JPS643374B2 - - Google Patents

Info

Publication number
JPS643374B2
JPS643374B2 JP2997780A JP2997780A JPS643374B2 JP S643374 B2 JPS643374 B2 JP S643374B2 JP 2997780 A JP2997780 A JP 2997780A JP 2997780 A JP2997780 A JP 2997780A JP S643374 B2 JPS643374 B2 JP S643374B2
Authority
JP
Japan
Prior art keywords
signal
polarity
analog
circuit
digital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2997780A
Other languages
Japanese (ja)
Other versions
JPS56126317A (en
Inventor
Kazuo Ogasawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP2997780A priority Critical patent/JPS56126317A/en
Publication of JPS56126317A publication Critical patent/JPS56126317A/en
Publication of JPS643374B2 publication Critical patent/JPS643374B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0602Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
    • H03M1/0604Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic at one point, i.e. by adjusting a single reference value, e.g. bias or gain error
    • H03M1/0607Offset or drift compensation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Description

【発明の詳細な説明】 本発明は極性切替回路に関するものであり、特
に単極性デジタル、アナログ変換器(以下、単極
性DACと略す)を用いて逐次近似技術を使用し
たアナログ・デジタル変換器(以下、ADCと略
す)を簡単な構成で精度の優れたものとして実現
するに適した極性切替回路を提供するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polarity switching circuit, and more particularly to an analog-to-digital converter (hereinafter abbreviated as unipolar DAC) using a successive approximation technique using a unipolar digital to analog converter (hereinafter abbreviated as unipolar DAC). The present invention provides a polarity switching circuit suitable for realizing an ADC (hereinafter abbreviated as ADC) with a simple configuration and excellent accuracy.

近年、デジタル技術の長足の進歩に伴ない、従
来アナログ量として情報処理された分野において
も、ADCを用いてアナログ量をデジタル量に変
換した後、情報処理する傾向が強まつている。例
えば、従来電圧測定においては、電磁誘導の原理
を用いたアナログ電圧計等が用いられていたが、
このかわりにデジタル電圧計を使用することが普
及している。これはある電圧(アナログ量)をデ
ジタル電圧計内に収納したADCでデジタル信号
に変換し、このデジタル信号により表示部を駆動
して、十進数表示することにより測定を容易にし
ている一例である。
In recent years, with the rapid progress of digital technology, even in fields where information has traditionally been processed as analog quantities, there is a growing tendency to use ADCs to convert analog quantities into digital quantities and then process the information. For example, conventional voltage measurements have used analog voltmeters that use the principle of electromagnetic induction.
The use of digital voltmeters instead is widespread. This is an example of converting a certain voltage (analog quantity) into a digital signal using an ADC housed in a digital voltmeter, driving the display with this digital signal, and displaying it in decimal numbers to make measurement easier. .

ADCの変換方式としては、一般に積分形、逐
次近似形、並列形、縦続形等が実用化されてい
る。ADCにどの変換方式を用いるかの選択は、
ADCに必要とされる速度および精度で大別され
る。
Generally, integral type, successive approximation type, parallel type, cascade type, etc. are used as ADC conversion methods. Choosing which conversion method to use for the ADC is
They are broadly classified according to the speed and accuracy required for ADCs.

通常、高精度・低速形には積分形が多く用いら
れ、高速形には並列形、縦続形等が用いられ、逐
次近似形は比較的中精度・中速形に用いられてい
る。
Generally, the integral type is often used for high-accuracy/low-speed types, the parallel type, cascade type, etc. are used for high-speed types, and the successive approximation type is used for relatively medium-accuracy/medium-speed types.

従来、逐次近似形ADCは第1図の如き構成と
なるのが一般的である。第1図はアナログ入力端
子1と、アナログ入力信号をサンプル・ホールド
するためのサンプル・ホールド回路(以下、SH
回路と略す)2と、サンプル・ホールドされたア
ナログ入力信号を、その電気的極性により反転す
るための極性切替回路3、電圧比較器4、単極性
DAC6を制御するためのデジタル制御回路5よ
り構成されたADCの一例である。
Conventionally, a successive approximation type ADC generally has a configuration as shown in FIG. Figure 1 shows analog input terminal 1 and the sample and hold circuit (hereinafter referred to as SH) for sampling and holding the analog input signal.
circuit) 2, a polarity switching circuit 3 for inverting the sampled and held analog input signal according to its electrical polarity, a voltage comparator 4, and a unipolar circuit.
This is an example of an ADC composed of a digital control circuit 5 for controlling a DAC 6.

逐次近似形ADCは単極性DACの出力と、サン
プル・ホールドされたアナログ信号を電圧比較器
4で判定し、判定結果によりデジタル制御回路5
より単極性DAC6を制御することにより、アナ
ログ量をデジタル信号に変換するものである。
The successive approximation type ADC judges the output of the unipolar DAC and the sampled and held analog signal by a voltage comparator 4, and based on the judgment result, the digital control circuit 5
By controlling the unipolar DAC 6, an analog quantity is converted into a digital signal.

第2図に、従来用いられていた極性切替回路と
SH回路を示す。第2図は第1図におけるSH回路
2および極性切替回路3をスイツチ23,24,
31,32,33おび34を用いて実現した一例
である。端子21,22,26および27とサン
プル・ホールド容量25とスイツチ23および2
4で構成されたSH回路2は、スイツチ23およ
び24がONのとき“サンプル状態”となり入力
アナログ信号をサンプル・ホールド容量25に印
加する。次に、スイツチ23および24がOFF
となると“ホールド状態”となり、スイツチ23
および24がOFFになる直前の入力アナログ信
号を保持する。
Figure 2 shows a conventional polarity switching circuit and
Showing the SH circuit. FIG. 2 shows the SH circuit 2 and polarity switching circuit 3 in FIG.
This is an example realized using 31, 32, 33 and 34. terminals 21, 22, 26 and 27, sample and hold capacitance 25 and switches 23 and 2
When the switches 23 and 24 are ON, the SH circuit 2 is in a "sampling state" and applies an input analog signal to the sample/hold capacitor 25. Next, switches 23 and 24 are turned OFF.
When this happens, it becomes a “hold state” and the switch 23
and 24 hold the input analog signal immediately before turning OFF.

端子26,27,35および36とスイツチ3
1,32,33および34で構成された極性切替
回路3である。保持された入力アナログ信号はそ
の極性により、スイツチ31および33をONと
しスイツチ32および34をOFFにする状態と、
前記状態のスイツチを全て逆にした状態により、
保持された入力アナログ信号の極性を切替える動
作を行う。
Terminals 26, 27, 35 and 36 and switch 3
This is a polarity switching circuit 3 composed of 1, 32, 33 and 34. Depending on the polarity of the input analog signal held, switches 31 and 33 are turned on and switches 32 and 34 are turned off.
By reversing all the switches in the above state,
Performs an operation to switch the polarity of the input analog signal held.

第2図における線分37、端子38および容量
39は、極性切替回路3に接続される負荷(例え
ば第1図における電圧比較器4等)の等価回路を
示したものである。
A line segment 37, a terminal 38, and a capacitor 39 in FIG. 2 show an equivalent circuit of a load (for example, the voltage comparator 4 in FIG. 1) connected to the polarity switching circuit 3.

第2図の動作例を以下に説明する。端子21に
入力アナログ信号VINを印加し、端子22は接地
する。端子35は電圧比較器4に接続され、端子
36は正出力DAC6の出力端子に接続される。
An example of the operation shown in FIG. 2 will be explained below. An input analog signal V IN is applied to the terminal 21, and the terminal 22 is grounded. The terminal 35 is connected to the voltage comparator 4, and the terminal 36 is connected to the output terminal of the positive output DAC 6.

入力アナログ信号VINは、スイツチ31,3
2,33および34がOFF、スイツチ23およ
び24がONでサンプル・ホールド容量25に印
加されスイツチ23および24がOFFで入力ア
ナログ信号VINはサンプル・ホールド容量25に
保持される。次に、正出力DAC6の出力電圧を
接地しスイツチ31および33をONする。電圧
比較器4の入力端子に保持された入力アナログ信
号が印加され、比較結果をデジタル制御回路5に
入力する。ここでアナログ入力信号VINが正極性
と負極性で極性切替回路3の動作が異なる。
The input analog signal V IN is the switch 31, 3
When the switches 2, 33 and 34 are OFF and the switches 23 and 24 are ON, the input analog signal V IN is applied to the sample-and-hold capacitor 25. When the switches 23 and 24 are OFF, the input analog signal V IN is held in the sample-and-hold capacitor 25. Next, the output voltage of the positive output DAC 6 is grounded and the switches 31 and 33 are turned on. The input analog signal held is applied to the input terminal of the voltage comparator 4, and the comparison result is input to the digital control circuit 5. Here, the operation of the polarity switching circuit 3 differs depending on whether the analog input signal V IN has positive polarity or negative polarity.

VIN>0 のとき スイツチ31,33OFF スイツチ32,34ON VIN<0 のとき スイツチ31,33ON スイツチ32,34OFF すなわち、アナログ入力信号が負の場合は、極
性判定後、スイツチ21,32,33および34
は状態が変更せず、アナログ入力信号が正極性の
場合はスイツチの状態を全て逆にすることにより
アナログ入力信号の極性を反転することができ
る。この極性反転は、正出力DACの出力電圧
VDACが正のため、電圧比較器4の判定レベルが
接地点となつているため、アナログ入力信号VIN
が正極性の場合には極性切替回路で極性を反転
し、電圧比較器4の入力電圧VCを式(1)の形にす
る必要があるためである。
When V IN > 0, switches 31, 33 OFF Switches 32, 34 ON When V IN < 0, switches 31, 33 ON Switches 32, 34 OFF In other words, if the analog input signal is negative, after determining the polarity, switches 21, 32, 33 and 34
If the state of the switch does not change and the analog input signal has positive polarity, the polarity of the analog input signal can be inverted by reversing the states of all the switches. This polarity reversal is the output voltage of the positive output DAC.
Since V DAC is positive, the judgment level of voltage comparator 4 is the ground point, so the analog input signal V IN
This is because when the polarity is positive, the polarity must be reversed by the polarity switching circuit and the input voltage V C of the voltage comparator 4 must be in the form of equation (1).

VC=−VIN+VDAC ……(1) すなわち、式(1)においてVC=0となる正出力
DACの出力電圧がVINと等しくなるように逐次近
似技術でデジタル制御回路5で正出力DACを制
御し、VC=0となる制御信号が入力アナログ信
号VINのデジタル量となる。
V C = -V IN +V DAC ...(1) In other words, the positive output where V C = 0 in equation (1)
The digital control circuit 5 controls the positive output DAC using successive approximation techniques so that the output voltage of the DAC becomes equal to V IN , and the control signal that makes V C =0 becomes the digital amount of the input analog signal V IN .

従来用いられていた極性切替回路には以下に説
明する欠点を有していた。第2図におけるサンプ
ル・ホールド容量25の容量値をCHとし、容量
39の容量値をCSとする。サンプル・ホールド容
量25に蓄積される電荷QHは式(2)で与えられる QH=CH・VIN ……(2) 次に、スイツチ31および33がONとなつた
ときの電荷は電荷保存則が成り立つため式(2−
1),(2−2)および(2−3)で表わせる。
Conventionally used polarity switching circuits have the following drawbacks. In FIG. 2, the capacitance value of the sample/hold capacitor 25 is designated as CH , and the capacitance value of the capacitor 39 is designated as C S. The charge Q H accumulated in the sample/hold capacitor 25 is given by equation (2) Q H =C H・V IN ...(2) Next, the charge when the switches 31 and 33 are turned on is Since the conservation law holds, the formula (2-
1), (2-2) and (2-3).

QH=Q′H+QS ……(2−1) Q′H=CHV′IN ……(2−2) QS=CSV′IN ……(2−3) ここで、電荷Q′Hは容量CHに蓄積された電荷、
電荷QSは容量CSに蓄積された電荷をそれぞれ示
す。入力アナログ信号VINの極性が負の場合は、
スイツチ31および33はONのままのため正出
力DAC6の出力電圧VDACがVINと等しくなるとき
には、容量39の電荷QSは零となり、電荷の保
存則より、容量39の電荷QSは全て容量CHにも
どるため、容量CHの両端の電圧は入力アナログ
電圧VINに等しくなる。
Q H = Q' H + Q S ...... (2-1) Q' H = C H V' IN ...... (2-2) Q S = C S V' IN ...... (2-3) Here, the charge Q′ H is the charge accumulated in the capacitor C H ,
The charge Q S indicates the charge accumulated in the capacitor C S . If the polarity of the input analog signal V IN is negative,
Since the switches 31 and 33 remain ON, when the output voltage V DAC of the positive output DAC 6 becomes equal to V IN , the charge Q S of the capacitor 39 becomes zero, and according to the law of conservation of charge, the charge Q S of the capacitor 39 becomes all Since it returns to capacitor C H , the voltage across capacitor C H becomes equal to the input analog voltage V IN .

一方、入力アナログ電圧VINが正極性のときは
スイツチ31および33はOFFとなり、スイツ
チ32および34がONとなる。
On the other hand, when the input analog voltage V IN has positive polarity, switches 31 and 33 are turned off, and switches 32 and 34 are turned on.

このときの各容量に蓄積されるそれぞれの電荷
は、式(2−1),(2−2)および(2−3)を
参照して式(3−1),(3−2)および(3−
3)で表わせる。
The respective charges accumulated in each capacitance at this time are calculated by referring to formulas (2-1), (2-2) and (2-3), and formulas (3-1), (3-2) and ( 3-
It can be expressed as 3).

−Q′H+QS=−Q″H−Q′S ……(3−1) Q″H=V″INCH ……(3−2) Q′S=V″INCS ……(3−3) 入力アナログ電圧が負極性と同様に正出力
DAC6の出力電圧VDACが動作し式(1)が成り立つ
ときを考えると、式(3−1)より −Q′H+QS=−Q″H ……(4) 式(4)が成り立つ。式(4)に式(2)、(2−1),(2−
2),(2−3)および(3−2)を代入整理する
と式(5)となる。
−Q′ H +Q S =−Q″ H −Q′ S ……(3-1) Q″ H =V″ IN C H ……(3-2) Q′ S =V″ IN C S ……( 3-3) Positive output as well as negative polarity of input analog voltage
Considering the case where the output voltage V DAC of the DAC 6 operates and the equation (1) holds true, from the equation (3-1), -Q' H +Q S =-Q'' H (4) The equation (4) holds. Expression (2), (2-1), (2-
By substituting and rearranging 2), (2-3), and (3-2), equation (5) is obtained.

V″IN=CH−CS/CH+CSVIN ……(5) 式(5)より、入力アナログ電圧が正極のときは誤
差が大きくなることがわかる。この誤差はADC
において精度劣化の原因となるものであり好まし
いものではない。
V″ IN = CH−CS/CH+CSV IN ...(5) From equation (5), it can be seen that the error increases when the input analog voltage is positive.
This is not preferable because it causes deterioration in accuracy.

本発明はかかる欠点を改善し、精度劣化を大幅
に改善するものであり、本発明を用いれば簡単な
構成で精度の優れた極性切替回路が実現できる。
The present invention improves these drawbacks and significantly improves the deterioration of accuracy. By using the present invention, a polarity switching circuit with excellent accuracy can be realized with a simple configuration.

以下に実施例を用いて本発明を詳細に説明す
る。
The present invention will be explained in detail below using Examples.

第3図は本発明の実施例の説明図である。第3
図において、第2図と同じ個所は同じ番号を用い
ている。第3図と第2図の相異点は容量39の放
電用スイツチ41を追加したことにある。
FIG. 3 is an explanatory diagram of an embodiment of the present invention. Third
In the figure, the same numbers are used for the same parts as in FIG. 2. The difference between FIG. 3 and FIG. 2 is that a switch 41 for discharging the capacitor 39 is added.

この放電用スイツチ41は、スイツチ31およ
び33がONとなり入力アナログ信号の極性判定
後、入力アナログ信号の正負にかかわらず、スイ
ツチ31および34をOFFとし、放電用スイツ
チ41をONさせて、容量39に蓄積された電荷
QSを放電させることにある。電荷QSが十分に放
電後、入力アナログ信号の極性により、スイツチ
31,32,33,34の制御を前記した条件で
行うことになる。
After the switches 31 and 33 are turned on and the polarity of the input analog signal is determined, the discharge switch 41 turns off the switches 31 and 34 regardless of whether the input analog signal is positive or negative, and turns on the discharge switch 41 to reduce the capacitance 39. charge accumulated in
The purpose is to discharge QS . After the charge Q S is sufficiently discharged, the switches 31, 32, 33, and 34 are controlled under the conditions described above depending on the polarity of the input analog signal.

以上説明したスイツチ動作を行ない、電圧比較
器6の入力電圧VCが零となるときのサンプル・
ホールド容量CHの両端の電圧V′INは式(2−1),
(2−2)および(2−3)から容易に求まり式
(6−1)および(6−2)で与えられる。
When the switch operation described above is performed and the input voltage V C of the voltage comparator 6 becomes zero, the sample
The voltage V′ IN across the hold capacitor C H is expressed by the formula (2-1),
It is easily determined from (2-2) and (2-3) and given by formulas (6-1) and (6-2).

VIN>o V′IN=CH/CH+CSVIN ……(6−1) VIN<o V′IN=CH/CH+CSVIN ……(6−2) 式(6−1)および(6−2)より判るように
本発明を用いれば、誤差が少なく、また入力アナ
ログ電圧の極性により誤差が異ならない優れた極
性切替回路が実現でき、特性の優れたADCが構
成可能である。
V IN > o V' IN = CH/CH + CSV IN ...... (6-1) V IN < o V' IN = CH/CH + CSV IN ... (6-2) Equations (6-1) and (6-2) As can be seen, by using the present invention, it is possible to realize an excellent polarity switching circuit with small errors and whose errors do not vary depending on the polarity of the input analog voltage, and to construct an ADC with excellent characteristics.

なお、本実施例においては単極性DACとして
正出力DACを用いて説明したが、これは正出力
DACに限定されることはなく、負出力DACを用
いても、スイツチ31,32,33および34の
制御を逆にするだけで実現できるのはいうまでも
ない。
Note that in this example, a positive output DAC was used as a unipolar DAC, but this is a positive output DAC.
Needless to say, the present invention is not limited to a DAC, and can be implemented by simply reversing the control of the switches 31, 32, 33, and 34 even if a negative output DAC is used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は逐次近似形ADCの一般的構成図、第
2図は従来の極性切替回路の説明図、第3図は本
発明の実施例の説明図をそれぞれ示す。 1……アナログ入力端子、2……サンプル・ホ
ールド回路、3……極性切替回路、4……電圧比
較器、5……デジタル制御回路、6……単極性
DAC、21,22,26,27,35,36,
38……端子、23,24,31,32,33,
34,41……スイツチ、37……線分、25…
…サンプル・ホールド容量、39……容量。
FIG. 1 is a general configuration diagram of a successive approximation type ADC, FIG. 2 is an explanatory diagram of a conventional polarity switching circuit, and FIG. 3 is an explanatory diagram of an embodiment of the present invention. 1...Analog input terminal, 2...Sample/hold circuit, 3...Polarity switching circuit, 4...Voltage comparator, 5...Digital control circuit, 6...Unipolar
DAC, 21, 22, 26, 27, 35, 36,
38...Terminal, 23, 24, 31, 32, 33,
34, 41...Switch, 37...Line segment, 25...
...sample/hold capacity, 39...capacity.

Claims (1)

【特許請求の範囲】[Claims] 1 アナログ入力信号を入力する入力端子と、該
入力端子に接続されて前記アナログ入力信号を保
持するサンプルホールド回路と、デジタル信号に
応じたアナログ信号を逐次出力する単極性デジタ
ル・アナログ変換器と、比較信号を接地電位と比
較する比較回路と、前記サンプルホールド回路に
保持された保持信号の電圧を前記比較回路の出力
にもとづいて前記アナログ信号の極性とは反対の
極性となるように切り換えるとともに、該切り換
えられた保持信号に前記アナログ信号を加えて前
記比較回路に前記比較信号として与える極性切替
回路と、前記比較回路の出力にもとづいて前記切
り換えられた保持信号と逐次出力される前記アナ
ログ信号とが等しくなつた時の前記デジタル信号
をデジタル出力信号として出力する手段とを含
み、前記極性切替回路は前記保持信号の電圧を第
1および第2の入力端に受け、前記比較回路の出
力にもとづいて、前記第1および第2の入力端を
前記単極性デジタルアナログ変換器からの前記ア
ナログ信号を受ける入力部および前記比較回路に
前記比較信号を出力する出力部に前記保持信号の
電圧が前記アナログ信号の極性とは反対の極性と
なるように選択して切り換えて接続しており、更
に前記出力部と前記接地電位に保持された回路点
との間にスイツチを有し、該スイツチは前記極性
切替回路の選択的切り換えに先立つて閉状態と
し、その後該スイツチを開状態としてから前記極
性切替回路が前記保持信号の極性の前記切り換え
を行うことを特徴とするアナログ・デジタル変換
器。
1. An input terminal that inputs an analog input signal, a sample hold circuit that is connected to the input terminal and holds the analog input signal, and a unipolar digital-to-analog converter that sequentially outputs an analog signal according to the digital signal. a comparison circuit that compares the comparison signal with a ground potential; and switching the voltage of the held signal held in the sample and hold circuit so that it has a polarity opposite to the polarity of the analog signal based on the output of the comparison circuit; a polarity switching circuit that adds the analog signal to the switched holding signal and supplies the result to the comparison circuit as the comparison signal; and a polarity switching circuit that sequentially outputs the switched holding signal and the analog signal based on the output of the comparison circuit. means for outputting the digital signal as a digital output signal when the polarity switching circuit becomes equal, the polarity switching circuit receives the voltage of the holding signal at first and second input terminals, and receives the voltage of the holding signal based on the output of the comparison circuit. The first and second input terminals are connected to an input section that receives the analog signal from the unipolar digital-to-analog converter and an output section that outputs the comparison signal to the comparison circuit. The polarity is selected and switched so that the polarity is opposite to the polarity of the signal, and the switch is connected between the output section and the circuit point held at the ground potential, and the switch is connected to the polarity of the signal. An analog-to-digital converter, characterized in that the polarity switching circuit performs the switching of the polarity of the holding signal after the switching circuit is brought into a closed state prior to selective switching, and the switch is then opened.
JP2997780A 1980-03-10 1980-03-10 Polarity switching circuit Granted JPS56126317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2997780A JPS56126317A (en) 1980-03-10 1980-03-10 Polarity switching circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2997780A JPS56126317A (en) 1980-03-10 1980-03-10 Polarity switching circuit

Publications (2)

Publication Number Publication Date
JPS56126317A JPS56126317A (en) 1981-10-03
JPS643374B2 true JPS643374B2 (en) 1989-01-20

Family

ID=12291012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2997780A Granted JPS56126317A (en) 1980-03-10 1980-03-10 Polarity switching circuit

Country Status (1)

Country Link
JP (1) JPS56126317A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0338971U (en) * 1989-08-25 1991-04-15
JPH04359291A (en) * 1991-06-05 1992-12-11 Sharp Corp Picture signal processing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639715A (en) * 1984-02-13 1987-01-27 Intersil, Inc. Flash analog to digital converter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420647A (en) * 1977-07-18 1979-02-16 Hitachi Ltd Integral analog-to-digital converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0338971U (en) * 1989-08-25 1991-04-15
JPH04359291A (en) * 1991-06-05 1992-12-11 Sharp Corp Picture signal processing device

Also Published As

Publication number Publication date
JPS56126317A (en) 1981-10-03

Similar Documents

Publication Publication Date Title
US6967611B2 (en) Optimized reference voltage generation using switched capacitor scaling for data converters
US6072355A (en) Bootstrapped CMOS sample and hold circuitry and method
US8362939B2 (en) Switched-capacitor pipeline ADC stage
JPH01133423A (en) Re-distribution type a/d converter and method of conerting analog signal into digital signal
US4641130A (en) Analog-to-digital converter with scaling of input signal
US11031949B2 (en) Analog-to-digital converter, sensor arrangement and method for analog-to-digital conversion
KR102656345B1 (en) Method and apparatus for enabling wide input common mode range in SAR ADC without additional active circuitry
US5206650A (en) Charge-controlled integrating successive-approximation analog-to-digital converter
JP3709640B2 (en) Voltage comparison circuit and analog / digital conversion circuit using the same
JPS643374B2 (en)
US7075475B1 (en) Correlated double sampling modulation system with reduced latency of reference to input
US4517551A (en) Digital to analog converter circuit
US8077070B2 (en) Charge-domain pipelined charge-redistribution analog-to-digital converter
JPS6184116A (en) Method and circuit for controlling bias of digital-analog converter
US10476449B2 (en) Switched capacitor circuit to make amount of change in reference voltage even regardless of input level
JPS6217899B2 (en)
CN110311681B (en) N-bit successive approximation type ADC and signal output control method thereof
US11533060B2 (en) Multipath sampling circuits
JPH09275345A (en) D/a converter
GB2223137A (en) Analogue to digital convertors
JP2844617B2 (en) C array type A / D converter
JPS63262921A (en) A/d conversion circuit
CN118282406A (en) Successive approximation type analog-to-digital converter, voltage detection circuit and switching power supply
JPS62277821A (en) Charge balanced type analog-digital converter
JP2004514365A (en) Capacitor switching pipeline analog-to-digital converter