JPS643295B2 - - Google Patents

Info

Publication number
JPS643295B2
JPS643295B2 JP11462181A JP11462181A JPS643295B2 JP S643295 B2 JPS643295 B2 JP S643295B2 JP 11462181 A JP11462181 A JP 11462181A JP 11462181 A JP11462181 A JP 11462181A JP S643295 B2 JPS643295 B2 JP S643295B2
Authority
JP
Japan
Prior art keywords
cable
plastic
water
rubber
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11462181A
Other languages
Japanese (ja)
Other versions
JPS5816412A (en
Inventor
Tadayuki Uematsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP11462181A priority Critical patent/JPS5816412A/en
Publication of JPS5816412A publication Critical patent/JPS5816412A/en
Publication of JPS643295B2 publication Critical patent/JPS643295B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はゴム、プラスチツク絶縁電力ケーブル
の製造方法の改良に関するものである。 一般にゴム、プラスチツク電力ケーブルは導体
上に必要に応じて内部半導電層を設け、その外側
にゴム、プラスチツク絶縁体層及び外部導電層を
順次押出被覆した後、更にその外側に銅テープを
巻付けて金属遮蔽層及びポリ塩化ビニル、ポリエ
チレンなどによる保護シースを順次設けて製造さ
れている。 然しながらこのような製法で製造されたゴム、
プラスチツク絶縁電力ケーブルにおいては、押出
成形したゴム、プラスチツク絶縁被覆材料中にそ
の製造過程で生じた僅のガス及び水分が、そのま
ま残存する。即ち押出被覆した絶縁被覆材料を架
橋工程または冷却工程を行う際に、該被覆層中に
ガス及び水分が浸透し蓄積されるものである。又
ケーブルの使用中に保護シースから雨水等の水分
が浸透し、この水分がケーブルコア内の絶縁体層
に到達する。このように絶縁体層中に水分が存在
するといわゆる水トリーを発生せしめ、これが基
因して電力ケーブルの絶縁性能を著しく低下せし
めるものであつた。 本発明はかかる現状に鑑み鋭意研究を進めて来
た結果ケーブル製造時における残留水分を容易に
除去でき、且つ得られたケーブルは使用中に外部
から水分の浸入するのを積極的に防止しうるな
ど、極めて実用的な効果をもつゴム、プラスチツ
ク絶縁電力ケーブルの製造方法を見出したもので
ある。即ち本発明方法は導体上に必要に応じて内
部半導電層を形成し、その外側に押出法によりゴ
ムまたはプラスチツク絶縁体層を設けたケーブル
コアの外側所望位置に金属テープの少くとも片面
に例えばカーボンブラツクを混入したポリエチレ
ンテープなどのプラスチツクテープをラミネート
したラミネートテープを設け、該プラスチツク面
をコア側として縦沿て包被して遮水層を形成し、
ついでシースを設けたケーブルを50℃以上通常50
〜120℃において数時間〜数10時間加熱せしめる
ことによりケーブルコア内即ち絶縁体層、内、
外、半導電層内の水分を容易かつ速やかに除去す
ることが出来ることを見いだしたことによるもの
である。 本発明方法において上記の如くケーブルを50℃
以上に加熱する理由は、ゴム、プラスチツク絶縁
電力ケーブルのケーブルコアを形成する絶縁体
層、内外半導体層に含まれる水分が50℃以上の加
熱によつて急激に低下することを見出したもので
ある。即ち50℃以上に加熱すると絶縁体層、内外
半導電層に含有しうる飽和水分量が顕著に低下す
ること並に結晶化が進むものと推定される。なお
加熱温度が高い程、加熱時間が短くできる。従つ
て50℃未満の加熱では殆んど効果がない。 このようにケーブルコアー中の水分及びガスな
どが速やかに除去し得る理由は、金属はゴム、プ
ラスチツクに比して数百倍も優れた熱伝導率を有
するため、ケーブルコアの近傍に金属テープ例え
ば鉛、アルミ、銅テープまたは金属テープとプラ
スチツクテープとのラミネートテープを縦沿えし
て密封し、シースを設けた電力ケーブルをシース
の外側から加熱することによりケーブルコア内部
の水分が容易に気化し温度の低い導体間隙を通過
してケーブル端より外部に気散するためと考え
る。 この遮水層を設ける位置についてはケーブルコ
アの外側であれば何れの処でも、例えば外部導電
層の外側、保護シートの内面に設けてもよい。 なおケーブルの加熱媒体としては作業性が容易
な点から水蒸気又は水等を使用できる。なぜなら
本発明方法にて製造したケーブルにおいては上記
遮水層の存在によりケーブルコア内に浸入するこ
とがないためである。 次に本発明の実施例について説明する。 実施例 1 66kV1×250SQのCVケーブル400mを製造する
に際し、常法通りにて製造したケーブルコアの外
側に外部半導電層を設け、その外側に導電性PE
(50μ)/Pb(50μ)/導電性PE(50μ)のラミネー
トテープを縦沿えして遮水層を形成し、その外側
に銅テープによる遮水層及びポリ塩化ビニルによ
る保護シースを設けたのち、このゴム、プラスチ
ツク絶縁電力ケーブルを80゜の温水中に6時間浸
漬して加熱を行つた。 比較例 1 実施例1における遮水層を設けず、その他はす
べて実施例1と全く同様にして66kV1×250SQケ
ーブルを製造した。 実施例 2 常法通りにて66kV1×250SQCVケーブルを製
造するに際し、ポリ塩化ビニルによる保護シース
の内面にPVC(100μ)/Pb(50μ)/PVC(100μ)
のラミネートテープを縦沿えして遮水層を形成し
ポリ塩化ビニルと一体化させたゴム、プラスチツ
ク絶縁電力ケーブルを、50℃で2日間蒸気加熱を
行つた。 比較例 2 実施例2における遮水層を設けず、その他はす
べて実施例2と同様にして66kV1×250SQケーブ
ルをえた。 比較例 3 常法に従い66kV1×250sQCEケーブルを長さ
400mを製造するに際し、ポリエチレン(PE)に
よる保護シースの内面にPE(100μ)/Pb
(50μ)/PE(100μ)のラミネートテープを縦沿え
して遮水層を形成し、ポリエチレン保護シースと
一体化させた。 比較例 4 66kV1×250sQCEケーブルを長さ400mを製造
するに際し、ケーブルコアを60℃×48時間加熱乾
燥させた後、1.2φの銅線遮蔽層を40本らせん巻き
し、押えテープ(厚さ0.4mm)を巻きつけ、その
後PE(100μ)/Pb(50μ)/PE(100μ)のラミネ
ートテープを縦沿えして遮水層を形成し、ポリエ
チレン保護シースと一体化きせた。 而して本発明ケーブル及び比較例ケーブルにつ
いての水分量を測定して比較した結果は第1表に
示す通りである。
The present invention relates to an improved method of manufacturing rubber, plastic insulated power cables. In general, rubber or plastic power cables have an internal semiconductive layer on the conductor as necessary, and then coat the outside with rubber, a plastic insulator layer, and an external conductive layer by extrusion, and then wrap a copper tape around the outside. It is manufactured by sequentially providing a metal shielding layer and a protective sheath made of polyvinyl chloride, polyethylene, etc. However, rubber manufactured using this method,
In plastic insulated power cables, small amounts of gas and moisture generated during the manufacturing process remain in the extruded rubber and plastic insulation coating materials. That is, when an extrusion-coated insulating coating material is subjected to a crosslinking process or a cooling process, gas and moisture permeate into the coating layer and accumulate therein. Also, during use of the cable, moisture such as rainwater permeates through the protective sheath and reaches the insulator layer within the cable core. The presence of moisture in the insulator layer causes so-called water trees, which significantly reduces the insulation performance of the power cable. The present invention has been developed as a result of intensive research in view of the current situation, and as a result, it is possible to easily remove residual moisture during cable manufacturing, and the resulting cable can actively prevent moisture from entering from the outside during use. We have discovered a method for manufacturing rubber and plastic insulated power cables that has extremely practical effects. That is, the method of the present invention involves forming an internal semiconducting layer on the conductor as necessary, and applying a metal tape on at least one side of the cable core at a desired position on the outside of the cable core, which is provided with a rubber or plastic insulating layer by extrusion on the outside thereof. A laminate tape made by laminating a plastic tape such as a polyethylene tape mixed with carbon black is provided, and the plastic surface is used as the core side and is wrapped vertically to form a water-blocking layer.
The sheathed cable is then heated to 50°C or higher, usually 50°C.
By heating at ~120℃ for several hours to several tens of hours, the inside of the cable core, that is, the inside of the insulator layer,
In addition, the present invention was based on the discovery that moisture within a semiconducting layer can be easily and quickly removed. In the method of the present invention, the cable is heated to 50°C as described above.
The reason for heating above is that the moisture contained in the insulator layer and inner and outer semiconductor layers that form the cable core of rubber and plastic insulated power cables rapidly decreases when heated above 50℃. . That is, it is presumed that when heated to 50° C. or higher, the amount of saturated water that can be contained in the insulating layer and the inner and outer semiconducting layers decreases markedly, and crystallization progresses. Note that the higher the heating temperature, the shorter the heating time can be. Therefore, heating below 50°C has almost no effect. The reason why moisture and gas in the cable core can be removed quickly is that metal has a thermal conductivity hundreds of times better than rubber or plastic. By sealing a sheathed power cable with lead, aluminum, or copper tape or a laminated tape of metal tape and plastic tape placed vertically and heating it from the outside of the sheath, the moisture inside the cable core evaporates easily and the temperature rises. This is thought to be due to the fact that it passes through the low conductor gap and diffuses to the outside from the cable end. The water-blocking layer may be provided anywhere on the outside of the cable core, for example, on the outside of the external conductive layer or on the inside of the protective sheet. Note that steam, water, or the like can be used as the heating medium for the cable, since it is easy to work with. This is because, in the cable manufactured by the method of the present invention, water does not penetrate into the cable core due to the presence of the water-blocking layer. Next, examples of the present invention will be described. Example 1 When manufacturing 400m of 66kV1×250SQ CV cable, an external semiconductive layer was provided on the outside of the cable core manufactured by the usual method, and a conductive PE layer was placed on the outside of the cable core.
(50μ) / Pb (50μ) / conductive PE (50μ) laminate tape is placed vertically to form a water-shielding layer, and a water-shielding layer made of copper tape and a protective sheath made of polyvinyl chloride are provided on the outside. The rubber/plastic insulated power cable was heated by immersing it in warm water at 80° for 6 hours. Comparative Example 1 A 66kV1×250SQ cable was manufactured in the same manner as in Example 1 except that the water-blocking layer in Example 1 was not provided. Example 2 When manufacturing a 66kV1×250SQCV cable in the usual manner, PVC (100μ)/Pb (50μ)/PVC (100μ) was applied to the inner surface of the polyvinyl chloride protective sheath.
Rubber/plastic insulated power cables made by vertically lining laminate tape to form a water-blocking layer and integrated with polyvinyl chloride were steam-heated at 50°C for two days. Comparative Example 2 A 66kV1×250SQ cable was obtained in the same manner as in Example 2 except that the water-blocking layer in Example 2 was not provided. Comparative example 3 66kV1×250s QCE cable according to the usual method
When manufacturing 400m, PE (100μ)/Pb was added to the inner surface of the polyethylene (PE) protective sheath.
(50μ) / PE (100μ) laminate tape was placed vertically to form a water-blocking layer, which was integrated with a polyethylene protective sheath. Comparative Example 4 When manufacturing a 66kV1 x 250s QCE cable with a length of 400m, the cable core was heated and dried at 60℃ for 48 hours, then 40 1.2φ copper wire shielding layers were spirally wound, and a pressure tape (thickness 0.4 mm), and then a PE (100 μ)/Pb (50 μ)/PE (100 μ) laminate tape was placed lengthwise to form a water-blocking layer, which was then integrated with a polyethylene protective sheath. Table 1 shows the results of measuring and comparing the moisture content of the cable of the present invention and the cable of the comparative example.

【表】 上表より明らかの如く本発明電力ケーブルに比
して比較例電力ケーブルはそのケーブルコアの水
分量が多い。又比較例4においてはケーブルコア
加熱後に遮水層を施したものである。従つて外部
半導電層の水分が多くなつている。又外部半導電
層は導電性カーボンを含有し、吸湿性であるため
ケーブルコアの加熱から遮水処理までの保管中に
若干吸湿し水分量が増大したものであるし加熱直
後の外部半導電層の水分量は0.03〜0.05wt%程度
である。 以上詳述した如く本発明方法によればケーブル
コアー中の水分量が極めて少なくしかも遮水層の
存在により外部から水分が浸入することなく、優
れた遮水効果を有するためケーブルコアーの内部
に水トリー等を発生せしめることがない。従つて
長期間に亘つて優れた絶縁性能を発揮するゴム、
プラスチツク絶縁電力ケーブルが得られる等顕著
な効果を有する。
[Table] As is clear from the above table, the comparative power cable has a higher moisture content in its cable core than the power cable of the present invention. In Comparative Example 4, a water-blocking layer was applied after heating the cable core. Therefore, the moisture content in the outer semiconducting layer is increasing. In addition, the outer semiconductive layer contains conductive carbon and is hygroscopic, so it absorbs some moisture during storage from the heating of the cable core to the water-shielding treatment, increasing its moisture content. The water content is about 0.03 to 0.05 wt%. As detailed above, according to the method of the present invention, the amount of water in the cable core is extremely small, and the presence of the water-blocking layer prevents water from entering from the outside, resulting in an excellent water-blocking effect. No trees etc. are generated. Therefore, rubber exhibits excellent insulation performance over a long period of time.
It has remarkable effects such as the ability to obtain plastic insulated power cables.

Claims (1)

【特許請求の範囲】[Claims] 1 導体上に必要に応じて内部半導電層を形成
し、その外側にゴムまたはプラスチツク絶縁体層
を設けたケーブルコアの外側所望位置に金属テー
プの少くとも片面にプラスチツクテープをラミネ
ートしたラミネートテープを、該プラスチツク面
をコア側として縦沿え包被して遮水層を形成し、
ついでシースを設けたゴム、プラスチツク絶縁電
力ケーブルを50℃以上に一定時間加熱せしめるこ
とを特徴とするゴム、プラスチツク絶縁電力ケー
ブルの製造方法。
1. Laminate tape with plastic tape laminated on at least one side of the metal tape at a desired position on the outside of the cable core, which has an internal semiconducting layer formed on the conductor as necessary and a rubber or plastic insulating layer on the outside. , forming a water-blocking layer by vertically covering the plastic surface with the core side as the core side;
A method for manufacturing a rubber or plastic insulated power cable, which comprises heating the rubber or plastic insulated power cable provided with a sheath to 50°C or higher for a certain period of time.
JP11462181A 1981-07-22 1981-07-22 Method of producing rubber or plastic insulated power cable Granted JPS5816412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11462181A JPS5816412A (en) 1981-07-22 1981-07-22 Method of producing rubber or plastic insulated power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11462181A JPS5816412A (en) 1981-07-22 1981-07-22 Method of producing rubber or plastic insulated power cable

Publications (2)

Publication Number Publication Date
JPS5816412A JPS5816412A (en) 1983-01-31
JPS643295B2 true JPS643295B2 (en) 1989-01-20

Family

ID=14642433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11462181A Granted JPS5816412A (en) 1981-07-22 1981-07-22 Method of producing rubber or plastic insulated power cable

Country Status (1)

Country Link
JP (1) JPS5816412A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6098291U (en) * 1983-12-12 1985-07-04 日立電線株式会社 heating element
JP2739431B2 (en) * 1994-04-13 1998-04-15 清司 細川 Joining structure of long materials in wooden buildings

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497715A (en) * 1972-05-10 1974-01-23

Also Published As

Publication number Publication date
JPS5816412A (en) 1983-01-31

Similar Documents

Publication Publication Date Title
US3935042A (en) Method of manufacturing corona-resistant ethylene-propylene rubber insulated power cable, and the product thereof
FI89840B (en) AV MATERIALKOMPOSITION BESTAOENDE BAND FOER ISOLERING AV ELKABLAR OCH EN ELKABEL ISOLERAD MED DETTA BAND
JPH11339577A (en) Manufacture of water-proof cable and water-proof cable obtained thereby
JPS643295B2 (en)
JPS6023854Y2 (en) Rubber, plastic insulated power cable
GB1584501A (en) Electric power cables
JPS6035930Y2 (en) Waterproof structure of non-sheathed cable
JPS6116572Y2 (en)
JPH02253513A (en) Bridge polyolefine insulating cable
US2229967A (en) Method of manufacturing electric
US1282208A (en) Method of manufacturing electical cables.
JPH08339720A (en) Cross-linked polyethylene insulating cable and its manufacture
JPS5854519A (en) Method of preventing conductor from discoloring
JPS6116570Y2 (en)
JPS6210899Y2 (en)
JPS6119455Y2 (en)
JPS5832176Y2 (en) power cable
JPH01258311A (en) Rubber-plastic insulated power cable
JPH0342572Y2 (en)
JPS629613Y2 (en)
JPS6018095B2 (en) Manufacturing method of cross-linked polyethylene cable
JPH059777Y2 (en)
JPH0127223Y2 (en)
JPS6213295Y2 (en)
JPS6282613A (en) Manufacture of moisture-proof rubber and plastic insulated power cable