JPS59166347A - Molding method in pack casting method - Google Patents

Molding method in pack casting method

Info

Publication number
JPS59166347A
JPS59166347A JP4135783A JP4135783A JPS59166347A JP S59166347 A JPS59166347 A JP S59166347A JP 4135783 A JP4135783 A JP 4135783A JP 4135783 A JP4135783 A JP 4135783A JP S59166347 A JPS59166347 A JP S59166347A
Authority
JP
Japan
Prior art keywords
flask
casting
molding
mold
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4135783A
Other languages
Japanese (ja)
Inventor
Kuniaki Mizuno
邦明 水野
Takeyoshi Taya
猛好 田家
Harumi Ueno
治己 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP4135783A priority Critical patent/JPS59166347A/en
Publication of JPS59166347A publication Critical patent/JPS59166347A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • B22C9/046Use of patterns which are eliminated by the liquid metal in the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C15/00Moulding machines characterised by the compacting mechanism; Accessories therefor
    • B22C15/10Compacting by jarring devices only

Abstract

PURPOSE:To obtain a casting mold having good packability of a heat resistant granular material and having excellent strength in a pack casting method using a consumable casting pattern by embedding a pattern in the heat resistant granular material in a fluid state and evacuating the inside of the mold after oscillating the same. CONSTITUTION:A molding flask 1 disposed with a porous pipe 2 for pressurization and a porous pipe 3 for evacuation in a bottom part is prepd. and a prescribed amt. of molding sand 4 which is a heat resistant granular material is packed therein. The porous pipe of which the perforated part is covered with a finely meshed metallic screen is used. After the sand 4 is fluidized by opening a pressurizing source 4, a pattern 8 manufactured with a product part 6 of a circular shape having two flange parts 5 in proximity to each other together with a runner 7, etc. by using foamed polystyrene as shown in the figure is inserted and embedded in the flask 1. An oscillating table 9 is oscillated to oscillate the flask 1 after stopping the pressurization. The opening part of the flask 1 is then covered with a vinyl material which is a combustible material, then the inside of the flask 1 is evacuated through the pipe 3 and a melt of Al, etc. is charged through a sprue 11. Casting is thus accomplished.

Description

【発明の詳細な説明】 本発明は消失性模型を使用する充填鋳造法における造型
方法に関ずろ。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a molding method in a filling casting method using a fugitive model.

発泡ポリスチレン等の消失性模型を耐熱性粒状物である
#型砂中に埋設し、鋳型砂の中から模型を抜きとらない
でそのまま溶湯を鋳込む充填鋳造法は公知である。この
充填鋳造法は、(1)鋳型をヒ″型と′F型に分割して
模型を抜きとる必要がない(2)中子を使う必要がない
 (3)鋳ばりが発生しないので製品製造工数が大幅に
低減できる9等の特徴を有し、この特徴を生かして1個
別鋳物や量産鋳物の製造に広く利用されている。
A filling casting method is known in which a fugitive model such as expanded polystyrene is buried in #-shaped sand, which is a heat-resistant granular material, and molten metal is directly poured into the mold without removing the model from the molding sand. This filling casting method (1) eliminates the need to divide the mold into H-type and 'F-type and remove the models, (2) eliminates the need to use a core, and (3) manufactures products because no flash is generated. It has a characteristic of 9 etc. that can significantly reduce the number of man-hours, and by taking advantage of this characteristic, it is widely used in the production of individual castings and mass-produced castings.

かかる充填鋳造法では、模型が製作されれば。In such a filling casting method, once the model is made.

原則としていかなる形状の鋳物でも製造できるわけであ
るが、模型が鋳型妙により十分保持されていなければ精
度のよい鋳物を製造することは困難である。このため、
造型方法の良し悪しが問題となる。
In principle, castings of any shape can be manufactured, but unless the model is sufficiently held in place by the mold, it is difficult to manufacture accurate castings. For this reason,
The question is whether the molding method is good or bad.

充填鋳造法における造型方法としては次の方法がある。The following methods are available as molding methods in the filling casting method.

(6)鋳枠に予め消失性模型セ設置した後、粘結剤を含
んだ鋳型砂を充填する方法。この方法では。
(6) A method in which a fugitive model is placed in a casting flask in advance and then filled with molding sand containing a binder. in this way.

粘結剤を含んでいるため鋳型砂の流動性が悪く。Molding sand has poor fluidity because it contains a binder.

従って充填性に問題があり造型作業に多大の困難を伴っ
ていた。また、この方法では鋳型妙の回収。
Therefore, there was a problem with the filling property, and the molding work was accompanied by great difficulty. This method also allows for the recovery of molds.

再生番こも余分な工数、コストを必要とし9歩留りが悪
かった。
Recycled paper also required extra man-hours and costs, resulting in poor yields.

かかる問題点を解決するために、 CB)粘結剤を含ま
ない鋳型砂(以下、非粘結砂という)を使用し減圧造型
する方法があるー。この方法によれば前記(ハ)の場合
に比べ充填性が良くなるものの十分ではなく、また鋳型
の強度が弱いという欠点がある。
In order to solve this problem, there is a method of vacuum molding using CB) molding sand that does not contain a binder (hereinafter referred to as non-caking sand). Although this method improves the filling properties compared to the case (c) above, it is not sufficient and has the disadvantage that the strength of the mold is weak.

史に、前記+B)の改良として、第5図に示す如く(Q
鋳枠1氏部に加圧、減圧槽を設け、非粘結砂を加圧して
流動させ、模型挿入後減圧固定する造型方法がある。こ
の方法によれば、鋳型砂の充填性。
Historically, as an improvement on +B), as shown in Figure 5, (Q
There is a molding method in which pressure and vacuum tanks are provided at the end of the casting flask, non-caking sand is made to flow under pressure, and after the model is inserted, it is fixed under reduced pressure. According to this method, the filling properties of molding sand.

鋳型強度は(B)より良くなるものの、充填鋳造法以外
の鋳造法で中子を必要とするような複雑形状の鋳物を製
造する場合には、この中子に相当する部位に鋳型砂を充
填することは容易ではなく、かつ複雑形状部の強度も発
泡ポリスチレンの燃焼によって発生するガスに対し十分
なものではなかった。
Although the mold strength is better than (B), when manufacturing complex-shaped castings that require a core using a casting method other than the filling casting method, it is recommended to fill the part corresponding to the core with molding sand. It is not easy to do so, and the strength of the complexly shaped part is not sufficient to withstand the gas generated by the combustion of expanded polystyrene.

本発明はかかる問題を解決するためになされたもので、
充填性が良く鋳型強度に優れた充填鋳造法における造型
方法を提供することを目的とする。
The present invention was made to solve such problems,
The object of the present invention is to provide a molding method in a filling casting method that has good filling properties and excellent mold strength.

かかる目的は1本発明に係る充填鋳造法における造型方
法によれば、鋳枠低部に加圧手段と、M圧手噛を備え、
加圧手段により耐熱性粒状物を流動させた状態で模型を
鋳枠内に挿入、埋設し9次いで振動を加えた後鋳枠の開
口部を被覆し、減圧して鋳型を固化させることにより達
成させる。
According to the molding method in the filling casting method according to the present invention, the lower part of the flask is equipped with a pressurizing means and an M pressure hand grip,
This is achieved by inserting and burying the model into the flask with the heat-resistant granules fluidized by pressurizing means, then applying vibration, covering the opening of the flask, and solidifying the mold by reducing the pressure. let

本発明の従来技術に対する特徴は、造型工程において振
動工程を加えたことにある。
The feature of the present invention over the prior art is that a vibration process is added to the molding process.

本発明においては、加圧手段、減圧手段は第5図の如く
加圧、減圧槽として設け、でもよく、またとも番こ鋳型
内に直接設けてもよい。後者の場合は#4熱性粒状物に
吹き付ける加圧空気や減圧力が。
In the present invention, the pressurizing means and the depressurizing means may be provided as pressurizing and depressurizing tanks as shown in FIG. 5, or may be provided directly within the mold. In the case of the latter, pressurized air or vacuum pressure is blown onto the #4 thermal particles.

加圧、減圧槽を別途設けた場合に比べ直接的となり効果
が大きい。特に、減圧する場合、鋳型の減圧同化は瞬時
に行4われるため、減圧開始と同時に大きな減圧力が付
与されるのが望ましく、この点、減圧手段を鋳型内に直
接設置することがiましい。
This is more direct and more effective than when pressurization and depressurization tanks are provided separately. In particular, when reducing the pressure, assimilation of the reduced pressure in the mold occurs instantaneously, so it is desirable to apply a large reduced pressure at the same time as the start of reducing the pressure.In this respect, it is preferable to install the pressure reducing means directly inside the mold. .

直接設置する場合は加圧手段は2例えば加圧ポンプ等の
加圧源と、加圧源に接続され圧縮空気を吹き出す多孔管
とから構成される。
In the case of direct installation, the pressurizing means consists of two pressurizing sources, such as a pressurizing pump, and a porous pipe connected to the pressurizing source and blowing out compressed air.

よt:、減圧手段は9例えば真空ポンプ等の減圧かjと
、間圧源に接続され吸気用の孔を多数穿設しtこ多孔管
とから構成される。
The pressure reducing means is composed of a pressure reducing device such as a vacuum pump, and a perforated pipe connected to an interpressure source and having a number of holes for intake.

加圧手段と減圧手段は、ともに加圧力・減圧力が1l1
4熱性粒状物に均−艮作用するよう、鋳型底部全体に亘
って配設される。また、多孔管の孔は。
Both the pressure means and the pressure reduction means have a pressure of 1l1.
4. Disposed over the entire bottom of the mold so as to act evenly on the thermal granules. Also, the pores of a porous pipe.

耐熱性粒状物が入り込まない程度の径とする必要がある
。なお、多孔管の孔径が大きい場合には。
The diameter must be large enough to prevent heat-resistant particles from entering. In addition, when the pore diameter of the porous pipe is large.

目の4.IIIかい網で覆うことにより目づまりおよび
耐熱性粒状物の混入を防止することができる。
Eye 4. By covering with III mesh, clogging and mixing of heat-resistant particles can be prevented.

本発明においては、振動を加えることにより耐熱性粒状
物の充填性を格段に良くすることができる。特に、薄肉
部、複雑形状部に耐熱性粒状物を充填するのに優れてお
り、従来に比べ充填性が良くなるばかりでなく、鋳型全
体の充填密度があがり鋳型の強度を高めることもできる
In the present invention, the filling properties of the heat-resistant granules can be significantly improved by applying vibration. In particular, it is excellent for filling thin-walled parts and complex-shaped parts with heat-resistant granules, which not only improves filling performance compared to conventional methods, but also increases the packing density of the entire mold and increases the strength of the mold.

この振動は、模型を埋設した状態で薄肉部、複雑形状部
に十分耐熱性粒状物が充填されろ方向に付与されるのが
望ましい。但し、普通はヒ下、左右方向の一方から加え
れば十分である。加えられろ振動の大きさ、サイクル、
付与時間は模型の大きさ、形状等を考慮して適宜法めら
れるべきものである。
It is desirable that this vibration be applied in the direction in which the thin-walled portions and complex-shaped portions are sufficiently filled with heat-resistant granules while the model is buried. However, it is usually sufficient to add it from either the left or right direction. The magnitude of the vibration applied, the cycle,
The application time should be determined as appropriate, taking into account the size, shape, etc. of the model.

本発明において、模型材料としては一般に用いられてい
る発泡ポリスチレン、発泡ポリエチレン。
In the present invention, foamed polystyrene and foamed polyethylene are commonly used as model materials.

発泡ポリウレタン等を用いることができるっまた。耐熱
性粒状物としては、鋳型砂、ショット等を使用すること
ができる。
Foamed polyurethane etc. can also be used. As the heat-resistant granules, molding sand, shot, etc. can be used.

次に1本発明の実施例を図面を参考にして説明する。Next, an embodiment of the present invention will be described with reference to the drawings.

実施例 第1図は本発明における減圧工程を示した断面図、第2
図は第1図のI+−1図(lfi L 、耐熱性粒状物
は除外)、第3図は本発明に使用した多孔管を示す正面
図である。
Example Figure 1 is a sectional view showing the pressure reduction process in the present invention, Figure 2 is a cross-sectional view showing the pressure reduction process in the present invention.
The figure is the I+-1 diagram of FIG. 1 (lfi L, heat-resistant granules are excluded), and FIG. 3 is a front view showing the perforated tube used in the present invention.

まず、鋳枠1底部に加圧用多孔管2と減圧用多孔管3を
第2図の如く配設した鋳枠1を準備し。
First, a flask 1 is prepared in which a porous tube for pressurization 2 and a porous tube for depressurization 3 are arranged at the bottom of the flask as shown in FIG.

この鋳枠1内ic所定量の耐熱性粒状物である鋳型砂4
を装填した。多孔管は第3図に示すように。
Inside this casting flask 1, a predetermined amount of molding sand 4, which is a heat-resistant granular material, is used.
was loaded. The perforated tube is as shown in Figure 3.

多孔部5を目の細かい金網で被覆したものを用いtこ。The porous portion 5 is covered with a fine wire mesh.

次いで9図示しない加圧源を開き、鋳型砂4を流動させ
た。その後、第1図に示す如(、近接した2個のフラン
ジ部5を有する円筒形状をした製品部6を、揚道7−8
ととも番こ発泡ポリスチレンで製作した模型8を鋳枠1
内に挿入、埋設した。
Next, a pressure source 9 (not shown) was opened, and the molding sand 4 was made to flow. Thereafter, as shown in FIG.
Model 8 made of Totomo Banko foamed polystyrene is placed in casting flask 1.
It was inserted and buried inside.

加圧停止後、振動テーブル9を振動させ、鋳枠1に振動
を加えた。このときの振動条件は、振幅5 mm 、サ
イクル3500 rpm +振動付与時間15分。
After the pressurization was stopped, the vibration table 9 was vibrated to apply vibration to the flask 1. The vibration conditions at this time were: amplitude 5 mm, cycle 3500 rpm + vibration application time 15 minutes.

振動加速度0.45 Gであった。The vibration acceleration was 0.45G.

次いで、−枠1の開口部を可燃性材料である。Then - the opening of the frame 1 is made of combustible material.

ビニールで覆った。この状態で1図示しない真空ポンプ
を作動させ、減圧用多孔管3を介して鋳枠1内を減圧し
た。
covered with vinyl. In this state, a vacuum pump (not shown) was operated to reduce the pressure inside the flask 1 via the pressure reducing porous pipe 3.

この間圧状態のまま、アルミ溶場を湯口部11から注ぐ
ことにより揚道等の付いた製品を鋳造した。型バラシ後
、堰折りを行ない所定形状の製品を得た。
During this period, aluminum melt was poured from the sprue 11 while maintaining the pressure to cast a product with a lift channel and the like. After breaking out the molds, weir folding was performed to obtain a product with a predetermined shape.

製品を観察してみると1円筒本体だけでなくフランジの
部分も精度よく出来ており、フランジ部の間にも鋳型砂
が十分充填され9強度も十分であったことが確認された
When observing the product, it was confirmed that not only the cylindrical body but also the flange part was made with good precision, molding sand was sufficiently filled between the flange parts, and the strength was sufficient.

以ヒ述べた如く1本発明によれば、従来の工程に振動工
程を加えたことにより、従来十分耐熱性粒状物が充填さ
れなかった部位番こまで耐熱性粒状物が充填され、かつ
、全体に充填密度が大きくなったtこめ、充填鋳造法で
健全な複雑形状鋳物を得ることがOJ能となった。
As described below, according to the present invention, by adding a vibration process to the conventional process, the heat-resistant granules can be filled into parts that were not sufficiently filled with the heat-resistant granules in the past, and the whole As the filling density increased, it became possible to obtain sound castings with complex shapes using the filling casting method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における減圧工程を示した断面図、第2
図は第1図の]−υ図、第3図は本兄明に使用した多孔
管を示す正面図、第4図と第5図は従来方法を示す断面
図である。 l・・・・鋳 枠 2 ・・加圧用多孔管 3 ・・・減圧用多孔管 4・・・・鋳型砂(#4熱性粒状物) 5 ・・・・フランジ部 6・・・・・製品部 7・・・・・場道部 8・・・・・模 型 9 ・・・・・・・振動テーブル 10・・・・・・ビニール 11・・・湯口部 12・・・加圧・減圧槽 13・・・・鋳  型 出  願  人 トヨタ自動車株式会社
Figure 1 is a sectional view showing the pressure reduction process in the present invention, Figure 2
The figures are the ]-υ diagram of FIG. 1, FIG. 3 is a front view showing the perforated tube used in the present invention, and FIGS. 4 and 5 are sectional views showing the conventional method. l...Casting flask 2...Porous pipe for pressurization 3...Porous pipe for pressure reduction 4...Molding sand (#4 thermal granules) 5...Flange part 6...Product Part 7...Door part 8...Model 9...Vibration table 10...Vinyl 11...Gate part 12...Pressure/depressurization Tank 13... Mold application person Toyota Motor Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)  +#枠底部に加圧手段と減圧手段を備えた鋳
枠内に消失性模型を挿入し、耐熱性粒状物により該消失
性模型を鋳枠内に埋設する充填鋳造法における造型方法
であって、加圧手段により耐熱性粒状物を流動させる工
程と、流動状態で消失性模型を鋳枠内に挿入する工程と
、流動中止後鋳枠を振動させる工程と、振動申出後鋳枠
の開口部を被覆し減圧手段により鋳枠内を減圧固化させ
る工程とからなることを特徴とする充填鋳造法における
造型方法。
(1) +# A molding method in the filling casting method in which a fugitive model is inserted into a flask equipped with a pressure means and a decompression means at the bottom of the flask, and the fugitive model is embedded in the flask with heat-resistant granules. , a step of fluidizing the heat-resistant granules by a pressurizing means, a step of inserting a fugitive model into the flask in a fluidized state, a step of vibrating the flask after stopping the flow, and a step of vibrating the flask after applying the vibration. A molding method in a filling casting method, comprising the steps of: covering the opening of the mold and solidifying the inside of the flask under reduced pressure using a depressurizing means.
JP4135783A 1983-03-11 1983-03-11 Molding method in pack casting method Pending JPS59166347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4135783A JPS59166347A (en) 1983-03-11 1983-03-11 Molding method in pack casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4135783A JPS59166347A (en) 1983-03-11 1983-03-11 Molding method in pack casting method

Publications (1)

Publication Number Publication Date
JPS59166347A true JPS59166347A (en) 1984-09-19

Family

ID=12606240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4135783A Pending JPS59166347A (en) 1983-03-11 1983-03-11 Molding method in pack casting method

Country Status (1)

Country Link
JP (1) JPS59166347A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182947A (en) * 1984-09-28 1986-04-26 Toyoda Autom Loom Works Ltd Casting method using consumable pattern
JPH01186240A (en) * 1988-01-20 1989-07-25 Tsuchiyoshi Sangyo Shokai:Kk Reduced pressure vibration casting method
CN106270382A (en) * 2016-08-12 2017-01-04 宁波全力机械模具有限公司 A kind of electric machine casing water jacket core mould

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182947A (en) * 1984-09-28 1986-04-26 Toyoda Autom Loom Works Ltd Casting method using consumable pattern
JPH01186240A (en) * 1988-01-20 1989-07-25 Tsuchiyoshi Sangyo Shokai:Kk Reduced pressure vibration casting method
CN106270382A (en) * 2016-08-12 2017-01-04 宁波全力机械模具有限公司 A kind of electric machine casing water jacket core mould

Similar Documents

Publication Publication Date Title
US3964534A (en) Casting method with a vacuum bonded dry sand core
CN101462160B (en) Full-mold casting technique of resin-bonded sand
AU594734B2 (en) Manufacture of light metal castings
CN105834362A (en) Evaporative pattern casting method and device for ultrasound vibration resin self-hardening sand
EP0585598B1 (en) Metal casting using a mold having attached risers
EP0395852B1 (en) Countergravity casting apparatus and method
JP2665876B2 (en) Casting method of low carbon stainless steel parts using high vacuum mouth stow process
JPH0442106B2 (en)
JPS59166347A (en) Molding method in pack casting method
US4971131A (en) Countergravity casting using particulate filled vacuum chambers
JPS60162553A (en) Molding method in packed casting method
JPS6048256B2 (en) Mold making method
JP2934000B2 (en) Manufacturing method of manhole frame by loss casting method
JPH02104461A (en) Vacuum anti-gravity type casting device and method for casting thin part
JPS59191543A (en) Molding method in vacuum investment casting method
JPH01313130A (en) Casting method using lost foam pattern
JPH02217131A (en) Lost foam pattern casting method
Anderson Lost Foam Casting
JPS6434571A (en) Full mold casting method
GB2234926A (en) Casting into a gas-permeable mould
JPH01273644A (en) Method for casting and lost foam pattern
Donahue et al. Lost foam casting
JPH08117924A (en) Backup mold device for casting mold and its production
JPH0230116Y2 (en)
JPS63188444A (en) Expendable pattern casting method