
JP2005336080A (en) Method and system for separating and collecting cell for therapeutic angiogenesis
JPH0510105B2 (en)
JP3208132B2 (en) Blood component separation method
Ma et al. Comparison of two methods for concentrating stem cells for cryopreservation and transplantation
JP4340927B2 (en) Red blood cell composition and method for collecting and storing red blood cells
JP3938973B2 (en) Cell separation method
JP6169972B2 (en) Stem cell isolation method
JPS5854125B2 (en) Leukocyte separation filter and leukocyte separation method
Swank et al. Platelet-Leukocyte Emboli-Origins, Effects & Treatment
JP2521090B2 (en) Blood cell separator
EP0909565A1 (en) Use of a non-ionic adsorbent resin combined with the system known as bioartificial liver