JPS642649B2 - - Google Patents

Info

Publication number
JPS642649B2
JPS642649B2 JP6066782A JP6066782A JPS642649B2 JP S642649 B2 JPS642649 B2 JP S642649B2 JP 6066782 A JP6066782 A JP 6066782A JP 6066782 A JP6066782 A JP 6066782A JP S642649 B2 JPS642649 B2 JP S642649B2
Authority
JP
Japan
Prior art keywords
fluidized
furnace
raw material
roasting
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6066782A
Other languages
Japanese (ja)
Other versions
JPS58176108A (en
Inventor
Jun Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON NITSUKERU KK
Original Assignee
NIPPON NITSUKERU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON NITSUKERU KK filed Critical NIPPON NITSUKERU KK
Priority to JP6066782A priority Critical patent/JPS58176108A/en
Publication of JPS58176108A publication Critical patent/JPS58176108A/en
Publication of JPS642649B2 publication Critical patent/JPS642649B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、金属硫化物、金属の硫化精鉱ある
いは精〓を原料とし、これを焙焼して低硫黄金属
酸化物を製造する流動焙焼法に関するものであ
る。 近年、エネルギー資源の寡占と枯渇化が増々深
刻の度合を深めて来ており、金属等の製錬の分野
においても、有限のエネルギーを合理的かつ有効
に活用する方策が渇望されていることは論をまた
ない。 従来、かかる観点から、省エネルギー化を図り
つつ、硫化精鉱や精〓等の金属硫化物を主成分と
して含有する原料から低硫黄金属酸化物を製造す
る代表的な方法として、特公昭36―16401号公報
に記載されている方法を改善した流動焙焼法が知
られている。 この従来方法の工程図を第1図に示した。第1
図において、1は浮選精鉱原料(タイラふるいで
−200メツシユのもの90%以上で構成されている)
並びに回収粉を貯蔵するヘツドタンクであり、こ
のヘツドタンク1より供給されたパルプはデイス
クフイルター2で適切含水量とされ、ここで得ら
れたフイルターケーキはロータリービン3を経て
ボーリングデスク4に供給される。ボーリングデ
スク4において直径1/4インチ(6.35mm)程度の
ペレツトにされたフイルターケーキは、二重ロツ
ク式フイダー5によつて1次流動炉6に装入され
る。そして、1次流動炉より輸送層ダストとして
キヤリイオーバーしたダストは、その搬送ガスと
ともにインピンジメントプレート7にぶつけられ
る。このとき、方向を急変せしめられたガスから
大粒径のダストが分離回収されることとなる。こ
こで回収できなかつた小さい粒径のダストは、サ
イクロン8でガスから分離回収され、さらに細か
いダストは次の電気集塵器9によつてその99%ま
で回収される。この電気集塵器9によつて回収さ
れたダストはリパルピングタンク10において水
が加えられ、パルプとされてヘツドタンク1に浮
選精鉱原料とともに貯蔵される。 また、第1図中の11は、1次及び2次流動炉
からの溢流シンダーを次の工程へ移すためのエア
ーリフターであり、12は2次流動炉である。2
次流動炉12の排ガスは、1次流動炉6と連結さ
れたガス道を通つて1次流動炉6へ注入されるよ
うになつている。2次流動炉12よりの溢流シン
ダー(例えば、低硫黄酸化ニツケル)は、冷却器
13に導かれて常温近くまで冷却されて製品とな
る。この冷却器13は、炉底の風箱から大気を吹
き込む流動床型のもので、炉天井部より注水して
急冷することもできるようになつているが、一
部、この冷却器13よりキヤリイオーバーした低
硫黄酸化金属は回収装置を経てリサイクル用ダス
トとされるようになつている。 しかしながら、このような省資源・省エネルギ
ーの思想のもとに開発された上記流動焙焼法にお
いても、 (a) 浮選によつて銅とNi成分との分離処理をし
たものを原料とするため、原料たるニツケルマ
ツトの90%以上が−200メツシユの粒径のもの
であり、それ故に装入物の大半が輸送層乾燥ダ
ストとならぬよう、約7.5%の水分を含む0.208
〜6.35mm間の粒径のペレツトとして1次流動炉
に装入しなければならないこと、 (b) 1次流動炉から出て回収された輸送層乾燥ダ
ストの一部は、再度1次流動炉へ直接循環せし
められるが、残りはニツケルマツト粉と混ぜて
前記(a)項で示したのと同様の理由でペレツトと
して1次流動炉へ装入する必要があること、 (c) 1次流動炉への装入原料が0.208〜6.35mm程
度のペレツト状の成形物となつているため、安
定した流動状態を維持するには多量の風量を必
要とするが、このような風量で操業した場合、
流動炉内でペレツト状成形物が投入時の大きさ
のまま焙焼されることはなく、強風圧のために
相互に衝突してはなはだしい摩耗や崩壊を生ず
ることとなり、送風量に対応した生産ができな
いこととなる。そしてこのため、排ガス中の亜
硫酸ガス濃度が3.2〜4.5%程度の低い値となる
操業を実施せざるを得なくなる場合が多く、排
ガス処理装置が高価となること、 (d) 助燃剤油の使用量を節減しようとして、1次
流動炉の焙焼温度を1204℃程度の高温度とする
とともに、同炉での原料の平均反応滞留時間を
5時間程度とすると、それに必要な炉内容積を
確保するために炉を大型とせざるを得ず、また
風箱圧も7730mm水柱程度を必要とすることとな
つて、電力の消費が大となること、 (e) 2次流動炉での焙焼温度が1218℃程度と低
く、そのため1次流動炉より溢流して2次流動
炉へ流入した仮焼物中の0.15%のS分を脱硫す
るために、2次流動炉での平均反応滞留時間を
約2時間という長い時間にする必要を生じ、そ
のため炉内容積を大とせざるを得ないこと、 等の多くの問題点があつた。 本発明者等は、上述のような観点から、主設備
の大型化や付帯設備の増設を伴うことなく、助燃
剤を節減して、エネルギーコストの安い金属硫化
物流動焙焼法を見出すべく研究を重ねた結果、以
下〜に示す如き知見を得たのである。 原料として、例えばガーニエライトより不純
物を除去して製造されたような塊状硫化物を破
砕したものを使用すれば、硫化鉱からの金属マ
ツトではないために浮選を要することがなく、
しかも塊状原料破砕物であるから浮選精鉱より
大粒径のものであり、したがつてこれが焙焼温
度:900〜1000℃にて輸送層乾燥ダストをから
み込み、炉内において造粒化するという動向を
示すため、予めペレツト化を行なう必要がな
く、さらに、1次流動炉からの回収輸送層乾燥
ダストは、原料たる破砕マツトとパグミルで混
合して1次流動炉へ装入するだけで、焙焼温度
が900〜1000℃の炉内で輸送層乾燥ダストをか
らみ込んで造粒化する傾向があること、 前述のように、1次流動炉への投入原料をペ
レツトではなく、マツト粉それ自体と輸送層乾
燥ダストの混合物とすると、炉内で緻密に融着
して粒状となるので、ペレツト原料のように崩
れることがなく、むしろ流動炉内で流動状態に
悪影響を与えない程度に造粒焙焼され、空気率
も1.2程度で良く、排ガスの亜硫酸ガス濃度は
約6〜8%となつて排ガス処理装置はコンパク
トとなり、装置全体が安価となること、 1次流動炉の焙焼温度を900〜1000℃程度と
すれば、粉砕マツトと輸送層乾燥ダストの乾燥
混合物が流動炉内で安定した流動状態を維持で
き、この温度下で1次流動炉での原料マツトの
平均反応滞留時間を3時間程度とすれば、該1
次流動炉よりの焙焼仮焼物の残留硫黄を、2次
流動炉における燃料の代りとし得る最適な値と
することができ、従つて1次流動炉での滞留時
間を少なくできるので炉内容積は小さくて良
く、しかも風箱圧3500mm水柱程度となつて電力
の消費量も少なくなること、 2次流動炉の焙焼温度を1300℃以上とすれ
ば、1次流動炉より溢流して2次流動炉へ流入
する仮焼物中の硫黄が約1.0%を切る程度に脱
硫された焙焼仮焼物粒子であつても、2次流動
炉での平均反応滞留時間が約1時間位で良く、
炉の内容積はそれなりに小さくなり、かつ風箱
圧も小さくて済み、炉の建設費並びに操業コス
トも安くなること、 2次流動炉で処理する焙焼仮焼物粒子は、も
はや自然によつて脱硫反応を起こさせる化学組
成を有していないものであるので、ここにおい
て焙焼温度をあげるためにはどうしても油等の
助燃剤を必要とするが、原料たる塊状マツトの
破砕工程において発生した乾燥微細粉(粒径
100μm前後のバグフイルターマツト粉)を熱風
と共に2次流動炉の流動層下部に圧入すると、
一瞬に融解して炉内で流動している焙焼仮焼物
の表面を被うように融着し、次いで急激に酸素
と反応して脱硫がなされる。そしてこの結果、
助燃剤のオイルの発熱反応の授助を得ずとも、
主に原料粉末の乾燥微細粉の燃焼熱で焙焼温度
を1300〜1400℃に維持でき、2次流動炉内での
平均反応滞留時間が約1時間程度であつても低
硫黄金属酸化物を生産し得るようになること、 金属硫化物を主成分とする原料粉末の化学組
成によつては、1次流動炉における焙焼操業状
況に変化を生ずるが、焙焼仮焼物冷却器を通し
て、1次流動炉から溢流口した焙焼仮焼物の一
部を、2次流動炉へ送ることなく原料粉末とパ
グミルで混合して循環使用し、これに冷剤の働
きを果させると同時に流動不良を起させるが如
き極端な流動炉内での粒粒化現象を抑制する作
用を達成させると、順調な操業を長期間継続し
得ること。 したがつて、この発明は上記知見に基いてなさ
れたものであつて、金属硫化物を主成分とする原
料粉末を、単一炉床と溢流口とを具備した1次及
び2次流動炉を用いて酸素含有ガスにより流動焙
焼する方法において、前記原料粉末として塊状原
料を破砕したままのものを使用し、これを乾燥状
態で1次流動炉の炉頂より輸送層乾燥ダストとと
もに装入し、かつ焙焼仮焼物粒子が溢流口から2
次流動炉へ溢流する量を調整しながら、900〜
1000℃の温度域でまず低温焙焼して2次流動炉へ
送るか、あるいは、溢流した焙焼仮焼物の一部を
取り出してこれを2次流動炉へ送ることなく原料
粉末として循環使用し、さらに2次流動炉では、
その流動層へ金属硫化物を主成分とする前記原料
粉末の乾燥破砕物を吹込むとともに溢流口からの
低硫黄金属酸化物粉末製品の溢流量を調整しなが
ら、1300〜1400℃の温度域で高温焙焼することに
より、金属硫化物から低コストで、低硫黄金属酸
化物を製造することを特徴を有するものである。 なお、この発明の流動焙焼法において、原料粉
末を乾燥状態で1次流動炉に装入するようにした
のは、原料中に所定量以上の水分が含まれている
と流動炉の原料装入口で該原料が軟くかたまり、
給鉱シユートを閉塞してしまう恐れがあるからで
ある。例えば、原料中に1重量%程度の水分が含
まれている場合には、1時間程度の操業で給鉱シ
ユートが閉塞されるという現象がみられる。 また、1次流動炉における焙焼温度を900〜
1000℃としたのは、焙焼温度が900℃を下廻ると
仮焼物の炉内滞留時間を極端に長くしなければな
らなくなつて、操業能率の低下あるいは流動焙焼
炉設備の大型化を招くこととなり、他方、焙焼温
度が1000℃を越えると流動炉内仮焼物が相互に融
着する現象を呈するようになつて流動悪化を招
き、ひいては操業不能状態となるからである。 さらに、2次流動炉における焙焼温度を1300〜
1400℃としたのは、この温度が1300℃未満では焙
焼生成物中の残留硫黄を所望の値にまで低下させ
るに要する時間、すなわち炉内滞留時間が長くな
つて能率の良い操業が不可能となり、他方、その
温度が1400℃を越えると流動炉内仮焼物相互の融
着を招くようになるうえ、炉内耐火物の溶損が発
生する恐れがあるからである。そして、この2次
流動炉における焙焼温度は、焙焼製品の平均粒径
と平均反応滞留時間によつても変化するものであ
る。 この発明の流動焙焼法において、1次流動炉お
よび2次流動炉の溢流口から溢流する焙焼仮焼物
並びに焙焼製品の量を調整することは、品質の良
い製品を得るために重要なことである。なぜな
ら、流動焙焼にあつては、焙焼仮焼物の短絡溢流
による脱硫率のバラツキが大きく、これと相関が
ある溢流焙焼仮焼物の量のバラツキは、従来、意
外にもそれほど重要視されていなかつたのであ
る。しかし、このような脱硫率のバラツキも、90
数%の段階の脱硫率で可とされる場合には製品の
良否に影響しない場合もあるが、最終的に99.9%
以上の脱硫率を目指す場合には、これを無視する
ことができなくなる。したがつて、この発明の流
動焙焼法においては、脱硫率のバラツキのない高
品位の製品を安定して得るために、溢流口からの
溢流量を調整することを不可欠の要件としたので
ある。 次いで、この発明の流動焙焼法を工程図に基い
てより具体的に説明する。 第2図は、この発明の流動焙焼工程を示す概略
図である。第2図において、21は原料粉末ビン
であり、22は1次流動炉よりの輸送層乾燥ダス
トを各種集塵器によつて回収して、水冷ジヤケツ
ト付チエンコンベアで運んできたものを貯蔵する
回収粉繰返しダストビンである。原料粉末と繰返
しダストは、パグミル23によつて均一に混合さ
れつつ運搬されて、ガスシールを効かせたロータ
リーフイダーによつて1次流動炉24に装入され
る。25はガスクーラーで、1次流動炉よりの輪
送層乾燥ダストの粒径の大なる分がここでガスか
ら分離回収される。ガスクーラー25で分離され
なかつた小径の輸送層乾燥ダストはサイクロン2
6で処理され、さらに、電気集塵器27で最も微
粒のものがガスから分離回収される。含塵量が
0.2g/Nm3以下となつた焙焼生成ガスは、亜硫
酸ガス回収のために硫酸工場へ送られる。 また、28は2次流動炉であり、1次流動炉2
4から溢流流出した焙焼仮焼物が、流量調整器3
0を経て流入してくる。2次流動炉28で焙焼さ
れて生成した低硫黄金属酸化物は、2次流動炉溢
流口より流量調整器30′を経て製品冷却器31
へ流入し、冷却後、所定の検査を経て包装され、
製品として実重量を確認された後出荷される。な
お、29は、原料粉末たる乾燥微細粉を熱風内に
懸濁して輸送層乾燥微細粉として2次流動炉28
へ安定に圧送するための流動床ポツトであり、3
2は、操業開始時に2次流動炉28を種シンダー
と共に予熱するためのバーナーである。これは、
万一、2次流動炉28で温度低下の異常が発生し
たときにも活用できる。 さらに、第3図は、1次流動炉から溢流した焙
焼仮焼物の一部を、2次流動炉へ送ることなく、
1次流動炉装入原料と混合して再循環させて操業
の安定化を図る場合の工程を示す概略図である。
なお、第3図においては、第2図に示した流動焙
焼設備における各装置と同様の機能を有するもの
に同一記号を符してある。 第3図に示した流動焙焼工程は、1次流動炉2
4よりの輸送層乾燥ダストが1次流動炉内で造粒
化焙焼し過ぎ、しかも1次流動炉24への冷剤が
不足したとき、1次流動炉の輸送層乾燥ダストと
なり得ない焙焼仮焼物の一部を、1次流動炉24
から流量調整器30″を経て焙焼仮焼物冷却器3
3へ溢流せしめ、これを2次流動炉28へ送るこ
となく、原料粉末とパグミル23で混合して循環
使用し、冷剤の働きを果させると同時に、流動不
良を起こさせるが如き極端な流動炉内での造粒化
現象を抑制する作用を達成させ、順調な操業を長
期間継続し得るようにしてある。 次に、この発明を実施例により比較例と対比し
ながら説明する。 まず、第1表に示したような、本発明実施例用
の原料及び比較例用の原料を用意した。 そして、本発明の実施例では、原料は乾燥状態
の粉末そのものであり、比較例では7.5%の水分
を含むペレツトとしたものであつた。なお、本発
明の実施例は、第3図の工程図で示したような装
置を使用し、比較例は第1図の工程図で示したよ
うな装置を使用して実操業を行なつたものであ
る。このときの操業条件、および得られた結果も
併せて第1表に示した。 本発明法および比較法とも、2段焙焼方式であ
り、製品の残留硫黄がともに0.02重量以下を保証
し、いずれも使用酸素は空気中のもののみで操業
可能であり、製品は流動炉よりの溢液シンダーの
みであるため、65メツシユ以下が殆んどない点で
類似しているが、炉床空塔流速は、本発明法
The present invention relates to a fluidized roasting method that uses metal sulfides, metal sulfide concentrates, or concentrates as raw materials and roasts them to produce low-sulfur metal oxides. In recent years, oligopoly and depletion of energy resources have become increasingly serious, and even in the field of smelting and refining of metals, there is a strong desire for ways to utilize limited energy rationally and effectively. It's beyond debate. Conventionally, from this point of view, the Japanese Patent Publication No. 36-16401 was developed as a typical method for producing low-sulfur metal oxides from raw materials containing metal sulfides as main components, such as sulfide concentrates and concentrates, while saving energy. A fluidized roasting method is known, which is an improvement on the method described in the publication. A process diagram of this conventional method is shown in FIG. 1st
In the figure, 1 is the flotation concentrate raw material (composed of more than 90% of the 200-mesh Tyra sieve)
There is also a head tank for storing recovered powder. The pulp supplied from the head tank 1 is adjusted to have an appropriate moisture content in a disk filter 2, and the filter cake obtained here is supplied to a boring desk 4 via a rotary bin 3. The filter cake, which is turned into pellets with a diameter of about 1/4 inch (6.35 mm) at the boring desk 4, is charged into a primary fluidized fluidized furnace 6 through a double lock type feeder 5. Then, the dust carried over from the primary fluidized furnace as transport layer dust is struck against the impingement plate 7 together with the carrier gas. At this time, large particle size dust is separated and collected from the gas whose direction has suddenly changed. The small particle size dust that cannot be recovered here is separated and recovered from the gas in the cyclone 8, and 99% of the finer dust is recovered in the next electrostatic precipitator 9. Water is added to the dust collected by the electrostatic precipitator 9 in a repulping tank 10, and the pulp is made into pulp and stored in the head tank 1 together with the flotation concentrate raw material. Further, 11 in FIG. 1 is an air lifter for transferring overflow cinder from the primary and secondary fluidized furnaces to the next process, and 12 is a secondary fluidized fluidized furnace. 2
The exhaust gas from the secondary fluidized fluidized furnace 12 is injected into the primary fluidized fluidized furnace 6 through a gas passage connected to the primary fluidized fluidized furnace 6. Overflow cinder (for example, low sulfur nickel oxide) from the secondary fluidized fluidized furnace 12 is led to a cooler 13 and cooled to near room temperature to become a product. This cooler 13 is of a fluidized bed type that blows atmospheric air from a wind box at the bottom of the furnace, and can also be cooled rapidly by injecting water from the furnace ceiling. The oxidized low-sulfur metals are sent to recovery equipment and recycled as dust. However, even in the above-mentioned fluidized roasting method, which was developed based on the idea of saving resources and energy, (a) the raw material is one that has been separated from the copper and Ni components by flotation; More than 90% of the raw material, nickel pine, has a particle size of -200 mesh, and therefore, in order to prevent most of the charge from becoming dry dust in the transport layer, 0.208 m2 containing about 7.5% moisture is used.
(b) A portion of the transport layer dry dust recovered from the primary fluidized fluidized furnace shall be charged to the primary fluidized fluidized furnace as pellets with a particle size between ~6.35 mm; (c) The remaining pellets must be mixed with nickel pine powder and charged to the primary fluidized fluidized furnace as pellets for the same reason as shown in item (a) above; (c) Since the raw material charged to the reactor is formed into pellets with a size of approximately 0.208 to 6.35 mm, a large amount of airflow is required to maintain a stable flow state, but when operated at such an airflow,
Pellet-like molded products are not roasted in the same size as when they were put into the fluidized fluidized furnace, and the strong wind pressure causes them to collide with each other, causing extensive wear and collapse, making it difficult to produce according to the amount of air blown. It becomes impossible. For this reason, it is often necessary to carry out operations where the concentration of sulfur dioxide gas in the exhaust gas is as low as 3.2 to 4.5%, making exhaust gas treatment equipment expensive; (d) Use of combustion improver oil; In an attempt to reduce the amount, the torrefaction temperature in the primary fluidized fluidized furnace is set to a high temperature of approximately 1204℃, and the average reaction residence time of the raw materials in the furnace is set to approximately 5 hours, ensuring the necessary internal volume. (e) Roasting temperature in the secondary fluidized flow furnace requires a large furnace, and requires a wind box pressure of about 7730 mm of water column, resulting in high power consumption. Therefore, in order to desulfurize the 0.15% S content in the calcined material that overflowed from the primary fluidized fluidized furnace and flowed into the secondary fluidized fluidized furnace, the average reaction residence time in the secondary fluidized fluidized furnace was approximately There were many problems, such as the need for a long time of 2 hours, which necessitated an increase in the internal volume of the reactor. From the above-mentioned viewpoints, the present inventors conducted research to find a metal sulfide fluidized roasting method that reduces the amount of combustion improver and reduces energy costs without increasing the size of the main equipment or adding additional auxiliary equipment. As a result of repeated efforts, the following findings were obtained. If, for example, crushed massive sulfide produced by removing impurities from garnierite is used as a raw material, flotation is not required since it is not metal matte from sulfide ore.
In addition, since it is a crushed lump of raw material, it has a larger particle size than the flotation concentrate, so it is roasted at a temperature of 900 to 1000°C, entangled with transport layer dry dust, and granulated in the furnace. Because of this trend, there is no need to pelletize it in advance, and furthermore, the recovered transport bed dry dust from the primary fluidized fluidized furnace can be mixed with crushed mats, which are the raw materials, in a pug mill and charged into the primary fluidized fluidized furnace. , There is a tendency for the transport layer dry dust to be entangled and granulated in the furnace at a roasting temperature of 900 to 1000℃, and as mentioned above, the raw material input to the primary fluidized fluidized furnace is not pellets but matte powder. If it is made into a mixture of itself and the transport layer dry dust, it will be densely fused in the furnace and become granular, so it will not crumble like pellet raw materials, but rather it will remain in the furnace to the extent that it will not adversely affect the fluidization state. It is granulated and roasted, the air ratio only needs to be around 1.2, the sulfur dioxide concentration in the exhaust gas is about 6-8%, the exhaust gas treatment equipment is compact, and the entire equipment is inexpensive. If the temperature is about 900 to 1000℃, the dry mixture of crushed mat and transport layer dry dust can maintain a stable fluidized state in the fluidized bed furnace, and at this temperature, the average reaction retention of the raw mat in the primary fluidized bed furnace If the time is about 3 hours, then
The residual sulfur of the torrefied calcined product from the secondary fluidized fluidized furnace can be set to an optimal value that can be used as a fuel in the secondary fluidized fluidized furnace, and the residence time in the primary fluidized fluidized furnace can be reduced, so the internal volume of the furnace can be reduced. It can be small, and the wind box pressure is about 3500 mm water column, which reduces power consumption. Even if the particles of the calcined material have been desulfurized to the extent that the sulfur content in the calcined material flowing into the fluidized fluidized furnace is less than about 1.0%, the average reaction residence time in the secondary fluidized fluidized furnace may be about 1 hour.
The internal volume of the furnace is relatively small, and the wind box pressure is also small, reducing the construction and operating costs of the furnace. Since it does not have a chemical composition that causes a desulfurization reaction, it is necessary to use a combustion improver such as oil to raise the roasting temperature. Fine powder (particle size
When bag filter mat powder (approximately 100μm) is injected into the lower part of the fluidized bed of a secondary fluidized furnace with hot air,
It instantly melts and adheres to cover the surface of the roasted and calcined material flowing in the furnace, and then rapidly reacts with oxygen to perform desulfurization. And this result is
Even without the aid of the exothermic reaction of the combustion improver oil,
The roasting temperature can be maintained at 1300-1400℃ mainly by the combustion heat of dry fine powder of raw material powder, and low-sulfur metal oxides can be produced even if the average reaction residence time in the secondary fluidized fluidized furnace is about 1 hour. Depending on the chemical composition of the raw material powder whose main component is metal sulfide, the operating conditions for torrefaction in the primary fluidized fluidized furnace may change; A part of the roasted and calcined material that overflows from the secondary fluidized fluidized furnace is mixed with the raw material powder in a pug mill without being sent to the secondary fluidized fluidized furnace, and is recycled and used to perform the function of a refrigerant while at the same time causing poor flow. By achieving the effect of suppressing the extreme granulation phenomenon that occurs in a fluidized bed furnace, smooth operation can be continued for a long period of time. Therefore, the present invention has been made based on the above knowledge, and provides a primary and secondary fluidized bed furnace equipped with a single hearth and an overflow port to process a raw material powder containing metal sulfide as a main component. In the method of fluidized fluidized roasting using an oxygen-containing gas, the raw material powder is the raw material powder that has been crushed, and this is charged in a dry state from the top of the primary fluidized fluidized furnace together with the transport layer dry dust. 2, and the particles of the roasted and calcined product are discharged from the overflow port.
Next, while adjusting the amount overflowing to the fluidized fluidized furnace,
Either low-temperature roasting is performed at a temperature of 1000℃ and then sent to the secondary fluidized fluidized furnace, or a portion of the overflowed roasted and calcined material is taken out and recycled as raw material powder without being sent to the secondary fluidized fluidized furnace. In addition, in the secondary fluidized flow furnace,
The dry crushed material of the raw material powder containing metal sulfide as a main component is blown into the fluidized bed, and the temperature range is 1300 to 1400℃ while adjusting the overflow amount of the low sulfur metal oxide powder product from the overflow port. It is characterized by producing low-sulfur metal oxides from metal sulfides at low cost by roasting them at high temperatures. In addition, in the fluidized roasting method of this invention, the raw material powder is charged into the primary fluidized fluidized furnace in a dry state because if the raw material contains more than a predetermined amount of moisture, the raw material loading of the fluidized fluidized furnace is The raw material becomes soft and lumpy at the entrance.
This is because there is a risk of blocking the ore supply chute. For example, if the raw material contains about 1% by weight of water, the ore feed chute will become clogged after about one hour of operation. In addition, the roasting temperature in the primary fluidized furnace is set to 900~
The reason why we set the temperature to 1000℃ is because if the roasting temperature is below 900℃, the residence time of the calcined material in the furnace will have to be extremely long, leading to a decrease in operational efficiency or an increase in the size of the fluidized roasting furnace equipment. On the other hand, if the roasting temperature exceeds 1000°C, the calcined materials in the fluidized bed furnace will exhibit a phenomenon in which they fuse together, leading to deterioration of fluidity and eventually rendering it impossible to operate. Furthermore, the roasting temperature in the secondary fluidized furnace was increased to 1300~
The reason for setting it at 1400℃ is that if the temperature is lower than 1300℃, the time required to reduce the residual sulfur in the roasted product to the desired value, that is, the residence time in the furnace, becomes longer, making efficient operation impossible. On the other hand, if the temperature exceeds 1,400°C, the calcined materials in the fluidized fluidized furnace will fuse together, and there is a risk that the refractories in the furnace will be melted and damaged. The roasting temperature in this secondary fluidized fluidized furnace also changes depending on the average particle size of the roasted product and the average reaction residence time. In the fluidized roasting method of the present invention, adjusting the amount of roasted and calcined material and roasted products overflowing from the overflow ports of the primary fluidized fluidized furnace and the secondary fluidized fluidized furnace is important in order to obtain high-quality products. It's important. This is because, in fluidized torrefaction, there is a large variation in the desulfurization rate due to short circuit overflow of the roasted calcined material, and the variation in the amount of overflowed roasted and calcined material, which is correlated with this, has traditionally been surprisingly important. They were not being looked at. However, this variation in desulfurization rate also
If the desulfurization rate is acceptable at a level of a few percent, it may not affect the quality of the product, but in the end it reaches 99.9%.
When aiming for a higher desulfurization rate, this cannot be ignored. Therefore, in the fluidized roasting method of the present invention, it is essential to adjust the overflow amount from the overflow port in order to stably obtain a high-quality product with no variation in desulfurization rate. be. Next, the fluidized roasting method of the present invention will be explained in more detail based on process diagrams. FIG. 2 is a schematic diagram showing the fluidized roasting process of the present invention. In Fig. 2, 21 is a raw material powder bin, and 22 is a container for collecting dry dust from the transport layer from the primary fluidized fluidized furnace using various dust collectors, and storing the dust transported by a chain conveyor with a water-cooled jacket. This is a dustbin that repeatedly collects powder. The raw material powder and the repeated dust are conveyed while being uniformly mixed by a pug mill 23, and charged into a primary fluidized fluidized furnace 24 by a rotary feeder with a gas seal. Reference numeral 25 is a gas cooler, in which the larger particle size of the rotating bed dry dust from the primary fluidized fluidized furnace is separated and recovered from the gas. The small-diameter dry dust in the transport layer that was not separated by the gas cooler 25 is transferred to the cyclone 2.
6, and further, the finest particles are separated and recovered from the gas in an electrostatic precipitator 27. dust content
The roasted gas whose concentration is less than 0.2 g/Nm 3 is sent to a sulfuric acid factory for sulfur dioxide gas recovery. Further, 28 is a secondary fluidized fluidized furnace, and the primary fluidized fluidized furnace 2
The roasted and calcined material overflowing from flow rate regulator 3
It flows in through 0. The low sulfur metal oxide produced by roasting in the secondary fluidized fluidized furnace 28 is passed from the overflow port of the secondary fluidized fluidized furnace to the product cooler 31 via a flow rate regulator 30'.
After cooling, it is packaged after passing the prescribed inspection.
The product will be shipped after the actual weight has been confirmed. In addition, 29 is a secondary fluidized fluidized furnace 28 in which dry fine powder, which is a raw material powder, is suspended in hot air and used as a transport layer dry fine powder.
It is a fluidized bed pot for stable pressure feeding to 3
2 is a burner for preheating the secondary fluidized furnace 28 together with the seed cinder at the start of operation. this is,
It can also be used in the unlikely event that an abnormal temperature drop occurs in the secondary fluidized flow furnace 28. Furthermore, Fig. 3 shows that a part of the roasted and calcined material overflowing from the primary fluidized fluidized furnace is not sent to the secondary fluidized fluidized furnace.
FIG. 2 is a schematic diagram showing a process for stabilizing the operation by mixing with the raw material charged in the primary fluidized bed furnace and recirculating it.
In addition, in FIG. 3, the same symbols are used for devices having the same functions as those in the fluidized roasting equipment shown in FIG. 2. The fluidized roasting process shown in FIG.
When the transport layer dry dust from No. 4 is granulated and roasted too much in the primary fluidized fluidized furnace and there is insufficient refrigerant to the primary fluidized fluidized furnace 24, the roasted dust that cannot become the transport layer dry dust in the primary fluidized fluidized furnace is A part of the calcined product is transferred to the primary fluidized furnace 24.
From the flow rate regulator 30″ to the roasted and calcined product cooler 3
3, and instead of sending it to the secondary fluidized fluidized furnace 28, it is mixed with the raw material powder in the pug mill 23 and used for circulation, so that it can function as a refrigerant, but at the same time, it can be used in extreme cases such as causing poor flow. The effect of suppressing the granulation phenomenon in the fluidized fluidized furnace is achieved, and smooth operation can be continued for a long period of time. Next, the present invention will be explained using examples and comparing with comparative examples. First, raw materials for examples of the present invention and raw materials for comparative examples as shown in Table 1 were prepared. In the examples of the present invention, the raw material was dry powder itself, and in the comparative example, it was pellets containing 7.5% moisture. In addition, the example of the present invention used the apparatus shown in the process diagram of FIG. 3, and the comparative example used the apparatus shown in the process diagram of FIG. 1 to carry out actual operation. It is something. The operating conditions at this time and the results obtained are also shown in Table 1. Both the method of the present invention and the comparative method are two-stage roasting methods, guaranteeing that the residual sulfur in the product is 0.02 weight or less, both can be operated using only air oxygen, and the product is roasted in a fluidized fluidized furnace. Since there is only overflowing cinder, they are similar in that there is almost no flow below 65 mesh, but the hearth sky velocity is

【表】【table】

【表】 の21.9cm/secに比して比較法では原料がペレツ
ト状で粒径が大であるために46.8cm/secと格段
に大きくせざるを得ない。しかも、比較法では、
ペレツトが流動炉内で原型を止め得ないため、単
位床面積当りの生産量がやや少なくなつている。 また、比較法では、1次流動炉の焙焼温度を
1204℃と高くしており、平均反応滞留時間も5.24
時間となし、風箱圧力も7730mm水柱として、2次
流動炉における助燃剤の使用を節減するようにし
ているが、本発明法では、大塊マツト原料を破砕
する際に必然的に発生する原料粉末の乾燥微細粉
によつて助燃剤たる油の代用をなさしめるもの
で、1次流動炉における焙焼温度は940℃と低く
て良く、平均反応滞留時間も3時間前後と少な
く、送風量も少なくなつて、風箱圧力は3500mm水
柱と低くでき、動力使用量の節減に大きな効果を
発揮できることが明らかである。 また、2次流動炉においては、本発明法は焙焼
温度を高くしているので、平均滞留時間が1.0時
間と、比較法の2.26時間に比して格段に短かくな
り、炉の内容積単位面積当りの生産性も良好とな
つている。 さらに、排ガス中の亜硫酸ガス濃度も、本発明
方法では非常に高くなつており、排ガス回収能率
および回収コストを良好にできることが前記結果
から明らかである。 なお、この実施例においては、ニツケルマツト
に関する流動焙焼法について述べたが、例えば硫
化亜鉛精鉱等、他の金属硫化物の焙焼に本発明方
法を適用しても良好な結果を得ることができるこ
とはもちろんのことである。 上述のように、この発明によれば、安定した操
業のもとに、金属硫化物から、低コストで効率良
く、低硫黄金属酸化物を生産することができ、副
産物である精鉱からの硫黄の硫酸化得率も著しく
向上し、公害防止にも大きく寄与し得るなど工業
上有用な効果がもたらされるのである。
Compared to the 21.9 cm/sec in [Table], the comparative method has to use a much larger value of 46.8 cm/sec because the raw material is in the form of pellets and the particle size is large. Moreover, in comparative law,
Since the pellets cannot be kept in their original shape in the fluidized fluidized furnace, the production volume per unit floor area is slightly lower. In addition, in the comparative method, the roasting temperature of the primary fluidized furnace is
The temperature is as high as 1204℃, and the average reaction residence time is 5.24℃.
The time and wind box pressure are set to 7,730 mm water column to reduce the use of combustion improver in the secondary fluidized fluidized furnace. The dry fine powder is used as a substitute for oil as a combustion aid, and the roasting temperature in the primary fluidized fluidized furnace is as low as 940°C, the average reaction residence time is as short as around 3 hours, and the air flow rate is also low. It is clear that the wind box pressure can be lowered to 3500mm water column, which has a great effect on reducing power consumption. In addition, in the secondary fluidized fluidized furnace, the method of the present invention raises the roasting temperature, so the average residence time is 1.0 hours, which is much shorter than the 2.26 hours of the comparative method, and the internal volume of the furnace is Productivity per unit area has also improved. Furthermore, the concentration of sulfur dioxide gas in the exhaust gas is also very high in the method of the present invention, and it is clear from the above results that the exhaust gas recovery efficiency and recovery cost can be improved. Although this example describes the fluidized roasting method for nickel pine, good results can also be obtained by applying the method of the present invention to roasting other metal sulfides, such as zinc sulfide concentrate. Of course it is possible. As described above, according to the present invention, low-sulfur metal oxides can be efficiently produced from metal sulfides at low cost under stable operation, and sulfur from the by-product concentrate can be produced. The yield rate of sulfation is also significantly improved, and industrially useful effects such as greatly contributing to pollution prevention are brought about.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の金属硫化物流動焙焼法の工程
図、第2図は本発明の流動焙焼法の工程図、第3
図は本発明の別の流動焙焼法の工程を示す図面で
ある。 図面において、1…ヘツドタンク、2…デスク
フイルター、3…ロータリービン、4…ボーリン
グデスク、5…二重ロツク式フイダー、6…1次
流動炉、7…インピンジメントプレート、8…サ
イクロン、9…電気集塵器、10…リパルピング
ダンク、11…エアーリフター、12…2次流動
炉、13…冷却器、21…原料粉末ビン、22…
ダストビン、23…パグミル、24…1次流動
炉、25…ガスクーラー、26…サイクロン、2
7…電気集塵器、28…2次流動炉、29…流動
床ポツト、30,30′,30″…流量調整器、3
1…製品冷却器、32…予熱バーナー、33…焙
焼仮焼物冷却器。
Figure 1 is a process diagram of the conventional metal sulfide fluidized roasting method, Figure 2 is a process diagram of the fluidized roasting method of the present invention, and Figure 3 is a process diagram of the fluidized roasting method of the present invention.
The figure is a drawing showing the steps of another fluidized roasting method of the present invention. In the drawings, 1...head tank, 2...desk filter, 3...rotary bin, 4...boring desk, 5...double lock type feeder, 6...primary flow furnace, 7...impingement plate, 8...cyclone, 9...electricity Dust collector, 10... Repulping dunk, 11... Air lifter, 12... Secondary fluidized furnace, 13... Cooler, 21... Raw material powder bin, 22...
Dust bin, 23... Pug mill, 24... Primary fluidized fluidized furnace, 25... Gas cooler, 26... Cyclone, 2
7... Electrostatic precipitator, 28... Secondary fluidized fluidized furnace, 29... Fluidized bed pot, 30, 30', 30''... Flow rate regulator, 3
1... Product cooler, 32... Preheating burner, 33... Roasting and calcined product cooler.

Claims (1)

【特許請求の範囲】 1 金属硫化物を主成分とする原料粉末を、単一
炉床と溢流口とを具備した1次及び2次流動炉を
用いて酸素含有ガスにより流動焙焼する方法にお
いて、前記原料粉末として塊状原料を破砕したま
まのものを使用し、これを乾燥状態で1次流動炉
の炉頂より輸送層乾燥ダストとともに装入し、か
つ焙焼仮焼物粒子が溢流口から2次流動炉へ溢流
する量を調整しながら、900〜1000℃の温度域で
まず低温焙焼し、さらに2次流動炉では、その流
動層へ金属硫化物を主成分とする前記原料粉末の
乾燥粉砕物を吹込むとともに溢流口からの低硫黄
金属酸化物粉末製品の溢流量を調整しながら、
1300〜1400℃の温度域で高温焙焼することを特徴
とする、金属硫化物から低硫黄金属酸化物を製造
するための流動焙焼法。 2 金属硫化物を主成分とする原料粉末を、単一
炉床と溢流口とを具備した1次及び2次流動炉を
用いて酸素含有ガスにより流動焙焼する方法にお
いて、前記原料粉末として塊状原料を破砕したま
まのものを使用し、これを乾燥状態で1次流動炉
の炉頂より輸送層乾燥ダストとともに装入し、か
つ焙焼仮焼物粒子が溢流口から2次流動炉へ溢流
する量を調整しながら、900〜1000℃の温度域で
まず低温焙焼するとともに、溢流した焙焼仮焼物
の一部を取り出してこれを2次流動炉へ送ること
なく原料粉末として循環使用し、さらに2次流動
炉では、その流動層へ金属硫化物を主成分とする
前記原料粉末の乾燥粉破物を吹込むとともに溢流
口からの低硫黄金属酸化物粉末製品の溢流量を調
整しながら、1300〜1400℃の温度域で高温焙焼す
ることを特徴とする、金属硫化物から低硫黄金属
酸化物を製造するための流動焙焼法。
[Claims] 1. A method of fluidized roasting of a raw material powder containing metal sulfide as a main component using an oxygen-containing gas using a primary and secondary fluidized fluidized furnace equipped with a single hearth and an overflow port. In this method, as the raw material powder, the raw material powder is used as it is, and it is charged in a dry state from the top of the primary fluidized fluidized furnace together with the transport layer dry dust, and the roasted and calcined product particles are passed through the overflow port. While adjusting the amount that overflows from the raw material to the secondary fluidized fluidized furnace, it is first roasted at a low temperature in a temperature range of 900 to 1000°C, and then in the secondary fluidized fluidized furnace, the raw material containing metal sulfides as the main component is transferred to the fluidized bed. While blowing in the dry pulverized powder and adjusting the overflow amount of the low sulfur metal oxide powder product from the overflow port,
A fluidized roasting method for producing low-sulfur metal oxides from metal sulfides, which is characterized by high-temperature roasting in a temperature range of 1300 to 1400°C. 2. In a method of fluidized roasting a raw material powder containing metal sulfide as a main component using an oxygen-containing gas using a primary and secondary fluidized fluidized furnace equipped with a single hearth and an overflow port, as the raw material powder The crushed raw material is used as it is, and it is charged in a dry state from the top of the primary fluidized fluidized furnace together with the transport layer dry dust, and the roasted and calcined material particles are transferred from the overflow port to the secondary fluidized fluidized furnace. While adjusting the amount of overflow, we first perform low-temperature roasting in a temperature range of 900 to 1000℃, and then take out a portion of the overflowed calcined material and use it as raw material powder without sending it to the secondary fluidized fluidized furnace. Furthermore, in the secondary fluidized bed furnace, the dried powdered powder containing metal sulfide as the main component is blown into the fluidized bed, and the amount of overflow of the low sulfur metal oxide powder product from the overflow port is increased. A fluidized roasting method for producing low-sulfur metal oxides from metal sulfides, which is characterized by high-temperature roasting in a temperature range of 1300 to 1400°C while adjusting the temperature.
JP6066782A 1982-04-12 1982-04-12 Fluidized roasting for metal sulfide Granted JPS58176108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6066782A JPS58176108A (en) 1982-04-12 1982-04-12 Fluidized roasting for metal sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6066782A JPS58176108A (en) 1982-04-12 1982-04-12 Fluidized roasting for metal sulfide

Publications (2)

Publication Number Publication Date
JPS58176108A JPS58176108A (en) 1983-10-15
JPS642649B2 true JPS642649B2 (en) 1989-01-18

Family

ID=13148905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6066782A Granted JPS58176108A (en) 1982-04-12 1982-04-12 Fluidized roasting for metal sulfide

Country Status (1)

Country Link
JP (1) JPS58176108A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5260065B2 (en) * 2008-01-29 2013-08-14 アイシン高丘株式会社 Evaporative zinc recovery unit
JP6634974B2 (en) * 2016-06-24 2020-01-22 住友金属鉱山株式会社 Method for producing nickel oxide
JP6561924B2 (en) * 2016-06-24 2019-08-21 住友金属鉱山株式会社 Method for producing nickel oxide
JP6561925B2 (en) * 2016-06-24 2019-08-21 住友金属鉱山株式会社 Nickel oxide manufacturing method, fluid roasting furnace
JP6729126B2 (en) * 2016-07-21 2020-07-22 住友金属鉱山株式会社 Nickel oxide manufacturing method, fluidized roasting furnace
JP6708038B2 (en) * 2016-07-21 2020-06-10 住友金属鉱山株式会社 Method for producing nickel oxide

Also Published As

Publication number Publication date
JPS58176108A (en) 1983-10-15

Similar Documents

Publication Publication Date Title
SU1674694A3 (en) Method and apparatus for preparing molten iron-containing materials from finely divided ore
US5584910A (en) Process for producing molten pig iron or molten steel pre-products
KR100584745B1 (en) An apparatus and method for recycling dust and sludge containing iron ironmaking process using coal and fine ore
US9181594B2 (en) Process and device for producing pig iron or liquid steel precursors
US5338336A (en) Method of processing electric arc furnace dust and providing fuel for an iron making process
US2855290A (en) Method of reducing iron oxide to sponge iron
CN110283996A (en) A kind of smelting process of energy-saving and environment-friendly copper-contained sludge
US3094409A (en) Method for roasting sulfides
EP1900828A1 (en) Method for producing feed material for molten metal production
KR100584732B1 (en) Recycling method of waste material by using of coal based iron making process
CA1149175A (en) Recovery of steel from high phosphorous iron ores
US3663207A (en) Direct process for smelting of lead sulphide concentrates to lead
CA2219415A1 (en) Process for recovering metals from iron oxide bearing masses
US5259865A (en) Very low slag iron making process
JPS642649B2 (en)
CN111455122B (en) Method for separating vanadium, titanium and iron from vanadium-titanium magnetite
CN110616334B (en) Method for cooperatively treating semicoke and zinc-containing dust
JPH0428764B2 (en)
KR100376506B1 (en) Method for agglomerating iron ore fines for coal based iron making using waste sludge
EA037686B1 (en) Method and apparatus for treating a leaching residue of a sulfur-containing metal concentrate
JPH07228910A (en) Method and equipment for manufacturing iron
JPH1053820A (en) Treatment of metal compounds of steel dust, sludge and/ or ore
US2855287A (en) Fluid bed roasting method for separating and recovering cd-pb-zn components
US5320676A (en) Low slag iron making process with injecting coolant
CN1566379A (en) Copper-zinc separation method during smelting in a blast furnace