JPS643073Y2 - - Google Patents

Info

Publication number
JPS643073Y2
JPS643073Y2 JP17660283U JP17660283U JPS643073Y2 JP S643073 Y2 JPS643073 Y2 JP S643073Y2 JP 17660283 U JP17660283 U JP 17660283U JP 17660283 U JP17660283 U JP 17660283U JP S643073 Y2 JPS643073 Y2 JP S643073Y2
Authority
JP
Japan
Prior art keywords
sample
flow path
carrier gas
tube
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17660283U
Other languages
Japanese (ja)
Other versions
JPS6083957U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17660283U priority Critical patent/JPS6083957U/en
Publication of JPS6083957U publication Critical patent/JPS6083957U/en
Application granted granted Critical
Publication of JPS643073Y2 publication Critical patent/JPS643073Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【考案の詳細な説明】 本考案は、ガスクロマトグラフ等の分析装置に
導入する試料ガスを濃縮する試料濃縮装置に関
し、更に詳述すると、濃縮試料と等価の標準試料
を簡単に分析装置に導入でき、分析装置の校正が
簡単に行なえるようにした試料濃縮装置に関す
る。
[Detailed description of the invention] The present invention relates to a sample concentrator that concentrates sample gas introduced into an analysis device such as a gas chromatograph. , relates to a sample concentrator that allows easy calibration of an analyzer.

一般に、大気中のppbオーダーといつた微量成
分をガスクロマトグラフ等の分析装置により分析
する場合、試料ガス中の微量成分をその濃度が
ppmオーダーとなるように濃縮し、この濃縮した
被検試料を分析装置に導入する必要があり、従来
よりこのような試料ガスを濃縮する装置として、
例えば第1図に示す如き構成のものが使用されて
いる。即ち、第1図に示す試料濃縮装置におい
て、Aは六方バルブ、Bは四方バルブ、C,C′は
それぞれ試料ガス流路、D,D′はそれぞれキヤ
リヤガス流路、E,E′はそれぞれ連絡流路、Fは
試料濃縮流路、Gはこの試料濃縮流路Fに介装さ
れた試料濃縮管、Hは上記他方のキヤリヤガス流
路D′下流側に配設された分析装置で、この濃縮
装置においては、上記六方バルブA及び四方バル
ブBの動作により、上記試料濃縮流路Fが試料ガ
ス流路C,C′及びキヤリヤガス流路D,D′にそれ
ぞれ切換可能に連結されるものである。上記濃縮
装置を用いて試料ガス中の微量成分を濃縮する場
合は、六方バルブA及び四方バルブBをそれぞれ
実線で示す流路とし、試料ガスを図中矢印X方向
に流通させ、試料ガスを試料ガス流路Cから試料
濃縮流路Fを経て試料ガス流路C′に流すと共に、
試料ガスが試料濃縮流路Fを流れる際にこの濃縮
流路Fに介装された試料濃縮管Gにより試料ガス
中の微量成分を濃縮する。また、この濃縮した被
検試料を分析装置Hに導入する場合は、六方バル
ブAを点線で示す流路に切り換え、キヤリヤガス
を図中矢印Y方向に流通させ、キヤリヤガスをキ
ヤリヤガス流路Dから試料濃縮流路Fを経てキヤ
リヤガス流路D′に流し、これにより試料濃縮管
G内の濃縮試料を加熱等の脱着手段により分析装
置Hに導入するものである。上記濃縮装置は、試
料ガス中の微量成分の濃縮及びその分析装置Hへ
の導入を簡単に行なうことができ、非常に便利な
ものであるが、この濃縮装置により標準試料を分
析装置Hに導入して計器の校正を行なう場合、従
来は六方バルブAを実線で示す流路とし、一方の
キヤリヤガス流路D上流側に連結した試料導入部
Iからマイクロシリンジ等を用いて標準試料をキ
ヤリヤガス流路Dに導入し、標準試料をキヤリヤ
ガスによりキヤリヤガス流路D→六方バルブA→
キヤリヤガス流路D′と流す必要があつた。しか
し、この方法は操作が面倒になるうえ校正がばら
つき、正確度が劣るという問題があつた。
Generally, when analyzing trace components in the atmosphere on the order of ppb using an analyzer such as a gas chromatograph, the concentration of trace components in the sample gas is
It is necessary to concentrate the sample gas to ppm order and introduce the concentrated test sample into the analyzer.
For example, a configuration as shown in FIG. 1 is used. That is, in the sample concentrator shown in Figure 1, A is a six-way valve, B is a four-way valve, C and C' are each a sample gas flow path, D and D' are each a carrier gas flow path, and E and E' are each a connection. Flow path, F is a sample concentration flow path, G is a sample concentration tube installed in this sample concentration flow path F, and H is an analyzer disposed downstream of the other carrier gas flow path D'. In the apparatus, the sample concentration channel F is switchably connected to the sample gas channels C and C' and the carrier gas channels D and D' by the operation of the six-way valve A and the four-way valve B. . When concentrating trace components in a sample gas using the above concentrator, use the six-way valve A and the four-way valve B as flow paths shown by solid lines to flow the sample gas in the direction of the arrow X in the figure. Flowing from the gas flow path C through the sample concentration flow path F to the sample gas flow path C',
When the sample gas flows through the sample concentration channel F, trace components in the sample gas are concentrated by the sample concentration tube G interposed in the concentration channel F. In addition, when introducing this concentrated test sample into the analyzer H, switch the six-way valve A to the flow path shown by the dotted line, allow the carrier gas to flow in the direction of the arrow Y in the figure, and pass the carrier gas through the carrier gas flow path D to concentrate the sample. The concentrated sample in the sample concentrating tube G is introduced into the analyzer H by desorption means such as heating. The above concentrator is very convenient because it can easily condense the trace components in the sample gas and introduce it into the analyzer H. Conventionally, when calibrating an instrument using a hexagonal valve A, the flow path shown by the solid line is used, and a standard sample is introduced into the carrier gas flow path using a microsyringe or the like from the sample introduction part I connected to the upstream side of the carrier gas flow path D. Introduce the standard sample into carrier gas through carrier gas flow path D→six-way valve A→
It was necessary to connect it to the carrier gas flow path D'. However, this method has problems in that it is cumbersome to operate, the calibration is uneven, and the accuracy is poor.

本考案は、上記事情に鑑みなされたもので、第
1の切換バルブの切換動作により試料ガス流路及
びキヤリヤガス流路にそれぞれ連絡流路を介して
切換可能に連結される試料濃縮流路を有すると共
に、この試料濃縮流路に試料濃縮管が介装され、
前記試料ガス流路から連絡流路を通つて試料濃縮
流路に試料ガスを流通させることにより試料濃縮
管で試料を濃縮すると共に、前記第1の切換バル
ブを切り換えて前記キヤリヤガス流路から連絡流
路を通つて試料濃縮流路にキヤリヤガスを流通さ
せることにより試料濃縮管内の濃縮試料をガスク
ロマトグラフ等の分析装置に導入するようにした
試料濃縮装置において、第2の切換バルブを設け
ると共に、この第2の切換バルブの切換動作によ
り前記連絡流路にそれぞれ切換可能に試料濃縮流
路及び計量管を連結して、前記試料ガス流路から
連絡流路を通つて計量管に標準試料を流通させる
ことにより計量管に所定量の標準試料を採取する
と共に、前記第1の切換バルブを切り換えて前記
キヤリヤガス流路から連絡流路を通つて計量管に
キヤリヤガスを流通させることにより計量管内の
標準試料を分析装置に導入するようにしたことに
より、標準試料を簡単に分析装置に導入でき、分
析装置の校正が簡便かつ常にばらつきなく正確に
行なえるようにした試料濃縮装置を提供すること
を目的とする。
The present invention was developed in view of the above-mentioned circumstances, and includes a sample concentration flow path that is switchably connected to the sample gas flow path and the carrier gas flow path via a communication flow path, respectively, by the switching operation of the first switching valve. At the same time, a sample concentration tube is interposed in this sample concentration channel,
The sample gas is passed from the sample gas flow path to the sample concentration flow path through the connecting flow path to concentrate the sample in the sample concentration tube, and the first switching valve is switched to flow the connecting flow from the carrier gas flow path. In a sample concentrating device that introduces a concentrated sample in a sample concentrating tube into an analysis device such as a gas chromatograph by flowing a carrier gas through a sample concentrating channel through a channel, a second switching valve is provided, and the second switching valve is provided. A sample concentration flow path and a metering tube are connected to the communication flow path in a switchable manner by switching operation of the switching valve No. 2, and the standard sample is caused to flow from the sample gas flow path to the measurement tube through the communication flow path. Collect a predetermined amount of the standard sample into the measuring tube, and analyze the standard sample in the measuring tube by switching the first switching valve to flow the carrier gas from the carrier gas flow path to the measuring tube through the communication flow path. To provide a sample concentrator in which a standard sample can be easily introduced into an analyzer by introducing the standard sample into the analyzer, and the analyzer can be calibrated easily and always accurately without variations.

以下、本考案の一実施例に係る試料濃縮装置に
つき第2図を参照して説明する。
Hereinafter, a sample concentrating device according to an embodiment of the present invention will be described with reference to FIG.

第2図において1は6個の通路口1a〜1fを
有する第1六方バルブ(第1切換バルブ)で、こ
の第1六方バルブ1の通路口1aには第1試料ガ
ス流路2aの一端が連結されていると共に、通路
口1bには第2試料ガス流路2bの一端が連結さ
れており、第1試料ガス流路2a他端側の試料ガ
ス導入部(図示せず)から第1試料ガス流路2a
に導入された試料ガスは後述する所定の流路を経
て第2試料ガス流路2bに流入し、その後この第
2試料ガス流路2b他端側から系外に排出される
ようになつている。更に、第1六方バルブ1の通
路口1dには第1キヤリヤガス流路3aの一端が
連結されていると共に、通路口1eには第2キヤ
リヤガス流路3bの一端が連結されており、第1
キヤリヤガス流路3a他端側のキヤリヤガス導入
部(図示せず)から第1キヤリヤガス流路3aに
導入されたキヤリヤガスは後述する所定の流路を
経て第2キヤリヤガス流路3bに流入し、その後
このキヤリヤガス流路3b他端側に配設された分
析装置(図示せず)に導入されるようになつてい
る。
In FIG. 2, 1 is a first six-way valve (first switching valve) having six passage ports 1a to 1f, and one end of the first sample gas flow path 2a is connected to the passage port 1a of the first six-way valve 1. At the same time, one end of the second sample gas flow path 2b is connected to the passage port 1b, and the first sample gas is introduced from the sample gas introduction part (not shown) at the other end of the first sample gas flow path 2a. Gas flow path 2a
The sample gas introduced into the sample gas flows into the second sample gas flow path 2b through a predetermined flow path that will be described later, and is then discharged from the other end of the second sample gas flow path 2b to the outside of the system. . Further, one end of the first carrier gas passage 3a is connected to the passage opening 1d of the first six-way valve 1, and one end of the second carrier gas passage 3b is connected to the passage opening 1e.
The carrier gas introduced into the first carrier gas flow path 3a from the carrier gas introduction part (not shown) at the other end of the carrier gas flow path 3a flows into the second carrier gas flow path 3b via a predetermined flow path described later, and then this carrier gas It is designed to be introduced into an analysis device (not shown) disposed at the other end of the flow path 3b.

また、4は6個の通路口4a〜4fを有する第
2六方バルブ(第2切換バルブ)で、この第2六
方バルブ4の通路口4aには試料濃縮流路5の一
端が連結されていると共に、通路口4bには試料
濃縮流路5の他端が連結されている。なお、この
試料濃縮流路5には試料濃縮管6が介装されてい
る。更に、第2六方バルブ4の通路口4eには計
量管7の一端が連結されていると共に、通路口4
dには計量管7の他端が連結されている。
Further, 4 is a second six-way valve (second switching valve) having six passage ports 4a to 4f, and one end of a sample concentration channel 5 is connected to the passage port 4a of the second six-way valve 4. At the same time, the other end of the sample concentration channel 5 is connected to the passage port 4b. Note that a sample concentration tube 6 is interposed in this sample concentration channel 5. Furthermore, one end of the metering tube 7 is connected to the passage port 4e of the second six-way valve 4, and the passage port 4e is connected to one end of the metering tube 7.
The other end of the measuring tube 7 is connected to d.

そして、第1六方バルブ1の通路口1fと第2
六方バルブ4の通路口4fとの間及び第1六方バ
ルブ1の通路口1cと第2六方バルブ4の通路口
4cとの間はそれぞれ第1連絡流路8a及び第2
連絡流路8bにより連結されている。
Then, the passage port 1f of the first hexagonal valve 1 and the second
A first communication flow path 8a and a second communication flow path are provided between the passage port 4f of the six-way valve 4 and between the passage port 1c of the first six-way valve 1 and the passage port 4c of the second six-way valve 4, respectively.
They are connected by a communication channel 8b.

上記試料濃縮装置を用いて試料ガスを濃縮する
場合、まず第1六方バルブ(第1切換バルブ)1
を実線で示す流路状態として通路口1aと1f,
1bと1c,1dと1eの間をそれぞれ連通する
と共に、第2六方バルブ(第2切換バルブ)4を
実線で示す流路状態として通路口4aと4f,4
bと4c,4dと4eの間をそれぞれ連通する。
そして、第1試料ガス流路2a他端側の試料ガス
導入部から第1試料ガス流路2aに試料を導入す
ると、試料ガスは通路口1a、通路口1f、第1
連絡流路8a、通路口4f、通路口4aを順次通
過した後試料濃縮流路5に流入して試料濃縮管6
に入り、ここで試料ガス中の微量成分が濃縮され
て貯えられると共に、濃縮管6を通つた試料は更
に通路口4b、通路口4c、第2連絡流路8b、
通路口1c、通路口1b、第2試料ガス流路2b
を順次通過して第2試料ガス流路2b他端側から
系外に排出される。なお、この間第1キヤリヤガ
ス流路3a他端側のキヤリヤガス導入部から第1
キヤリヤガス流路3aに導入されたキヤリヤガス
は、通路口1d、通路口1e、第2キヤリヤガス
流路3bを順次通過して分析装置に導入されてい
るものである。
When concentrating a sample gas using the above sample concentrator, first the first six-way valve (first switching valve) 1
As the flow path state shown by the solid line, passage ports 1a and 1f,
1b and 1c, 1d and 1e are communicated with each other, and the second hexagonal valve (second switching valve) 4 is in a flow path state shown by a solid line, and passage ports 4a, 4f, 4 are connected to each other.
Connect b and 4c, and 4d and 4e, respectively.
Then, when the sample is introduced into the first sample gas flow path 2a from the sample gas introduction part on the other end side of the first sample gas flow path 2a, the sample gas flows through the passage port 1a, the passage port 1f, and the first sample gas flow path 2a.
After successively passing through the communication channel 8a, passage port 4f, and passage port 4a, it flows into the sample concentration channel 5, and then flows into the sample concentration tube 6.
The trace components in the sample gas are concentrated and stored here, and the sample that has passed through the concentration tube 6 is further passed through the passage port 4b, the passage port 4c, the second communication channel 8b,
Passage port 1c, passage port 1b, second sample gas flow path 2b
, and is discharged from the other end of the second sample gas flow path 2b to the outside of the system. During this time, the first carrier gas is
The carrier gas introduced into the carrier gas flow path 3a passes sequentially through the passage port 1d, the passage port 1e, and the second carrier gas flow path 3b, and is introduced into the analyzer.

次に、上記操作により得られた濃縮管6内の濃
縮試料を分析装置に導入する場合、まず第1六方
バルブ1を切り換え、点線で示す流路状態として
通路口1aと1b,1cと1d,1eと1fの間
をそれぞれ連通する。なお、第2六方バルブ4は
切り換えず、実線で示す上述した流路状態のまま
にしておく。そして、第1キヤリヤガス流路3a
他端側のキヤリヤガス導入部から第1キヤリヤガ
ス流路3aにキヤリヤガスを導入すると、キヤリ
ヤガスは通路口1d、通路口1c、第2連絡流路
8b、通路口4c、通路口4bを順次通過した後
試料濃縮流路5に流入して試料濃縮管6に入り、
ここで濃縮試料がキヤリヤガスに混合され、その
後このキヤリヤガスは通路口4a、通路口4f、
第1連絡流路8a、通路口1f、通路口1e、第
2キヤリヤガス流路3bを順次通過して分析装置
に導入され、ここで濃縮試料の分析が行なわれ
る。なお、この間第1試料ガス流路2a他端側の
試料ガス導入部から第1試料ガス流路2aに導入
された試料ガスは、通路口1a、通路口1b、第
2試料ガス流路2bを順次通過して第2試料ガス
流路2b他端側から系外に排出されているもので
ある。
Next, when introducing the concentrated sample in the concentration tube 6 obtained by the above operation into the analyzer, the first six-way valve 1 is first switched, and the passage ports 1a and 1b, 1c and 1d, 1e and 1f are communicated with each other. Note that the second hexagonal valve 4 is not switched and is left in the above-mentioned flow path state shown by the solid line. And the first carrier gas flow path 3a
When the carrier gas is introduced into the first carrier gas passage 3a from the carrier gas introduction part on the other end side, the carrier gas passes through the passage opening 1d, passage opening 1c, second communication passage 8b, passage opening 4c, and passage opening 4b in order, and then the sample is sampled. flows into the concentration channel 5 and enters the sample concentration tube 6;
Here, the concentrated sample is mixed with the carrier gas, and this carrier gas is then mixed into the passage port 4a, the passage port 4f,
The gas passes sequentially through the first communication channel 8a, the passage port 1f, the passage port 1e, and the second carrier gas channel 3b and is introduced into the analyzer, where the concentrated sample is analyzed. During this time, the sample gas introduced into the first sample gas flow path 2a from the sample gas introduction part on the other end side of the first sample gas flow path 2a passes through the passage port 1a, the passage port 1b, and the second sample gas flow path 2b. The gases pass sequentially and are discharged to the outside of the system from the other end side of the second sample gas flow path 2b.

そして、上記試料濃縮装置により標準試料を分
析装置に導入して計器類の校正を行なう場合、第
1六方バルブ1を上述した実線で示す流路に切り
換えると共に、第2六方バルブ4を点線で示す流
路として通路口4aと4b,4cと4d,4eと
4fとの間をそれぞれ連通する。この状態で、標
準試料を試料ガス導入部から第1試料ガス流路2
aに導入すると、この標準試料は通路口1a、通
路口1f、第1連絡流路8a、通路口4f、通路
口4eを順次通過した後計量管7に流入し、この
計量管7により所定量の標準試料が貯えられ、そ
の後通路口4d、通路口4c、第2連絡流路8
b、通路口1c、通路口1b、第2試料ガス流路
2bを順次通過して第2試料ガス流路2b他端側
から系外に排出される。なお、この間キヤリヤガ
スは第1キヤリヤガス流路3a、通路口1d、通
路口1e、第2キヤリヤガス流路3bという流路
を流通している。次いで、第1六方バルブ1を切
換え、上述した点線で示す流路とし(なお、第2
六方バルブ4は切り換えず、点線で示す流路に保
つ)、キヤリヤガスを第1キヤリヤガス流路3a、
通路口1d、通路口1c、第2連絡流路8b、通
路口4c、通路口4b、計量管7、通路口4e、
通路口4f、第1連絡流路8a、通路口1f、通
路口1e、第2キヤリヤガス流路3bを順次流通
させ、標準試料を分析装置に導入して計器類の校
正を行なうものである。
When the standard sample is introduced into the analyzer using the sample concentrator to calibrate the instruments, the first six-way valve 1 is switched to the flow path indicated by the solid line described above, and the second six-way valve 4 is switched to the flow path indicated by the dotted line. The passage ports 4a and 4b, 4c and 4d, and 4e and 4f communicate with each other as flow paths. In this state, the standard sample is passed from the sample gas inlet to the first sample gas flow path 2.
When introduced into a, the standard sample passes through the passage port 1a, the passage port 1f, the first communication channel 8a, the passage port 4f, and the passage port 4e in order, and then flows into the measuring tube 7. standard samples are stored, and then the passage port 4d, the passage port 4c, the second communication channel
b, passes sequentially through passage port 1c, passage port 1b, and second sample gas flow path 2b, and is discharged out of the system from the other end side of second sample gas flow path 2b. During this time, the carrier gas is flowing through the first carrier gas flow path 3a, the passage port 1d, the passage port 1e, and the second carrier gas flow path 3b. Next, the first six-way valve 1 is switched to create the flow path shown by the dotted line mentioned above (note that the second
The hexagonal valve 4 is not switched, but the flow path shown by the dotted line is maintained), and the carrier gas is passed through the first carrier gas flow path 3a,
Passage opening 1d, passage opening 1c, second communication channel 8b, passage opening 4c, passage opening 4b, metering tube 7, passage opening 4e,
The passage opening 4f, the first communication passage 8a, the passage opening 1f, the passage opening 1e, and the second carrier gas passage 3b are made to flow in sequence, and a standard sample is introduced into the analyzer to calibrate the instruments.

従つて、上記試料濃縮装置によれば、確実に一
定量の標準試料を計量管に採取でき、これを簡単
に分析装置に導入し得るので、計器類の校正をば
らつきなく正確かつ簡便に行なうことができる。
Therefore, according to the above-mentioned sample concentrator, it is possible to reliably collect a certain amount of standard sample into the measuring tube and easily introduce it into the analyzer, so that the calibration of instruments can be performed accurately and easily without variations. I can do it.

なお、上記試料濃縮装置において、試料濃縮管
及び計量管としては適宜な公知のものを使用する
ことができる。また、上記試料濃縮装置において
は六方バルブを2個用いて流路を切り換えるよう
にしたが、他の適宜な手段により流路を切り換え
るようにしても差支えない。
In addition, in the above-mentioned sample concentrating device, appropriate known ones can be used as the sample concentrating tube and the measuring tube. Furthermore, in the sample concentrator described above, two hexagonal valves are used to switch the flow paths, but the flow paths may be switched using other appropriate means.

以上詳述したように、本考案に係る試料濃縮装
置は、第1の切換バルブの切換動作により試料ガ
ス流路及びキヤリヤガス流路にそれぞれ連絡流路
を介して切換可能に連結される試料濃縮流路を有
すると共に、この試料濃縮流路に試料濃縮管が介
装され、前記試料ガス流路から連絡流路を通つて
試料濃縮流路に試料ガスを流通させることにより
試料濃縮管で試料を濃縮すると共に、前記第1の
切換バルブを切り換えて前記キヤリヤガス流路か
ら連絡流路を通つて試料濃縮流路にキヤリヤガス
を流通させることにより試料濃縮管内の濃縮試料
を分析装置に導入するようにした試料濃縮装置に
おいて、第2の切換バルブを設けると共に、この
第2の切換バルブの切換動作により前記連絡流路
にそれぞれ切換可能に試料濃縮流路及び計量管を
連結して、前記試料ガス流路から連絡流路を通つ
て計量管に標準試料を流通させることにより計量
管に所定量の標準試料を採取すると共に、前記第
1の切換バルブを切り換えて前記キヤリヤガス流
路から連絡流路を通つて計量管にキヤリヤガスを
流通させることにより計量管内の標準試料を分析
装置に導入するようにしたことにより、試料の濃
縮、分析装置への導入及び標準試料の分析装置へ
の導入をいずれも特別な操作を必要とせずに行な
うことができ、分析装置の校正を簡便かつ常にば
らつきなく正確に行なうことができるもので、従
来の濃縮装置の如く計器類の校正の際に標準試料
をマイクロシリンジ等を用いてキヤリヤガス流路
に導入するといつた面倒を要さず、極めて便利な
ものである。
As described in detail above, the sample concentrator according to the present invention has a sample concentration flow that is switchably connected to the sample gas flow path and the carrier gas flow path via the communication flow path by the switching operation of the first switching valve. A sample concentration tube is interposed in this sample concentration flow path, and the sample is concentrated in the sample concentration tube by flowing the sample gas from the sample gas flow path to the sample concentration flow path through the communication flow path. At the same time, the concentrated sample in the sample concentration tube is introduced into the analyzer by switching the first switching valve to flow the carrier gas from the carrier gas flow path to the sample concentration flow path through the communication flow path. In the concentrator, a second switching valve is provided, and a sample concentration channel and a metering tube are connected to the connecting channel so as to be switchable to each other by the switching operation of the second switching valve, and a sample concentration channel and a metering tube are connected to each other so as to be able to switch from the sample gas channel to the connecting channel. Collecting a predetermined amount of the standard sample into the measuring tube by flowing the standard sample into the measuring tube through the communication flow path, and at the same time, switching the first switching valve and measuring the standard sample from the carrier gas flow path through the communication flow path. By introducing the standard sample in the measuring tube into the analyzer by flowing carrier gas through the tube, special operations are no longer required to concentrate the sample, introduce it into the analyzer, and introduce the standard sample into the analyzer. It is possible to calibrate the analyzer easily and accurately without any variation, and it is possible to calibrate the analyzer easily and always accurately without any variation.It is possible to calibrate the analyzer easily and always accurately without any variation. When introduced into the carrier gas flow path, it does not require any trouble and is extremely convenient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の試料濃縮装置を示す概略図、第
2図は本考案に係る試料濃縮装置を示す概略図で
ある。 1……第1六方バルブ、1a〜f……通路口、
2a,2b……試料ガス流路、3a,3b……キ
ヤリヤガス流路、4……第2六方バルブ、4a〜
f……通路口、5……試料濃縮流路、6……濃縮
管、7……計量管、8a,8b……連絡流路。
FIG. 1 is a schematic diagram showing a conventional sample concentrating device, and FIG. 2 is a schematic diagram showing a sample concentrating device according to the present invention. 1...first hexagonal valve, 1a-f...passage opening,
2a, 2b...Sample gas flow path, 3a, 3b...Carrier gas flow path, 4...Second hexagonal valve, 4a~
f...Passway opening, 5...Sample concentration channel, 6...Concentration tube, 7...Measuring tube, 8a, 8b...Communication channel.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 第1の切換バルブの切換動作により試料ガス流
路及びキヤリヤガス流路にそれぞれ連絡流路を介
して切換可能に連結される試料濃縮流路を有する
と共に、この試料濃縮流路に試料濃縮管が介装さ
れ、前記試料ガス流路から連絡流路を通つて試料
濃縮流路に試料ガスを流通させることにより試料
濃縮管で試料ガスを濃縮すると共に、前記第1の
切換バルブを切り換えて前記キヤリヤガス流路か
ら連絡流路を通つて試料濃縮流路にキヤリヤガス
を流通させることにより試料濃縮管内の濃縮試料
を分析装置に導入するようにした試料濃縮装置に
おいて、第2の切換バルブを設けると共に、この
第2の切換バルブの切換動作により前記連絡流路
にそれぞれ切換可能に試料濃縮流路及び計量管を
連結して、前記試料ガス流路から連絡流路を通つ
て計量管に標準試料を流通させることにより計量
管に所定量の標準試料を採取すると共に、前記第
1の切換バルブを切り換えて前記キヤリヤガス流
路から連絡流路を通つて計量管にキヤリヤガスを
流通させることにより計量管内の標準試料を分析
装置に導入するようにしたことを特徴とする試料
濃縮装置。
It has a sample concentration flow path which is switchably connected to the sample gas flow path and the carrier gas flow path via communication flow paths by the switching operation of the first switching valve, and a sample concentration tube is interposed in the sample concentration flow path. The sample gas is concentrated in the sample concentration tube by flowing the sample gas from the sample gas flow path through the communication flow path to the sample concentration flow path, and the first switching valve is switched to switch the carrier gas flow. In a sample concentrator in which a concentrated sample in a sample concentrator tube is introduced into an analyzer by flowing a carrier gas from a connecting channel to a sample concentrating channel, a second switching valve is provided, and the second switching valve is provided. A sample concentration flow path and a metering tube are connected to the communication flow path in a switchable manner by switching operation of the switching valve No. 2, and the standard sample is caused to flow from the sample gas flow path to the measurement tube through the communication flow path. Collect a predetermined amount of the standard sample into the measuring tube, and analyze the standard sample in the measuring tube by switching the first switching valve to flow the carrier gas from the carrier gas flow path to the measuring tube through the communication flow path. A sample concentration device characterized in that it is introduced into the device.
JP17660283U 1983-11-15 1983-11-15 Sample concentration device Granted JPS6083957U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17660283U JPS6083957U (en) 1983-11-15 1983-11-15 Sample concentration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17660283U JPS6083957U (en) 1983-11-15 1983-11-15 Sample concentration device

Publications (2)

Publication Number Publication Date
JPS6083957U JPS6083957U (en) 1985-06-10
JPS643073Y2 true JPS643073Y2 (en) 1989-01-26

Family

ID=30383918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17660283U Granted JPS6083957U (en) 1983-11-15 1983-11-15 Sample concentration device

Country Status (1)

Country Link
JP (1) JPS6083957U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131736A (en) * 1990-09-25 1992-05-06 Power Reactor & Nuclear Fuel Dev Corp Gas sampling device from vacuum extractor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820430B2 (en) * 1987-10-27 1996-03-04 横河電機株式会社 Anion analyzer
JPH0820431B2 (en) * 1987-10-27 1996-03-04 横河電機株式会社 Cation analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131736A (en) * 1990-09-25 1992-05-06 Power Reactor & Nuclear Fuel Dev Corp Gas sampling device from vacuum extractor

Also Published As

Publication number Publication date
JPS6083957U (en) 1985-06-10

Similar Documents

Publication Publication Date Title
JP4246867B2 (en) Exhaust gas analysis system
US4705669A (en) Gas analyzer for simultaneously measuring many ingredients
JP3374077B2 (en) Exhaust gas sampling device
JP3607997B2 (en) Analyzer for trace impurities in gas
KR101797637B1 (en) Calibration device and apparatus for analysing gas component having the same
CN109490443A (en) A kind of non-methane total hydrocarbons content detection device and method
CN113960217A (en) Method and system for measuring content of gas components in fuel hydrogen
JPS643073Y2 (en)
CN114235941A (en) Direct detection device and method for non-methane total hydrocarbons in ambient air
CN213903428U (en) Non-methane total hydrocarbon analysis device
CN108776194B (en) Analysis device and gas analyzer
KR20010067371A (en) Method for analyzing impurities contained in gas and apparatus therefor
CN108519254B (en) Sampling flow control device and gas analyzer
JP3195728B2 (en) Sulfur component measurement device
CN114609257B (en) Gas chromatograph mass spectrometer and gas circuit control method thereof
JPH01265157A (en) Gas auto sampler
JPH07270316A (en) Infrared gas analyzer
CN217484270U (en) Detection device for directly measuring non-methane total hydrocarbon content
JPH039016Y2 (en)
WO2021254271A1 (en) Traveling monitoring system employing multi-channel technology, and operation method thereof
JP3261272B2 (en) Calibration device for fluid modulation type analyzer and its calibration method
JPH10132710A (en) Continuous gas analyzer
JPH0217333Y2 (en)
JPH07151652A (en) High accuracy gas dilution system
JPH04268440A (en) Analyzer for car exhaust gas