JPS643240B2 - - Google Patents

Info

Publication number
JPS643240B2
JPS643240B2 JP10437980A JP10437980A JPS643240B2 JP S643240 B2 JPS643240 B2 JP S643240B2 JP 10437980 A JP10437980 A JP 10437980A JP 10437980 A JP10437980 A JP 10437980A JP S643240 B2 JPS643240 B2 JP S643240B2
Authority
JP
Japan
Prior art keywords
oil
hydrocracking
heavy oil
sulfur
heavy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10437980A
Other languages
Japanese (ja)
Other versions
JPS5730790A (en
Inventor
Kenji Nitsuta
Masataka Kameyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Original Assignee
Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai filed Critical Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Priority to JP10437980A priority Critical patent/JPS5730790A/en
Publication of JPS5730790A publication Critical patent/JPS5730790A/en
Publication of JPS643240B2 publication Critical patent/JPS643240B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 本発明は重質油の水素化分解法に関し、詳しく
は低硫黄重質油の水素化分解率を向上させる方法
に関する。 一般に、原油を精製する場合の各石油製品の得
率は原油の性状によつて決まつている。ところ
で、この原油の性状については、近時重質原油の
比率が高まつており、このため重質油の生産が過
剰となつている。 そこで、このような重質油を分解して灯油や軽
油などの軽質油を生産することが要望されてい
る。重質油の分解による軽質化には、熱分解法、
接触分解法および水素化分解法があるが、重質油
を無駄なく軽質油に転化できるという点で水素化
分解法が最もすぐれている。 しかしながら、重質油の分解による軽質化の手
段として水素化分解法を適用する場合、原油精製
における重質油得率が高く、分解による軽質化が
強く望まれている硫黄含有率0.5重量%以下の重
質油は、その水素化分解率が低いという問題があ
る。 したがつて、本発明の目的はこのような低硫黄
重質油の水素化分解率を向上させることにある。 本発明は、水素化分解に用いる原料重質油とし
て、硫黄含有率0.5重量%以下の重質油と硫黄含
有率2重量%以上の重質油との混合物を使用する
ことを特徴とする重質油の水素化分解法を提供す
るものである。すなわち、本発明の方法では低硫
黄重質油と高硫黄重質油との混合物を水素化分解
の原料として使用するのである。硫黄含有率0.5
重量%以下の低硫黄重質油と硫黄含有率2重量%
以上の高硫黄重質油との混合比率は、希望する軽
質油の得率などを考慮して適宜決定すればよい
が、一般的には高硫黄重質油を10乃至60重量%、
好ましくは20乃至50重量%とするのが適当であ
る。 ここで低硫黄重質油とは、ミナス原油、大慶原
油、リビア原油、アルジユナ原油などから得られ
る重油、重質軽油、減圧軽油、減圧残渣油、脱瀝
油などを意味し、他方、高硫黄重質油とは、クエ
ート原油、イラニアンヘビー原油、カフジ原油、
アサバスカ原油、メキシコ原油、ベネズエラ原油
などから得られる重油等を意味する。 本発明における原料油の水素化分解に際しては
特別な条件を設定する必要はなく、通常の水素化
分解条件を適用すればよい。すなわち、触媒とし
ては酸化ニツケル―酸化タングステン系や酸化ニ
ツケル―酸化モリブデン系などの触媒成分をアル
ミナ,シリカアルミナ,ゼオライトなどに担持さ
せたものを用い、反応温度350〜450℃、反応圧力
100〜200Kg/cm2、水素ガス供給量約2000Nm3/Kl
油の条件下で水素化分解反応を行なう。 本発明を実施するに際しては、原料重質油とし
て同じタイプのもの、たとえば低硫黄原油の常圧
蒸留残渣油に対して高硫黄原油の常圧蒸留残渣油
を混合して用いてもよいし、また異なるタイプの
もの、たとえば低硫黄原油の減圧蒸留残渣油に対
して高硫黄原油の減圧蒸留による減圧軽油を混合
して用いることもできる。後者の場合、残留炭素
分が多くて軽質化することが困難な減圧蒸留残渣
油の軽質化処理が容易になるとともに、低硫黄原
油からの減圧軽油を脱硫することなく流動接触分
解用の原料などに振向けることができるので好都
合である。 上記の如く、低硫黄重質油と高硫黄重質油の混
合物を原料重質油として用いて水素化分解を行な
うことにより、それぞれの重質油を単独で水素化
分解する場合の水素化分解率の相加平均を大幅に
上廻る高い水素化分解率が得られるという予想外
の効果を達成することができる。このような相乗
効果は、特に灯油留分、軽油留分を主とする液収
率が大となるという好ましい結果をもたらす。 とりわけ、低硫黄重質油は、その原油の常圧蒸
留による精製時に重質油得率が高く、分解による
軽質化が強く望まれていたものであり、しかも高
硫黄重質油に比し水素化分解率が低いので、該低
硫黄重質油の水素化分解率を引上げることの意義
は非常に大きい。水素化分解率の向上がたとえ数
%であつても、その処理量が大であることから経
済的効果はきわめて大きいものである。 さらに、本発明による水素化分解により得られ
る製品の品質面でも、低硫黄重質油を単独で水素
化分解した場合の製品と比較して流動点の低いも
のが得られ、特に寒冷時の製品取扱いが容易にな
るという利点がある。また、製品中の硫黄分、窒
素分、残留炭素分、粘度等についてもすぐれた性
状のものが得られる。 次に、本発明の実施例を示す。 実施例 1〜3 水素化分解用原料油として、硫黄含有量0.14重
量%、比重0.889の低硫黄重質油(大慶原油の常
圧蒸留残渣油)と硫黄含有量3.9重量%、比重
0.956の高硫黄重質油(クエート原油の常圧蒸留
残渣油)とを重量%で前者:後者が75:25,50:
50,25:75となるように混合した3種類のものを
用いた。 原料油を流通式反応装置に導入し、アモルフア
ス担体上にNiO―WO3成分を担持させた触媒と
接触させ、温度430℃、圧力135Kg/cm2(ゲージ)
の条件下で水素化分解反応を行なつた。水素化分
解率および灯油と軽油を合せた中間留分得率を第
1図に示す。また、得られた中間留分の性状につ
いては第1表に示す。 比較例 1,2 水素化分解用原料油として、実施例1〜3で用
いた低硫黄重質油と高硫黄重質油をそれぞれ単独
で使用したこと以外は実施例1〜3と同様にして
水素化分解反応を行なつた。結果を第1図および
第1表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for hydrocracking heavy oil, and more particularly to a method for improving the hydrocracking rate of low-sulfur heavy oil. Generally, the yield of each petroleum product when refining crude oil is determined by the properties of the crude oil. By the way, regarding the properties of this crude oil, the ratio of heavy crude oil has been increasing recently, and as a result, the production of heavy oil has become excessive. Therefore, there is a demand for producing light oils such as kerosene and diesel oil by decomposing such heavy oils. To lighten heavy oil by cracking it, pyrolysis method,
There are catalytic cracking methods and hydrocracking methods, but the hydrocracking method is the best in that it can convert heavy oil into light oil without waste. However, when applying the hydrocracking method as a means of lightening heavy oil by cracking, the yield of heavy oil in crude oil refining is high, and the sulfur content is 0.5% by weight or less, which is strongly desired to lighten by cracking. The problem with heavy oil is that its hydrocracking rate is low. Therefore, an object of the present invention is to improve the hydrocracking rate of such low-sulfur heavy oil. The present invention is characterized in that a mixture of heavy oil with a sulfur content of 0.5% by weight or less and heavy oil with a sulfur content of 2% by weight or more is used as the feedstock heavy oil used for hydrocracking. The present invention provides a method for hydrocracking crude oil. That is, in the method of the present invention, a mixture of low-sulfur heavy oil and high-sulfur heavy oil is used as a raw material for hydrocracking. Sulfur content 0.5
Low sulfur heavy oil with a sulfur content of less than 2% by weight
The mixing ratio with the above-mentioned high-sulfur heavy oil may be determined as appropriate considering the desired yield of light oil, etc., but in general, 10 to 60% by weight of high-sulfur heavy oil,
A suitable amount is preferably 20 to 50% by weight. Here, low-sulfur heavy oil means heavy oil obtained from Minas crude oil, Daqing crude oil, Libyan crude oil, Arjiyuna crude oil, etc., heavy gas oil, vacuum gas oil, vacuum residual oil, deasphalted oil, etc. Heavy oil includes Kuwaiti crude oil, Iranian heavy crude oil, Khafji crude oil,
Heavy oil obtained from Athabasca crude oil, Mexican crude oil, Venezuelan crude oil, etc. There is no need to set special conditions when hydrocracking the feedstock oil in the present invention, and ordinary hydrocracking conditions may be applied. That is, the catalyst used was a catalytic component such as nickel oxide-tungsten oxide or nickel oxide-molybdenum oxide supported on alumina, silica alumina, zeolite, etc., and the reaction temperature was 350 to 450°C and the reaction pressure was
100-200Kg/cm 2 , hydrogen gas supply amount approximately 2000Nm 3 /Kl
The hydrocracking reaction is carried out under oil conditions. When carrying out the present invention, the same type of raw material heavy oil may be used, for example, atmospheric distillation residual oil of high sulfur crude oil may be mixed with atmospheric distillation residual oil of low sulfur crude oil, It is also possible to use a mixture of different types, for example vacuum gas oil obtained by vacuum distillation of high sulfur crude oil and vacuum distillation residual oil of low sulfur crude oil. In the latter case, it will be easier to lighten vacuum distillation residue oil, which is difficult to lighten due to its high residual carbon content, and it will also be possible to lighten vacuum gas oil from low-sulfur crude oil, such as a raw material for fluid catalytic cracking, without desulfurizing it. This is convenient because it can be directed to As mentioned above, by performing hydrocracking using a mixture of low-sulfur heavy oil and high-sulfur heavy oil as the feedstock heavy oil, hydrocracking is performed when each heavy oil is hydrocracking individually. The unexpected effect of obtaining a high hydrocracking rate that significantly exceeds the arithmetic average of the rates can be achieved. Such a synergistic effect brings about a favorable result in that the yield of liquids mainly composed of kerosene fractions and gas oil fractions becomes high. In particular, low-sulfur heavy oil has a high yield of heavy oil when refined by atmospheric distillation of crude oil, and it has been strongly desired to make it lighter through cracking. Since the hydrocracking rate is low, it is of great significance to increase the hydrocracking rate of the low-sulfur heavy oil. Even if the hydrogenolysis rate is improved by a few percent, the economic effect is extremely large because the amount of treatment is large. Furthermore, in terms of the quality of the product obtained by hydrocracking according to the present invention, a product with a lower pour point can be obtained compared to a product obtained by hydrocracking low-sulfur heavy oil alone. This has the advantage of being easier to handle. Furthermore, products with excellent properties such as sulfur content, nitrogen content, residual carbon content, and viscosity can be obtained. Next, examples of the present invention will be shown. Examples 1 to 3 As feedstock oil for hydrocracking, low sulfur heavy oil with a sulfur content of 0.14% by weight and specific gravity of 0.889 (atmospheric distillation residue oil of Daqing crude oil) and a sulfur content of 3.9% by weight and specific gravity were used.
0.956 high sulfur heavy oil (atmospheric distillation residue oil of Kuwaiti crude oil) and the former in weight percent: the latter in 75:25, 50:
Three types were used, mixed at a ratio of 50:50 and 25:75. The raw material oil was introduced into a flow reactor and brought into contact with a catalyst consisting of three NiO-WO components supported on an amorphous support, at a temperature of 430℃ and a pressure of 135Kg/cm 2 (gauge).
The hydrogenolysis reaction was carried out under the following conditions. Figure 1 shows the hydrocracking rate and the combined middle distillate yield of kerosene and gas oil. Further, the properties of the obtained middle distillate are shown in Table 1. Comparative Examples 1 and 2 The same procedure as in Examples 1 to 3 was carried out except that the low sulfur heavy oil and the high sulfur heavy oil used in Examples 1 to 3 were each used alone as the feedstock for hydrocracking. A hydrogenolysis reaction was carried out. The results are shown in FIG. 1 and Table 1. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原料油の水素化分解率および中間留分
得率を示すグラフである。
FIG. 1 is a graph showing the hydrocracking rate and middle distillate yield of feedstock oil.

Claims (1)

【特許請求の範囲】 1 水素化分解に用いる原料重質油として、硫黄
含有率0.5重量%以下の重質油と硫黄含有率2重
量%以上の重質油との混合物を使用することを特
徴とする重質油の水素化分解法。 2 硫黄含有率2重量%以上の重質油の混合比率
が10乃至60重量%である混合物を用いる特許請求
の範囲第1項記載の方法。
[Claims] 1. A mixture of heavy oil with a sulfur content of 0.5% by weight or less and heavy oil with a sulfur content of 2% by weight or more is used as the raw material heavy oil used for hydrocracking. A method for hydrocracking heavy oil. 2. The method according to claim 1, which uses a mixture in which the mixing ratio of heavy oil having a sulfur content of 2% by weight or more is 10 to 60% by weight.
JP10437980A 1980-07-31 1980-07-31 Hydrocracking of heavy oil Granted JPS5730790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10437980A JPS5730790A (en) 1980-07-31 1980-07-31 Hydrocracking of heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10437980A JPS5730790A (en) 1980-07-31 1980-07-31 Hydrocracking of heavy oil

Publications (2)

Publication Number Publication Date
JPS5730790A JPS5730790A (en) 1982-02-19
JPS643240B2 true JPS643240B2 (en) 1989-01-20

Family

ID=14379132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10437980A Granted JPS5730790A (en) 1980-07-31 1980-07-31 Hydrocracking of heavy oil

Country Status (1)

Country Link
JP (1) JPS5730790A (en)

Also Published As

Publication number Publication date
JPS5730790A (en) 1982-02-19

Similar Documents

Publication Publication Date Title
US4006076A (en) Process for the production of low-sulfur-content hydrocarbon mixtures
JP3270545B2 (en) Hydrocarbon reforming method
US4443325A (en) Conversion of residua to premium products via thermal treatment and coking
JP6643426B2 (en) Combined hydrotreating method to produce high quality fuel from medium and low temperature coal tar
EP0090437B1 (en) Process for the production of hydrocarbon oil distillates
US3862899A (en) Process for the production of synthesis gas and clean fuels
EP0082555B1 (en) Process for the production of hydrocarbon oil distillates
GB1560148A (en) Process for the conversion of hydrocarbons
JP3098030B2 (en) How to improve the quality of residual oil
US4120778A (en) Process for the conversion of hydrocarbons in atmospheric crude residue
KR100980324B1 (en) A process for reducing sulfur and olefin contents in gasoline
EP0416010B1 (en) Process for hydrotreating olefinic distillate
KR101009469B1 (en) A hydrogenation process for removing mercaptan from gasoline
CN114437792B (en) Method and device for processing residual oil
TW201024400A (en) A combination process for improved hydrotreating and catalytic cracking of hydrocarbon oils
US5314612A (en) Fluid catalytic cracking process for producing low emissions fuels
CA1326464C (en) Heavy oil cracking process
EP0400743B1 (en) Heavy oil conversion process
US2574449A (en) Process of catalytic desulfurization of naphthenic petroleum hydrocarbons followed by catalytic cracking
WO2000069992A1 (en) Process for treating crude oil
US3907667A (en) Process for producing a lubricating oil from a residue feed
JPS643240B2 (en)
JP2863326B2 (en) Crude oil refining method
JPS6154838B2 (en)
CN113563921B (en) Method and system for producing low-sulfur petroleum coke