JPS643587B2 - - Google Patents

Info

Publication number
JPS643587B2
JPS643587B2 JP1662884A JP1662884A JPS643587B2 JP S643587 B2 JPS643587 B2 JP S643587B2 JP 1662884 A JP1662884 A JP 1662884A JP 1662884 A JP1662884 A JP 1662884A JP S643587 B2 JPS643587 B2 JP S643587B2
Authority
JP
Japan
Prior art keywords
flask
molding
model
filling
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1662884A
Other languages
Japanese (ja)
Other versions
JPS60162553A (en
Inventor
Takeyoshi Taya
Harumi Ueno
Tokiharu Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1662884A priority Critical patent/JPS60162553A/en
Publication of JPS60162553A publication Critical patent/JPS60162553A/en
Publication of JPS643587B2 publication Critical patent/JPS643587B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • B22C9/046Use of patterns which are eliminated by the liquid metal in the mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Devices For Molds (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は消失性模型を使用する充填鋳造法にお
ける造型方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a molding method in a filling casting method using a fugitive model.

〔従来技術〕[Prior art]

発泡ポリスチレン等の消失性模型を耐熱性粒状
物である鋳型砂中に埋設し、鋳型砂の中から模型
を銭抜き取らないでそのまま溶湯を鋳込む充填鋳
造法は公知である。この充填鋳造法は、(1)鋳型を
上型と下型に分割して模型を抜き取る必要がな
い、(2)中子を使う必要がない、(3)鋳ばりが発生し
ないので製品製造工程が大幅に低減できる等の特
色を有し、この特色を生かして、プレス金型等の
個別鋳物や量産鋳物の製造に広く利用されてい
る。
A filling casting method is known in which a fugitive model made of foamed polystyrene or the like is buried in molding sand, which is a heat-resistant granular material, and molten metal is directly poured into the mold without removing the model from the molding sand. This filling casting method (1) eliminates the need to divide the mold into upper and lower molds and remove the models, (2) eliminates the need to use a core, and (3) eliminates the generation of flash during the product manufacturing process. It has characteristics such as being able to significantly reduce the amount of carbon dioxide, and taking advantage of this characteristic, it is widely used in the production of individual castings such as press molds and mass-produced castings.

かかる充填鋳造法では、模型が製作されれば、
原則としていかなる形状の鋳物でも製造できるわ
けであるが、模型が鋳型砂により十分保持されて
いなければ精度のよい鋳物を製造することは困難
である。このため、造型方法の良し悪しが問題と
なる。
In such a filling casting method, once a model is manufactured,
In principle, castings of any shape can be manufactured, but unless the model is sufficiently supported by molding sand, it is difficult to manufacture accurate castings. Therefore, the quality of the molding method becomes an issue.

この充填鋳造法における造型方法としては次の
方法がある。
The following methods are available as molding methods in this filling casting method.

(A)鋳枠に予め消失性模型を設置した後、粘結剤
を含んだ鋳型砂を充填する方法。
(A) A method in which a fugitive model is placed in the casting flask in advance, and then molding sand containing a binder is filled.

この方法では粘結剤を含んでいるため鋳型砂の
流動性が悪く、従つて充填性に問題があり造型作
業に多大の困難を伴つていた。また、この方法で
は鋳型砂の回収、再生にも余分な工数、コストを
必要とし、歩留りが悪かつた。
In this method, since the molding sand contains a binder, the fluidity of the molding sand is poor, and therefore there is a problem in filling properties, which makes the molding work very difficult. In addition, this method required extra man-hours and costs to recover and regenerate the molding sand, resulting in poor yield.

かかる問題を解決するために、(B)粘結剤を含ま
ない鋳型砂(以下、非粘結砂という)を使用し減
圧造型する方法がある。この方法によれば、前記
(A)の場合に比べ充填性が良くなるものの十分では
なく、また鋳型の強度が弱いという欠点がある。
In order to solve this problem, there is a method (B) of vacuum molding using molding sand that does not contain a binder (hereinafter referred to as non-caking sand). According to this method, the
Although the filling property is better than in case (A), it is not sufficient and also has the disadvantage that the strength of the mold is weak.

更に、前記(B)の改良として、(C)鋳枠底部に加
圧・減圧槽を設け、非粘結砂を加圧して流動さ
せ、模型挿入後減圧固定する造型方法がある。こ
の方法によれば、鋳型砂の充填性、鋳型強度は(B)
より良くなるものの、充填鋳造法以外の鋳造法で
中子を必要とするような複雑形状の鋳物を製造す
る場合には、この中子に相当する部位に鋳型砂を
充填することは容易ではなく、かつ複雑形状部の
強度も発泡ポリスチレンの燃焼によつて発生する
ガスに対し十分なものではなかつた。
Furthermore, as an improvement to the above (B), there is a molding method (C) in which a pressurization/depressurization tank is provided at the bottom of the flask, non-caking sand is pressurized to flow, and the model is inserted and then fixed under reduced pressure. According to this method, the filling properties of molding sand and mold strength are (B)
However, when producing complex-shaped castings that require a core using a casting method other than the filling casting method, it is not easy to fill the area corresponding to the core with molding sand. Moreover, the strength of the complex-shaped portion was not sufficient to withstand the gas generated by the combustion of expanded polystyrene.

このため、本件出願人は、上記(C)に振動を加え
る新規な造型法(特願昭58−41357)(未公知)を
提案したが、複雑形状部品の製造には更に優れた
造型法が望まれていた。
For this reason, the applicant proposed a new molding method (patent application 1984-41357) (unknown) that adds vibration to the above (C), but an even better molding method is needed for manufacturing parts with complex shapes. It was wanted.

〔発明の目的〕[Purpose of the invention]

本発明は、上記従来技術の問題を解決するため
になされたもので、充填性が良く鋳型強度に優れ
た充填鋳造法における造型方法を提供することを
目的とする。
The present invention was made in order to solve the problems of the prior art described above, and an object of the present invention is to provide a molding method in a filling casting method that has good filling properties and excellent mold strength.

〔発明の構成〕[Structure of the invention]

かかる目的は、本発明によれば、鋳枠底部に加
圧手段と減圧手段を備えた鋳枠内に消失性模型を
挿入し、耐熱性粒状物により前記消失性模型を鋳
枠内に埋設する充填鋳造法における造型方法であ
つて、 前記加圧手段により耐熱性粒状物を流動させた
状態で消失性模型を鋳枠内に挿入し、流動中止
後、鋳枠に振動を加えつつ前記減圧手段により間
欠的に減圧することを特徴とする充填鋳造法にお
ける造型方法によつて達成される。
According to the present invention, such a purpose is to insert a fugitive model into a flask equipped with a pressure means and a depressurizing means at the bottom of the flask, and to embed the fugitive model in the flask with heat-resistant granules. A molding method in a filling casting method, wherein a fugitive model is inserted into a flask while heat-resistant granules are fluidized by the pressure means, and after the fluidization is stopped, the flask is vibrated while the depressurization means is applied. This is achieved by a molding method in the filling casting method, which is characterized by intermittent pressure reduction.

本発明の従来技術に対する特徴は、造型工程に
おいて振動を加えつつ間欠的に減圧を加えたこと
にある。
The feature of the present invention over the prior art is that vacuum is intermittently applied while vibration is applied during the molding process.

本発明において、模型材料としては一般に用い
られている発泡ポリスチレン、発泡ポリエチレ
ン、発泡ポリウレタン等を用いることができる。
In the present invention, commonly used foamed polystyrene, foamed polyethylene, foamed polyurethane, etc. can be used as the model material.

また、耐熱性粒状物としては、鋳型砂、シヨツ
ト等を使用することができる。
Further, as the heat-resistant granules, molding sand, shot, etc. can be used.

本発明においては、加圧手段、減圧手段は第1
図の如く加圧・減圧槽として設けてもよく、また
共に鋳型内に直接設けてもよい。
In the present invention, the pressurizing means and the depressurizing means are the first
As shown in the figure, they may be provided as pressurized/depressurized tanks, or both may be provided directly within the mold.

本発明においては、振動を加えることにより耐
熱性粒状物の充填性を格段に良くすることができ
る。特に、薄肉部、複雑形状部に耐熱性粒状物を
充填するのに優れており、従来に比べ充填性が良
くなるばかりでなく、鋳型全体の充填密度が上が
り鋳型の強度を高めることもできる。
In the present invention, the filling properties of the heat-resistant granules can be significantly improved by applying vibration. In particular, it is excellent for filling thin-walled parts and complex-shaped parts with heat-resistant granules, which not only improves filling performance compared to conventional methods, but also increases the packing density of the entire mold and increases the strength of the mold.

この振動は、模型を埋設した状態で薄肉部、複
雑形状部に十分耐熱性粒状物が充填される方向に
付与されるのが望ましい。但し、普通は上下、左
右方向の一方から加えれば十分である。加えられ
る振動の大きさ、サイクル、付与時間は模型の大
きさ、形状等を考慮して適宜決められるべきもの
である。
It is desirable that this vibration is applied in a direction that sufficiently heat-resistant granules are filled into thin-walled parts and complex-shaped parts while the model is buried. However, it is usually sufficient to add from either the top, bottom, or left/right direction. The magnitude, cycle, and application time of the vibration to be applied should be appropriately determined in consideration of the size, shape, etc. of the model.

本発明においては、振動と同時に間欠的に減圧
を行う。この減圧の周期は模型の形状、大きさ等
により適宜決めることができ、例えば10秒間隔で
行うことができる。
In the present invention, the pressure is intermittently reduced at the same time as the vibration. The cycle of this pressure reduction can be determined as appropriate depending on the shape, size, etc. of the model, and can be performed, for example, at intervals of 10 seconds.

〔発明の作用〕[Action of the invention]

本発明によれば、振動が加えられつつ間欠的に
減圧がなされるため、非粘結砂の流動性が上が
り、減圧時の固化と減圧中止時における非粘結砂
のほぐれの繰り返しにより、充填密度が徐々に高
まり、複雑形状部位にも非粘結砂が十分侵入す
る。
According to the present invention, since the pressure is intermittently reduced while vibration is applied, the fluidity of the non-caking sand increases, and the non-caking sand repeats solidification when the pressure is reduced and loosening when the vacuum is stopped. The density gradually increases, and non-caking sand fully penetrates into complex-shaped areas.

〔発明の効果〕〔Effect of the invention〕

このため、本発明に係る充填鋳造法における造
型方法によれば、消失性模型に対する非粘結砂の
充填性が従来に比べ格段に向上し、複雑形状部位
においても充填不良がなくなる。また、鋳型の強
度も向上する。この結果、鋳造欠陥のない品質的
に優れた鋳造品を得ることができる。
Therefore, according to the molding method in the filling casting method according to the present invention, the ability to fill the fugitive model with non-caking sand is significantly improved compared to the conventional method, and filling defects are eliminated even in complex-shaped parts. Moreover, the strength of the mold is also improved. As a result, a cast product of excellent quality without casting defects can be obtained.

また、本発明によれば、充填速度が速くなるた
め、造型作業性が大幅に向上する。
Further, according to the present invention, since the filling speed becomes faster, the molding workability is significantly improved.

〔実施例〕〔Example〕

次に、本発明の実施例を図面を参考にして説明
する。
Next, embodiments of the present invention will be described with reference to the drawings.

ここで、第1図〜第3図は本発明に係る充填鋳
造法における造型方法の各工程を示す概略構成図
であり、第1図は耐熱性粒状物を流動させて消失
性模型を埋設している状態、第2図は埋設した状
態、第3図は振動を加えつつ間欠的に減圧してい
る状態を示す。また、第4図は第3図における鋳
枠内の圧力変化を示すグラフである。
Here, FIGS. 1 to 3 are schematic configuration diagrams showing each step of the molding method in the filling casting method according to the present invention, and FIG. Fig. 2 shows a state in which it is buried, and Fig. 3 shows a state in which the pressure is intermittently reduced while applying vibration. Moreover, FIG. 4 is a graph showing the pressure change in the flask in FIG. 3.

第1図〜第3図において、1は発泡ポリスチレ
ンからなる消失性模型であり、湯口部1aと製品
部1bからなる。2は鋳枠であり、この鋳枠2内
は、下方で空隙率約40%、空孔径1〜20μmの多
孔板3により上下2室に区分されており、下室は
加圧・減圧槽4とされ、加圧・減圧手段5に接続
されている。また、鋳枠2の上室内には耐熱性粒
状物としての非粘結砂6が装入されており、かつ
鋳枠2は振動装置7上に固定されている。
In FIGS. 1 to 3, reference numeral 1 denotes a fugitive model made of expanded polystyrene, which consists of a sprue part 1a and a product part 1b. 2 is a flask, and the inside of this flask 2 is divided into upper and lower chambers by a perforated plate 3 with a porosity of about 40% and a pore diameter of 1 to 20 μm at the bottom, and the lower chamber is a pressurization/decompression tank 4. and is connected to the pressurizing/reducing means 5. Furthermore, non-caking sand 6 as heat-resistant granules is charged into the upper chamber of the flask 2, and the flask 2 is fixed on a vibrating device 7.

更に、加圧・減圧槽4は、加圧・減圧パイプ取
出口8を介して外部の加圧手段、減圧手段と接続
されている。本実施例においては、加圧源9と真
空源10が電磁弁11を介して上記加圧・減圧槽
4と接続され、この電磁弁11により加圧と減圧
を切り換えている。
Further, the pressurization/depressurization tank 4 is connected to external pressurization means and depressurization means via a pressurization/depressurization pipe outlet 8. In this embodiment, a pressure source 9 and a vacuum source 10 are connected to the pressurization/depressurization tank 4 via a solenoid valve 11, and the solenoid valve 11 switches between pressurization and depressurization.

また、第3図において、加圧源9と電磁弁11
を結ぶ径路には、エアゲージ12、エア調整弁1
3、フイルタ14が設けられ、真空源10と電磁
弁11の途中径路には真空ゲージ15、真空調整
弁16、バルブ17が設けられている。なお、真
空系のフイルタ18は、電磁弁11と加圧・減圧
パイプ取出口8の間に設けられている。
In addition, in FIG. 3, the pressure source 9 and the solenoid valve 11
The path connecting the air gauges 12 and air adjustment valves 1
3. A filter 14 is provided, and a vacuum gauge 15, a vacuum adjustment valve 16, and a valve 17 are provided in a path between the vacuum source 10 and the electromagnetic valve 11. Note that the vacuum system filter 18 is provided between the solenoid valve 11 and the pressurization/depressurization pipe outlet 8.

かかる構成の装置を用い、次のように造型およ
び減圧充填鋳造を行つた。
Using an apparatus having such a configuration, molding and vacuum filling casting were carried out as follows.

まず、鋳枠2内に非粘結砂6を装入し、電磁弁
11を加圧側に切り換えて加圧源9からのエアを
加圧・減圧槽4に送る。このエアは多孔板3を介
して非粘結砂6を流動させる。この流動状態で第
1図に示す如く消失性模型1を鋳枠2内に埋設す
る。消失性模型1が非粘結砂6に完全に埋設され
た状態を第2図に示す。第2図において、クロス
ハツチングの施された部分は、非粘結砂6が十分
充填されず、充填不良となることが多い。
First, non-caking sand 6 is charged into the flask 2, and the solenoid valve 11 is switched to the pressurizing side to send air from the pressurizing source 9 to the pressurizing/reducing tank 4. This air causes the non-caking sand 6 to flow through the perforated plate 3. In this flowing state, the fugitive model 1 is buried in the flask 2 as shown in FIG. FIG. 2 shows a state in which the fugitive model 1 is completely buried in the non-caking sand 6. In FIG. 2, the cross-hatched areas are often not filled with the non-caking sand 6, resulting in poor filling.

続いて、第3図に示すように、振動装置7を用
いて鋳枠2に振動を加えつつ、電磁弁11により
真空側に切り換えられた真空源10により、加
圧・減圧槽4を介して鋳枠2内を間欠的に減圧す
る。本実施例においては、作動サイクルとして、
減圧8秒、減圧停止4秒を60秒間繰り返した。こ
のときの鋳枠2内の圧力変化を示したのが第4図
である。
Subsequently, as shown in FIG. 3, while applying vibration to the flask 2 using the vibration device 7, the vacuum source 10, which has been switched to the vacuum side by the solenoid valve 11, sends the flask through the pressurization/depressurization tank 4. The pressure inside the flask 2 is intermittently reduced. In this embodiment, the operating cycle is as follows:
Decompression was repeated for 8 seconds and decompression stopped for 4 seconds for 60 seconds. FIG. 4 shows the pressure change inside the flask 2 at this time.

本実施例によれば、一旦減圧固化した非粘結砂
が、減圧を停止することで開放され、再び減圧さ
れるという状態が繰り返されることにより、非粘
結砂に流動性が与えられ、複雑形状をした消失性
模型の隅々にまで非粘結砂が充填される。
According to this example, the non-caking sand that has solidified under reduced pressure is released by stopping the vacuum, and is depressurized again, which is repeated, giving fluidity to the non-caking sand and creating a complex structure. Non-caking sand is filled into every corner of the evanescent model.

上記の如く造型された鋳型を用い、鋳枠上面を
消失性フイルムで覆い、鋳枠内を減圧して減圧充
填鋳造を行つた。この結果得られた鋳造品は駄肉
等が付いておらず、品質的に優れたものであつ
た。これにより、本実施例の鋳型には充填不良の
ないことおよび強度に優れていることが確かめら
れた。
Using the mold formed as described above, the upper surface of the flask was covered with a fugitive film, and the inside of the flask was depressurized to carry out vacuum filling casting. The resulting cast product was free of waste material and was of excellent quality. This confirmed that the mold of this example had no filling defects and had excellent strength.

また、本実施例においては、消失性模型埋設後
60秒で造型ができ、従来法に比べ作業効率が大幅
に向上した。
In addition, in this example, after the disappearing model is buried,
It can be molded in 60 seconds, greatly improving work efficiency compared to conventional methods.

以上、本発明の特定の実施例について説明した
が、本発明は、この実施例に限定されるものでは
なく、特許請求の範囲に記載の範囲内で種々の実
施態様が包含されるものである。
Although specific embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and includes various embodiments within the scope of the claims. .

例えば、真空源の能力不足により所定の減圧度
に達するまでに時間が掛かる場合には、第5図に
示す如く、鋳枠上面に消失性フイルム19を被覆
してもよい。
For example, if it takes time to reach a predetermined degree of reduced pressure due to insufficient capacity of the vacuum source, the upper surface of the flask may be covered with a fugitive film 19 as shown in FIG.

また、外部の加圧、減圧手段として、ボールバ
ルブ付ロータリアクチユエータと真空源を使用す
ることができ、このボールバルブ付ロータリアク
チユエータ等を使用すれば、実施例より簡単な構
造で加圧および減圧が行なえる。
In addition, a rotary actuator with a ball valve and a vacuum source can be used as external pressurization and depressurization means, and if this rotary actuator with a ball valve is used, the structure is simpler than in the embodiment. Can perform pressure and depressurization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明に係る充填鋳造法にお
ける造型方法の各工程を示す概略構成図であり、
第1図は耐熱性粒状物を流動させて消失性模型を
埋設している状態を、第2図は消失性模型を埋設
した状態を、第3図は振動を加えつつ間欠的に減
圧している状態を示しており、第4図は第3図に
おける鋳枠内の圧力変化を示すグラフ、第5図は
本発明の他の実施例を示す概略構成図である。 1……消失性模型、1a……湯口部、1b……
製品部、2……鋳枠、3……多孔板、4……加
圧・減圧槽、5……加圧・減圧手段、6……非粘
結砂(耐熱性粒状物)、7……振動装置、8……
加圧・減圧パイプ取出口、9……加圧源、10…
…真空源、11……電磁弁、12……エアゲー
ジ、13……エア調整弁、14……フイルタ、1
5……真空ゲージ、16……真空調整弁、17…
…バルブ、18……フイルタ、19……消失性フ
イルム。
1 to 3 are schematic configuration diagrams showing each step of the molding method in the filling casting method according to the present invention,
Figure 1 shows a state in which a fugitive model is buried by flowing heat-resistant granules, Figure 2 shows a state in which a fugitive model is buried, and Figure 3 shows a state in which a fugitive model is buried while applying vibration. FIG. 4 is a graph showing the pressure change in the flask in FIG. 3, and FIG. 5 is a schematic diagram showing another embodiment of the present invention. 1... Vanishing model, 1a... Sprue part, 1b...
Product department, 2... Casting flask, 3... Perforated plate, 4... Pressurization/decompression tank, 5... Pressurization/decompression means, 6... Non-caking sand (heat-resistant granules), 7... Vibration device, 8...
Pressurization/decompression pipe outlet, 9...Pressure source, 10...
... Vacuum source, 11 ... Solenoid valve, 12 ... Air gauge, 13 ... Air adjustment valve, 14 ... Filter, 1
5... Vacuum gauge, 16... Vacuum adjustment valve, 17...
...Valve, 18...Filter, 19...Erasable film.

Claims (1)

【特許請求の範囲】 1 鋳枠底部に加圧手段と減圧手段を備えた鋳枠
内に消失性模型を挿入し、耐熱性粒状物により前
記消失性模型を鋳枠内に埋設する充填鋳造法にお
ける造型方法であつて、 前記加圧手段により耐熱性粒状物を流動させた
状態で消失性模型を鋳枠内に挿入し、流動中止
後、鋳枠に振動を加えつつ前記減圧手段により間
欠的に減圧することを特徴とする充填鋳造法にお
ける造型方法。
[Scope of Claims] 1. A filling casting method in which a fugitive model is inserted into a flask equipped with a pressure means and a pressure reduction means at the bottom of the flask, and the fugitive model is embedded in the flask with heat-resistant granules. In the molding method, a fugitive model is inserted into the flask while the heat-resistant granules are fluidized by the pressurizing means, and after the flow is stopped, the molding method is intermittently applied by the depressurizing means while applying vibration to the flask. A molding method in the filling casting method, which is characterized by reducing the pressure to .
JP1662884A 1984-01-31 1984-01-31 Molding method in packed casting method Granted JPS60162553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1662884A JPS60162553A (en) 1984-01-31 1984-01-31 Molding method in packed casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1662884A JPS60162553A (en) 1984-01-31 1984-01-31 Molding method in packed casting method

Publications (2)

Publication Number Publication Date
JPS60162553A JPS60162553A (en) 1985-08-24
JPS643587B2 true JPS643587B2 (en) 1989-01-23

Family

ID=11921620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1662884A Granted JPS60162553A (en) 1984-01-31 1984-01-31 Molding method in packed casting method

Country Status (1)

Country Link
JP (1) JPS60162553A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190020653A (en) 2017-07-18 2019-03-04 니폰 고쿠도 가이하츠 가부시키가이샤 Manufacturing management system of modified soil using rotary crushing mixer

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207532A (en) * 1986-03-10 1987-09-11 Ube Ind Ltd Casting device
JPS6352741A (en) * 1986-08-22 1988-03-05 Sintokogio Ltd Shaping method of mold for full mold casting
JPH0616937B2 (en) * 1988-01-20 1994-03-09 株式会社ツチヨシ Vacuum vibration casting method
FR2647380B1 (en) * 1989-05-02 1994-03-11 Chardon Michel METHOD AND DEVICE FOR MOLDING METALS USING GASEOUS MODELS AND BINDERLESS MOLDING MATERIAL
CN103008543B (en) * 2012-11-26 2015-10-14 苏氏工业科学技术(北京)有限公司 Compressed air is utilized to provide the floating sand machine of floating sand kinetic energy
CN108971440B (en) * 2018-08-20 2019-11-15 黟县新达机械铸造有限公司 A kind of lost foam casting sandbox

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190020653A (en) 2017-07-18 2019-03-04 니폰 고쿠도 가이하츠 가부시키가이샤 Manufacturing management system of modified soil using rotary crushing mixer

Also Published As

Publication number Publication date
JPS60162553A (en) 1985-08-24

Similar Documents

Publication Publication Date Title
US3964534A (en) Casting method with a vacuum bonded dry sand core
CN101462160B (en) Full-mold casting technique of resin-bonded sand
AU594734B2 (en) Manufacture of light metal castings
US4957153A (en) Countergravity casting apparatus and method
CN100446893C (en) Lost foam foundry method for engine cylinder
JPS643587B2 (en)
CA2100831C (en) Metal casting using a mold having attached risers
US10046382B2 (en) System and method for forming a low alloy steel casting
US4958674A (en) Full mold casting process and device
CA2103087C (en) Lost foam process for casting stainless steel
JPH0442106B2 (en)
RU2619548C2 (en) Manufacturing method of casts by gasified models
JPS59166347A (en) Molding method in pack casting method
JPS59191543A (en) Molding method in vacuum investment casting method
JPH03189065A (en) Integrated structure of special steel and cast iron and manufacture thereof
JP2001179393A (en) Molding method and the mold
JPH04118154A (en) Manufacture of manhole with lost foam casting method
US4002196A (en) Method for forming an equalized layer to a shaping surface of a mold
JP2543899B2 (en) Full-mold casting method
JPH01313130A (en) Casting method using lost foam pattern
JPH02217131A (en) Lost foam pattern casting method
Anderson Lost Foam Casting
JPS63188444A (en) Expendable pattern casting method
JPS59174260A (en) Pressure casting method of cast iron casting
GB2234926A (en) Casting into a gas-permeable mould

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees