JPS642582B2 - - Google Patents

Info

Publication number
JPS642582B2
JPS642582B2 JP19558881A JP19558881A JPS642582B2 JP S642582 B2 JPS642582 B2 JP S642582B2 JP 19558881 A JP19558881 A JP 19558881A JP 19558881 A JP19558881 A JP 19558881A JP S642582 B2 JPS642582 B2 JP S642582B2
Authority
JP
Japan
Prior art keywords
acid
phenylene
group
formula
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19558881A
Other languages
Japanese (ja)
Other versions
JPS5899457A (en
Inventor
Tsuneo Hagiwara
Hiroshi Matsuzawa
Kaoru Iwata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP19558881A priority Critical patent/JPS5899457A/en
Publication of JPS5899457A publication Critical patent/JPS5899457A/en
Publication of JPS642582B2 publication Critical patent/JPS642582B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は可芖光線にも感光する新芏光架橋型ポ
リ゚ステルの原料ずしお有甚なプニレンビス
α―シアノブタゞ゚ンカルボン酞又はその゚
ステル誘導䜓及びその補造方法に関する。 埓来、玫倖線によ぀お光架橋反応光二重化反
応に䞍溶化するタむプの感光性暹脂ずしおはケ
むヒ酞゚ステル、カルコン、ベンゞリデンアセト
ン、ケマリン等を偎鑚に有するポリマヌが皮々知
られ、その䞭でもポリビニルシンナメヌトはレゞ
スト甚暹脂或いはオフセツト甚PS版ずしお実甚
化されおいる。たた䞻鑚に感光基を組みこんだも
のずしおは、プニレンゞアクリル酞を酞成分ず
するポリ゚ステルが知られ耐摩耗性、感脂性に優
れたPS版ずしお実甚に䟛されおいる。 䞀方、近幎レヌザヌ光線を䜿぀た印刷技術が新
聞印刷分野に浞透しお来おいる。かかる補版装眮
に甚いられるレヌザヌ光源ずしおはアルゎンむオ
ンレヌザヌやヘリりムネオンレヌザヌの劂く、比
范的長波長の可芖光線を出す光源ずしお䞻に甚い
られおいる。わずかに、アルゎンレヌザヌの玫倖
郚の光も利甚可胜ではあるが可芖域の光匷床に比
べおはるかに匱く、玫倖光を利甚するには倧出力
のレヌザヌ光源が必芁ずなる。埓぀お、埓来の玫
倖線タむプの感光性暹脂はレヌザヌ補版分野には
極めお制限された䜿い方しか出来ない。かかる芳
点から、可芖光線に鋭敏に感光する感光材料に察
する芁望が高た぀おいる。 本発明者らは䞍飜和カルボン酞゚ステル類の共
圹数を䌞ばすこずにより吞収スペクトルが著しく
長波長シフトするこずに着目し、可芖光感光性ポ
リマヌに適した酞成分に぀いお鋭意研究した結
果、プニレンビスα―シアノブタゞ゚ン酞
を酞成分ずすれば埗られるポリ゚ステルがアルゎ
ンレヌザヌの可芖域の光でも感光するこずを芋出
し本発明に到達した。 即ち本発明は  䞋蚘䞀般匏〔〕 〔䜆し、匏䞭は同䞀若しくは異なり氎玠原子
及び炭玠原子数〜10の䞀䟡の脂肪族炭化氎玠基
からなる矀から遞ばれる基であり、Arは―フ
゚ニレン基又は―プニレン基を衚わす。〕 で衚わされるプニレンビスα―シアノブタゞ
゚ンカルボン酞又はその゚ステル誘導䜓であ
り、  䞋蚘䞀般匏〔〕 OCH−CHCH−Ar−CHCH−CHO
  〔〕 〔〔䜆し、匏䞭Arは―プニレン基又は―
プニレン基を衚わす。〕 で衚わされるプニレンビスアクロレむンず 䞋蚘䞀般匏〔〕 〔䜆し、匏䞭R′は氎玠原子及び炭玠原子数
〜10の䞀䟡の脂肪族炭化氎玠基からなる矀から遞
ばれる基である。〕 で衚わされるα―シアノ酢酞又はその゚ステル誘
導䜓ずを脱氎瞮合せしめるこずを特城ずする 䞋蚘䞀般匏〔〕 〔䜆し、Ar及びは前蚘定矩の通りである。〕 で衚わされるプニレンビスα―シアノブタゞ
゚ンカルボン酞又はその゚ステル誘導䜓の補造
法であり、  䞋蚘䞀般匏〔〕 〔䜆し、匏䞭Arは―プニレン又は―フ
゚ニレン基を衚わす。〕 で衚わされるプニレンビスα―シアノブタゞ
゚ンカルボン酞ず 䞋蚘䞀般匏〔〕 ROH   〔〕 〔䜆し、匏䞭は炭玠原子数〜10の䞀䟡の脂
肪族炭化氎玠基を衚わす。〕 で衚わされるアルコヌルずを゚ステル化反応せし
めるこずを特城ずする 䞋蚘䞀般匏〔〕 〔䜆し、匏䞭Ar及びは前蚘定矩の通りであ
る。〕 で衚わされるプニレンビスα―シアノブタゞ
゚ンカルボン酞の゚ステル誘導䜓の補造法であ
る。 本発明においお甚いられる前蚘匏〔〕で瀺さ
れるプニレンビスα―シアノブタゞ゚ンカル
ボン酞又はその゚ステル誘導䜓に぀いお詳述す
る。匏䞭は氎玠原子又は炭玠原子数〜10から
なる䞀䟡の脂肪族炭化氎玠基又はである。奜適に
甚いられる脂肪族炭化氎玠基ずしおは〜の盎
鎖又は枝分れのアルキル基であり、具䜓䟋ずしお
はメチル、゚チル、―プロピル、む゜プロピ
ル、―ブチル、む゜ブチル、―アミル、む゜
アミル、―゚チルヘキシル基などが挙げられ
る。䞀方、Arは―プニレン及び―プニ
レン基である。 次に本発明の別の偎面である前蚘匏〔〕で瀺
されるプニレンビスα―シアノブタゞ゚ンカ
ルボン酞又はその゚ステル誘導䜓の補造法に぀
いお蚀及する。 前蚘匏〔〕で瀺されるプニレンビスα―
シアノブタゞ゚ンカルボン酞又はその゚ステル
誘導䜓は、前蚘匏〔〕で瀺されるプニレンゞ
アクロレむンず前蚘匏〔〕で瀺されるα―シア
ノ酢酞又はその゚ステル誘導䜓を脱氎瞮合せしめ
るこずにより埗られる。 原料ずしお甚いられるプニレンゞアクロレむ
ン及びα―シアノ酢酞及びその゚ステル誘導䜓は
工業的に入手可胜である。 反応の䞀般的な実斜態様はプニレンゞアクロ
レむンモルに察しお少なくずもモル以䞊のα
―シアノ酢酞又ぱステル誘導䜓を、奜たしくは
溶媒䞭で觊媒反応促進剀の存圚䞋に垞枩もし
くは加熱反応せしめる。 α―シアノ酢酞のモル数は䞀般的にはプニレ
ンゞアクロレむンモルに察しお〜10モル、奜
たしくは〜モルの範囲で甚いられる。それ以
䞋では未反応のアルデヒドが残るため反応物䞭に
原料のプニレンゞアクロレむンが残぀たり、た
たはアルデヒド基の䞀方が脱氎瞮合したものが副
生成するために奜たしくない。たた、それ以䞊で
はα―シアノ酢酞たたぱステルを過剰に加える
意味がないばかりか、過剰分の未反応のα―シア
ノ酢酞又ぱステルを倧量に陀去しなければなら
ず奜たしくない。 反応に際しおは、無機系或いは有機系の塩基觊
媒が奜たしく甚いられる。前者ずしおはリチり
ム、ナトリりム、カリりム、カルシりム、バリり
ム、マグネシりム等のアルカリ金属或いはアルカ
リ土類金属類或いはそれらの氎酞化物酞化
物氎玠化物炭酞塩、酢酞塩等の無機、有機
塩アルコキサむド類が挙げられる。埌者ずしお
は、アンモニア、メチルアミン、゚チルアミン、
ブチルアミン、シクロヘキシルアミン等の玚ア
ミンゞ゚チルアミン、ゞブチルアミン、ピペリ
ゞン、ピポリゞン、モルホリン等の玚アミン
類トリ゚チルアミン、トリブチルアミン、―
メチルピペリゞン、―メチルモルホリン等の
玚アミン類ピリゞン誘導䜓等のアミン類或
いは炭酞塩、酢酞塩等の無機、有機塩が挙げられ
る。たた、―メチルピロリドン、―ゞメ
チルホルムアミド等の塩基性溶媒も觊媒ずなりう
る。 䞀般に枩和な条件では觊媒は消費されるこずが
ないので觊媒量即ちプニレンゞアクロレむン
モルに察しお0.001〜モル、奜たしくは0.01〜
0.5モルの範囲で甚いられる。この堎合は原料に
甚いる前蚘匏〔〕で瀺されるα―シアノ酢酞又
はその゚ステル誘導䜓のR′は化孊倉化しない。
埓぀お生成物の前蚘匏〔〕で瀺されるプニレ
ンビスα―シアノブタゞ゚ンカルボン酞又は
その゚ステル誘導䜓のはR′ず同じものである。 それに察しお、゚ステル加氎分解を䌎うような
条件䞋、䟋えば、アルカリ金属等を甚いお氎䞭で
反応を行う堎合においおは、α―シアノ酢酞゚ス
テル誘導䜓のR′の皮類によらず、生成物のが
氎玠原子の圢、蚀いかえればカルボン酞の圢で埗
られる。かかる堎合は促進剀は反応の進行に䌎぀
お消費されるためアルデヒド基に察しお等圓量以
䞊添加される。 本発明においお甚いられる反応溶媒ずしおは、
氎メタノヌル、゚タノヌル、プロパノヌル、ブ
タノヌル等のアルコヌル類ゞ゚チル゚ヌテル、
ゞむ゜プロピル゚ヌテル、テトラヒドロフラン、
ゞオキサン等の゚ヌテル類アセトン、メチル゚
チルケトン、メチルむ゜ブチルケトン等のケトン
類ゞクロルメタン、クロロルム、テトラクロロ
゚タン、トリクロロ゚タン等のハロゲン化炭化氎
玠―ヘキサン、―ヘプタン、シクロヘキサ
ン、ベンれン、トル゚ン、キシレン等の炭化氎玠
溶媒酢酞゚チル、酢酞ブチル等の゚ステル系溶
媒ゞメチルホルムアミド、ゞメチルアセトアミ
ド、―メチルピロリドン、ヘキサメチルホスホ
ルアミド、テトラメチル尿玠等の非プロトン系極
性溶剀等が甚いられる。溶剀は単独でも混合溶媒
系でもよい。 反応枩床ずしおは−30℃〜80℃、奜たしくは−
10℃〜50℃の範囲で行われる。それ以䞋では反応
の進行が遅く実質的ではない。それ以䞊では副生
成物が生ずるため奜たしくない。 反応時間は反応枩床にも䟝存するが分〜72時
間、奜たしくは分〜36時間の範囲で行われる。
それ以䞋では反応が完結しないため奜たしくな
く、それ以䞊では時間を延ばす意味がなく、たた
工業的補造の芳点からも奜たしくない。 なお本発明においおは溶媒の皮類によ぀おは均
䞀系で進行するが、䞍均䞀系でも行われる。かか
る堎合でも原料に甚いられる前蚘匏〔〕で瀺さ
れるプニレンゞアクロレむンは郚分的に溶解
し、反応に䟛され、生成物が再び沈柱しおくる。 次に、本発明のもう぀の補造法である前蚘匏
〔〕で瀺されるプニレンビスα―シアノブ
タゞ゚ンカルボン酞ず前蚘匏〔〕で瀺される
アルコヌルずを゚ステル化反応せしめお前蚘匏
〔〕で瀺されるプニレンビスα―シアノブ
タゞ゚ンカルボン酞の゚ステルの補造法に぀い
お詳述する。 䞀般的な実斜態様は、カルボン酞をアルコヌル
䞭で゚ステル化觊媒の存圚䞋で加熱反応せしめ
る。前蚘匏〔〕で瀺されるアルコヌル䞭の
R′に぀いおは前蚘匏〔〕で瀺されるプニレ
ンビスα―シアノブタゞ゚ンカルボン酞゚ス
テルのの項で説明した炭化氎玠基ず同じであ
る。カルボン酞モルに察しおアルコヌルはモ
ル〜500モル、奜たしくはモル〜200モル䜿甚さ
れる。 䜿甚される觊媒は䞀般の゚ステル化觊媒、䟋え
ば硫酞、リン酞、塩化氎玠等の無機酞、メタンス
ルホン酞、―トル゚ンスルホン酞、ベンれンス
ルホン酞等の有機酞が甚いられる。 たた反応枩床は−30℃〜200℃、奜たしくは−
10℃から150℃の範囲で行われる。それ以䞋では
反応は十分進行しないため奜たしくないし、又そ
れ以䞊では奜たしくない副反応を惹起するため奜
たしくない。 反応時間は反応枩床にも䟝存するが10分〜48時
間、奜たしくは30分〜24時間の範囲で行われる。
それ以䞋では反応が十分完結しないし、それ以䞊
では反応を延長する意味がないため奜たしくな
い。この堎合も反応は必ずしも均䞀系で進行する
ばかりでなく䞍均䞀系でも行われる。かかる堎合
でも原料は埐々に溶解し、反応し、再び生成物が
析出しおくる。 かくしお埗られたプニレンビスα―シアノ
ブタゞ゚ンカルボン酞及びその゚ステル誘導䜓
は再結晶等の方法により粟補するこずが出来る。
たた、その構造や玔床は元玠分析法、栞磁気共鳎
スペクトル法、赀倖吞収スペクトル法、玫倖可芖
吞収スペクトル法、クロマトグラフむヌ法等によ
り確認するこずが出来る。 本発明によ぀お埗られたプニレンビスα―
シアノブタゞ゚ン酞及びその誘導䜓は可芖光感
光型ポリ゚ステルの原料ずしお有甚であり、レゞ
スト甚暹脂、レヌザヌ感光性ダむレクト補版甚暹
脂等の圢態で、広く情報゚レクトロニクス分野、
印刷分野等の分野に䜿われるものである。 以䞋実斜䟋により本発明を詳述する。䜆し本発
明はこれに限定されるものではない。なお、実斜
䟋䞭、郚ずあるものはすべお重量郚のこずであ
る。 実斜䟋  䞉ツ口フラスコに、氎3000郚ず苛性゜ヌダ88郚
を入れ、ここにシアノ酢酞メチル202郚を入れた。
50℃に加枩し時間撹拌するず均䞀にな぀た。次
いで―プニレンゞアクロレむン168郚を入れ
窒玠雰囲気䞭、70〜80℃で加熱撹拌するず時間
ほどで反応混合物が均䞀にな぀た。攟冷し、酞性
になるたで濃塩酞を加えるず赀色固䜓が析出しお
きた。これを過しおずり、充分氎掗埌也燥する
ず、260郚収率84の―プニレンビス
α―シアノブタゞ゚ンカルボン酞―を
䞎えた。この化合物の融点は300℃以䞊であ぀た。
赀倖スペクトル、元玠分析倀は衚に瀺した。 実斜䟋  ―プニレンビスα―シアノブタゞ゚ンカ
ルボン酞―33.6郚を正ブタノヌル3000
郚に入れ、曎に濃硫酞60郚を入れ加熱還流を行぀
たずころ、〜時間で反応混合物が均䞀にな぀
た。これを攟冷するず、赀橙色の針状結晶が析出
しおきた。過しおこの結晶をずり、也燥するず
―プニレンビスα―シアノブタゞ゚ンカル
ボン酞―ブチル―が37.3収率86
埗られた。 このものの 1HNMRスペクトルは䞋蚘の倀を
瀺した。 1HNMRCDCl3Ύ 0.76〜2.40 14H 4.30 4H 6.9〜8.2 7.68 10H たた、このもののアセトニトリル䞭での玫倖―
可芖スペクトルではλmaxが390nmに芳枬され
た。ゞオキサン―む゜プロパノヌルで再結晶する
ず融点は186〜187℃であり、赀倖スペクトル、元
玠分析は衚に瀺した。 実斜䟋  ―プニレンビスα―シアノブタゞ゚ンカ
ルボン酞33.6郚を―゚チルヘキシルアルコヌ
ル500郚に入れ、曎に濃硫酞50郚を入れ加熱還流
を行぀た。時間ほどで反応混合物は均䞀ずな
り、これを攟冷するず橙色の針状結晶が析出し
た。過しおずり也燥するず―プニレンビス
α―シアノブタゞ゚ン酞゚チルヘキシル
―が40郚収率69で埗られた。この化合
物はむ゜プロパノヌルで再結晶するず145〜146℃
であり、赀倖スペクトル、元玠分析は衚に瀺し
た。 実斜䟋  ―プニレンゞアクロレむン18.6郚ずシアノ
酢酞20.4郚ずを、゚タノヌル1000郚に入れた。宀
枩で撹拌しながら觊媒であるピペリゞン郚を加
えた。宀枩で12時間撹拌するず反応混合物は赀橙
色ずな぀た。生成した固䜓を過しおずり、冷华
した゚タノヌル50郚で回ほど掗浄し、也燥した
ずころ―プニレンビスα―シアノブタゞ゚
ンカルボン酞―24郚収率71を埗
た。この化合物の赀倖スペクトル、融点ずも実斜
䟋のそれず䞀臎した。 実斜䟋 〜21 実斜䟋〜は実斜䟋ず同様に、シアノ酢酞
゚ステルCH3C2H5−C4H9を甚い
お反応を行぀た。実斜䟋〜12ではシアノ酢酞メ
チルを甚い、溶媒を倉えお合成反応を実斜した。
曎に、実斜䟋13〜21はシアノ酢酞メチルに、メタ
ノヌル溶媒を甚い、觊媒をそれぞれ倉えお合成反
応を実斜した。これらの結果は衚及び衚に瀺
した。 実斜䟋 22〜25 ―プニレンゞアクロレむンずシアノ酢酞
゚ステルずをアルコヌル溶媒䞭に入れ、ピペ
リゞンを觊媒ずしお合成反応を行぀た。これらの
結果は衚及び衚にたずめお瀺した。
The present invention relates to phenylene bis(α-cyanobutadienecarboxylic acid) or its ester derivative useful as a raw material for a new photocrosslinkable polyester sensitive to visible light, and a method for producing the same. Conventionally, various polymers having cinnamate ester, chalcone, benzylidene acetone, chemerin, etc. on their side have been known as photosensitive resins that are insolubilized by ultraviolet rays for photocrosslinking reaction (photoduplexing reaction), among which polyvinyl thinner is used. Mate has been put to practical use as a resist resin or an offset PS plate. In addition, polyester containing phenylene diacrylic acid as an acid component is known as a material in which a photosensitive group is incorporated into the main plate, and is used in practical use as a PS plate with excellent abrasion resistance and oil sensitivity. On the other hand, in recent years, printing technology using laser beams has been permeating the newspaper printing field. Laser light sources used in such plate-making apparatuses are mainly used as light sources that emit visible light with relatively long wavelengths, such as argon ion lasers and helium neon lasers. Although it is possible to use light in the ultraviolet region of an argon laser, it is much weaker than the light intensity in the visible range, and a high-output laser light source is required to use ultraviolet light. Therefore, conventional ultraviolet-type photosensitive resins can only be used in a very limited manner in the field of laser platemaking. From this point of view, there is an increasing demand for photosensitive materials that are sensitive to visible light. The present inventors focused on the fact that the absorption spectrum significantly shifts to longer wavelengths by increasing the number of conjugations of unsaturated carboxylic acid esters, and as a result of intensive research on acid components suitable for visible light-sensitive polymers, phenylene bis(α -cyanobutadienoic acid)
The present invention was achieved by discovering that the polyester obtained by using the acid component as an acid component is sensitized to light in the visible range of an argon laser. That is, the present invention has the following general formula [] [However, in the formula, R is the same or different, and is a group selected from the group consisting of a hydrogen atom and a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms, and Ar is a m-phenylene group or a p-phenylene group. represent. ] Phenylene bis(α-cyanobutadienecarboxylic acid) or its ester derivative represented by the following general formula [] OCH-CH=CH-Ar-CH=CH-CHO
...[] [[However, in the formula, Ar is m-phenylene group or p-
Represents a phenylene group. ] Phenylene bis-acrolein represented by and the following general formula [] [However, in the formula, R' is a hydrogen atom and a carbon atom number of 1
A group selected from the group consisting of ~10 monovalent aliphatic hydrocarbon groups. ] The following general formula [] is characterized by dehydration condensation with α-cyanoacetic acid or its ester derivative represented by [However, Ar and R are as defined above. ] A method for producing phenylenebis(α-cyanobutadienecarboxylic acid) or its ester derivative represented by the following general formula [] [However, in the formula, Ar represents m-phenylene or p-phenylene group. ] Phenylene bis(α-cyanobutadienecarboxylic acid) represented by the following general formula [] ROH ... [] [However, in the formula, R represents a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms. ] The following general formula [] is characterized by causing an esterification reaction with an alcohol represented by [However, in the formula, Ar and R are as defined above. ] This is a method for producing an ester derivative of phenylene bis(α-cyanobutadienecarboxylic acid) represented by the following. Phenylenebis(α-cyanobutadienecarboxylic acid) or its ester derivative represented by the above formula [] used in the present invention will be described in detail. In the formula, R is a hydrogen atom or a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms. Preferably used aliphatic hydrocarbon groups include 1 to 8 linear or branched alkyl groups, and specific examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, and n-amyl. , isoamyl, 2-ethylhexyl group, and the like. On the other hand, Ar is m-phenylene and p-phenylene groups. Next, a method for producing phenylene bis(α-cyanobutadienecarboxylic acid) or its ester derivative represented by the above formula [], which is another aspect of the present invention, will be described. Phenylene bis (α-
Cyanobutadienecarboxylic acid) or its ester derivative can be obtained by dehydration condensation of phenylenediacrolein represented by the above formula [] and α-cyanoacetic acid represented by the above formula [] or its ester derivative. Phenylenediacrolein and α-cyanoacetic acid and their ester derivatives used as raw materials are commercially available. A general embodiment of the reaction is at least 2 moles of α per mole of phenylenediacrolein.
- Cyanoacetic acid or ester derivatives are reacted at room temperature or by heating, preferably in a solvent in the presence of a catalyst (reaction promoter). The number of moles of α-cyanoacetic acid used is generally in the range of 2 to 10 moles, preferably 2 to 8 moles, per mole of phenylenediacrolein. If it is less than that, unreacted aldehyde remains, which is not preferable because the raw material phenylenediacrolein remains in the reaction product, or a by-product resulting from dehydration condensation of one of the aldehyde groups is produced. Further, if it is more than that, not only is there no point in adding excess α-cyanoacetic acid or ester, but also a large amount of excess unreacted α-cyanoacetic acid or ester must be removed, which is not preferable. In the reaction, an inorganic or organic base catalyst is preferably used. The former includes alkali metals or alkaline earth metals such as lithium, sodium, potassium, calcium, barium, and magnesium; or their hydroxides; oxides; hydrides; inorganic and organic salts such as carbonates and acetates; Examples include alkoxides. The latter include ammonia, methylamine, ethylamine,
Primary amines such as butylamine and cyclohexylamine; Secondary amines such as diethylamine, dibutylamine, piperidine, pipolidine, and morpholine; triethylamine, tributylamine, N-
3 such as methylpiperidine, N-methylmorpholine, etc.
Class amines: Examples include amines such as pyridine (derivatives), and inorganic and organic salts such as carbonates and acetates. Further, basic solvents such as N-methylpyrrolidone and N,N-dimethylformamide can also serve as catalysts. Generally, under mild conditions, the catalyst is not consumed, so the amount of catalyst, i.e. phenylenediacrolein 1
0.001 to 1 mole, preferably 0.01 to 1 mole
It is used in a range of 0.5 mol. In this case, R' of α-cyanoacetic acid or its ester derivative represented by the above formula [] used as a raw material does not undergo chemical change.
Therefore, R in the product phenylene bis(α-cyanobutadienecarboxylic acid) or its ester derivative represented by the above formula [] is the same as R'. On the other hand, when the reaction is carried out in water using conditions that involve ester hydrolysis, for example, using an alkali metal, the product R is obtained in the form of a hydrogen atom, in other words, in the form of a carboxylic acid. In such a case, the accelerator is consumed as the reaction progresses, so it is added in an equivalent or more amount to the aldehyde group. The reaction solvent used in the present invention is
Water; Alcohols such as methanol, ethanol, propanol, butanol; Diethyl ether,
diisopropyl ether, tetrahydrofuran,
Ethers such as dioxane; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; halogenated hydrocarbons such as dichloromethane, chlororum, tetrachloroethane, trichloroethane; n-hexane, n-heptane, cyclohexane, benzene, toluene, xylene, etc. Hydrocarbon solvents; ester solvents such as ethyl acetate and butyl acetate; aprotic polar solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, hexamethylphosphoramide, and tetramethylurea, etc. are used. The solvent may be used alone or in a mixed solvent system. The reaction temperature is -30°C to 80°C, preferably -
It is carried out in the range of 10°C to 50°C. Below that, the reaction progresses slowly and is not substantial. If it exceeds this range, by-products will be produced, which is not preferable. The reaction time is 1 minute to 72 hours, preferably 5 minutes to 36 hours, although it depends on the reaction temperature.
If it is less than that, the reaction will not be completed, which is not preferable, and if it is more than that, there is no point in prolonging the time, and it is also not preferable from the viewpoint of industrial production. In the present invention, the process may proceed in a homogeneous system depending on the type of solvent, but it may also be carried out in a heterogeneous system. Even in such a case, the phenylenediacrolein represented by the above formula [] used as a raw material is partially dissolved and subjected to the reaction, and the product is precipitated again. Next, according to another production method of the present invention, phenylene bis(α-cyanobutadienecarboxylic acid) represented by the above formula [] and the alcohol represented by the above formula [] are subjected to an esterification reaction to produce the above formula []. The method for producing the phenylene bis(α-cyanobutadiene carboxylic acid) ester shown will be described in detail. A common embodiment involves thermally reacting a carboxylic acid in an alcohol in the presence of an esterification catalyst. In the alcohol represented by the above formula []
R' is the same as the hydrocarbon group explained in the section of R of the phenylene bis(α-cyanobutadienecarboxylic acid) ester represented by the above formula []. Alcohol is used in an amount of 2 to 500 moles, preferably 2 to 200 moles, per mole of carboxylic acid. The catalyst used is a general esterification catalyst, such as inorganic acids such as sulfuric acid, phosphoric acid, and hydrogen chloride, and organic acids such as methanesulfonic acid, p-toluenesulfonic acid, and benzenesulfonic acid. The reaction temperature is -30℃ to 200℃, preferably -
It is carried out at a temperature ranging from 10℃ to 150℃. If it is less than that, the reaction will not proceed sufficiently, which is not preferable, and if it is more than that, it will cause undesirable side reactions, which is not preferable. The reaction time is 10 minutes to 48 hours, preferably 30 minutes to 24 hours, although it depends on the reaction temperature.
If it is less than that, the reaction will not be completed sufficiently, and if it is more than that, there is no point in prolonging the reaction, so it is not preferable. In this case as well, the reaction does not necessarily proceed in a homogeneous system, but also in a heterogeneous system. Even in such a case, the raw materials gradually dissolve and react, and the product precipitates out again. The thus obtained phenylenebis(α-cyanobutadienecarboxylic acid) and its ester derivatives can be purified by methods such as recrystallization.
Further, its structure and purity can be confirmed by elemental analysis, nuclear magnetic resonance spectroscopy, infrared absorption spectroscopy, ultraviolet-visible absorption spectroscopy, chromatography, etc. Phenylene bis(α-
Cyanobutadienoic acid) and its derivatives are useful as raw materials for visible light-sensitive polyesters, and are widely used in the information electronics field, in the form of resist resins, laser-sensitive direct plate-making resins, etc.
It is used in fields such as printing. The present invention will be explained in detail with reference to Examples below. However, the present invention is not limited to this. In the examples, all parts are by weight. Example 1 3000 parts of water and 88 parts of caustic soda were placed in a three-necked flask, and 202 parts of methyl cyanoacetate was added thereto.
After heating to 50°C and stirring for 1 hour, the mixture became homogeneous. Next, 168 parts of p-phenylenediacrolein was added and stirred under heating at 70 to 80°C in a nitrogen atmosphere, and the reaction mixture became homogeneous in about 3 hours. When the mixture was allowed to cool and concentrated hydrochloric acid was added until it became acidic, a red solid precipitated out. This was filtered, thoroughly washed with water, and then dried to give 260 parts (yield: 84%) of p-phenylenebis(α-cyanobutadienecarboxylic acid) (-a). The melting point of this compound was over 300°C.
The infrared spectrum and elemental analysis values are shown in Table 2. Example 2 33.6 parts of p-phenylenebis(α-cyanobutadienecarboxylic acid) (-a) was mixed with 3000 parts of normal butanol.
When the mixture was heated and refluxed with 60 parts of concentrated sulfuric acid, the reaction mixture became homogeneous in 5 to 6 hours. When this was allowed to cool, reddish-orange needle-shaped crystals were precipitated. When the crystals were filtered and dried, 37.3 g of p-phenylene bis(n-butyl α-cyanobutadienecarboxylate) (-b) was obtained (yield: 86
%) obtained. The 1 HNMR spectrum of this product showed the following values. 1 HNMR (CDCl 3 , ÎŽ) 0.76-2.40 (m) 14H 4.30 (t) 4H 6.9-8.2 (m) 7.68 (s) 10H Also, the ultraviolet rays of this product in acetonitrile -
In the visible spectrum, λmax was observed at 390 nm. When recrystallized from dioxane-isopropanol, the melting point was 186-187°C, and the infrared spectrum and elemental analysis are shown in Table 2. Example 3 33.6 parts of p-phenylenebis(α-cyanobutadienecarboxylic acid) was added to 500 parts of 2-ethylhexyl alcohol, and 50 parts of concentrated sulfuric acid was added thereto, followed by heating under reflux. The reaction mixture became homogeneous in about 4 hours, and when it was allowed to cool, orange needle-like crystals were precipitated. When filtered and dried, p-phenylene bis(α-cyanobutadienoic acid 2-ethylhexyl) (
-c) was obtained in 40 parts (yield 69%). When this compound is recrystallized from isopropanol, it reaches 145-146℃.
The infrared spectrum and elemental analysis are shown in Table 2. Example 4 18.6 parts of p-phenylenediacrolein and 20.4 parts of cyanoacetic acid were placed in 1000 parts of ethanol. While stirring at room temperature, 5 parts of piperidine as a catalyst was added. After stirring at room temperature for 12 hours, the reaction mixture turned red-orange. The produced solid was collected by filtration, washed twice with 50 parts of chilled ethanol, and dried to obtain 24 parts of p-phenylene bis(α-cyanobutadienecarboxylic acid (-a) (yield 71%)). The infrared spectrum and melting point of this compound were both consistent with those of Example 1. Examples 5 to 21 Examples 5 to 7 were similar to Example 4, with cyanoacetate (R=CH 3 , C 2 H 5 , n -C 4 H 9 ).In Examples 8 to 12, methyl cyanoacetate was used to carry out the synthesis reaction by changing the solvent.
Furthermore, in Examples 13 to 21, synthesis reactions were carried out using methyl cyanoacetate, methanol solvent, and different catalysts. These results are shown in Tables 1 and 2. Examples 22 to 25 m-phenylenediacrolein and cyanoacetic acid (ester) were placed in an alcohol solvent, and a synthetic reaction was carried out using piperidine as a catalyst. These results are summarized in Tables 3 and 4.

【衚】【table】

【衚】 衚䞭のは本文䞭のず同矩
[Table] Items in the table have the same meaning as in the main text.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】 参考䟋 実斜䟋ず同様な方法で反応を行぀た。 ―プニレンゞアクロレむン9.3郚ずシアノ
酢酞゚ステル
[Table] Reference Example A reaction was carried out in the same manner as in Example 4. 9.3 parts of p-phenylenediacrolein and cyanoacetic acid ester

【匏】を19.9郹甹 い、溶媒ずしおメタノヌル500郚、觊媒ずしおピ
ペリゞン郚を甚いお、12時間反応した。 生成物ずしお、 6.3郚収率24.6を埗た。
A reaction was carried out for 12 hours using 19.9 parts of [Formula], 500 parts of methanol as a solvent, and 5 parts of piperidine as a catalyst. As a product, 6.3 parts (yield 24.6%) were obtained.

Claims (1)

【特蚱請求の範囲】  䞋蚘䞀般匏 〔䜆し、匏䞭は同䞀若しくは異なり氎玠原子
及び炭玠原子数〜10の䞀䟡の脂肪族炭化氎玠基
からなる矀から遞ばれる基であり、Arは―フ
゚ニレン基又は―プニレン基を衚わす。〕 で衚わされるプニレンビスα―シアノブタゞ
゚ンカルボン酞又はその゚ステル誘導䜓。  䞋蚘䞀般匏 OCH−CHCH−Ar−CHCH−CHO
  〔䜆し、匏䞭Arは―プニレン基又は―
プニレン基を衚わす。〕 で衚わされるプニレンビスアクロレむンず 䞋蚘䞀般匏 〔䜆し、匏䞭は氎玠原子及び炭原子数〜10
の䞀䟡の脂肪族炭化氎玠基からなる矀から遞ばれ
る基である。〕 で衚わされるα―ゞアノ酢酞又はその゚ステル誘
導䜓ずを脱氎瞮合せしめるこずを特城ずする 䞋蚘䞀般匏 䜆し、Ar及びは前蚘定矩の通りである。 で衚わされるプニレンビスα―シアノブタゞ
゚ンカルボン酞又はその゚ステル誘導䜓の補造
法。  䞋蚘䞀般匏 〔䜆し、匏䞭Arは―プニレン又は―フ
゚ニレン基を衚わす。〕 で衚わされるプニレンビスα―シアノブタゞ
゚ンカルボン酞ず 䞋蚘䞀般匏 ROH    〔䜆し、匏䞭は炭玠原子数〜10の䞀䟡の脂
肪族炭化氎玠基を衚わす。〕 で衚わされるアルコヌルずを゚ステル化反応せし
めるこずを特城ずする 䞋蚘䞀般匏 〔䜆し、匏䞭Ar及びは前蚘定矩の通りであ
る。〕 で衚わされるプニレンビスα―シアノブタゞ
゚ンカルボン酞の゚ステル誘導䜓の補造法。
[Claims] 1. The following general formula [] [However, in the formula, R is the same or different, and is a group selected from the group consisting of a hydrogen atom and a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms, and Ar is a m-phenylene group or a p-phenylene group. represent. ] Phenylene bis(α-cyanobutadienecarboxylic acid) or its ester derivative represented by: 2 General formula below [] OCH-CH=CH-Ar-CH=CH-CHO
... [] [However, in the formula, Ar is m-phenylene group or p-
Represents a phenylene group. ] Phenylene bis-acrolein represented by and the following general formula [] [However, in the formula, R is a hydrogen atom and a carbon atom number of 1 to 10
A group selected from the group consisting of monovalent aliphatic hydrocarbon groups. ] The following general formula [] is characterized by dehydration condensation with α-dianoacetic acid or its ester derivative represented by [] [However, Ar and R are as defined above. ] A method for producing phenylene bis(α-cyanobutadienecarboxylic acid) or its ester derivative. 3 General formula below [] [However, in the formula, Ar represents m-phenylene or p-phenylene group. ] Phenylene bis (α-cyanobutadiene carboxylic acid) represented by the following general formula [] ROH ... [] [However, in the formula, R represents a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms. ] The following general formula [] is characterized by causing an esterification reaction with an alcohol represented by [However, in the formula, Ar and R are as defined above. ] A method for producing an ester derivative of phenylenebis(α-cyanobutadienecarboxylic acid) represented by:
JP19558881A 1981-12-07 1981-12-07 Phenylenebis(alpha-cyanobutadienecarboxylic acid) or its derivative and its preparation Granted JPS5899457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19558881A JPS5899457A (en) 1981-12-07 1981-12-07 Phenylenebis(alpha-cyanobutadienecarboxylic acid) or its derivative and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19558881A JPS5899457A (en) 1981-12-07 1981-12-07 Phenylenebis(alpha-cyanobutadienecarboxylic acid) or its derivative and its preparation

Publications (2)

Publication Number Publication Date
JPS5899457A JPS5899457A (en) 1983-06-13
JPS642582B2 true JPS642582B2 (en) 1989-01-18

Family

ID=16343636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19558881A Granted JPS5899457A (en) 1981-12-07 1981-12-07 Phenylenebis(alpha-cyanobutadienecarboxylic acid) or its derivative and its preparation

Country Status (1)

Country Link
JP (1) JPS5899457A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59118753A (en) * 1982-12-27 1984-07-09 Agency Of Ind Science & Technol Preparation of 5,5'-1,4-phenylene-bis(2-cyano-2,4- pentadienoic acid)dialkyl ester

Also Published As

Publication number Publication date
JPS5899457A (en) 1983-06-13

Similar Documents

Publication Publication Date Title
US5142098A (en) Methylidenemalonate esters derived from esters of 9,10-endoethano-9,10-dihydroanthracane-11,11-dicarboxylic acid
JP2740321B2 (en) Novel polyfunctional α-diazo-β-ketoesters, their preparation and use
HU198909B (en) Process for producing pyridine-dicarbocylic acid esters
YAMAMOTO et al. 1, 3-Oxazines and Related Compounds. XIII. Reaction of Acyl Meldrum's Acids with Schiff Bases Giving 2, 3-Disubstituted 5-Acy1-3, 4, 5, 6-tetrahydro-2H-1, 3-oxazine-4, 6-diones and 2, 3, 6-Trisubstituted 2, 3-Dihydro-1, 3-oxazin-4-ones
JPS61215399A (en) Phosphonate group-containing herbicide and manufacture of intermediate from benzoxazine
JPS642582B2 (en)
JP2001302685A (en) Method for producing organophosphorus compound
US4665197A (en) Process for preparing azetidine derivatives and intermediates thereof
JPS642109B2 (en)
JP5408821B2 (en) Naphthalocyanine compound and method for producing the same
US4182880A (en) 1,8-Naphthyridine compounds and process for preparing the same
US4772432A (en) 7,7,8,8,tetracyanoquinodimethane-2,5-ylene-(3-propionic acid) and derivatives thereof
JP3114244B2 (en) Sorbitol derivative
US4841096A (en) Cyclohexane-2,5-dione-1,4-ylene-bis (-3-propionic acid) derivatives and process for preparing the same
JP3022008B2 (en) Composition comprising a mixture of t-butoxy carbonates of trisphenols
JPH0229062B2 (en)
EP0452094A2 (en) A method of the preparation of N-hydroxy aspartic acid derivate
JP3563424B2 (en) Method for producing 4H-pyran-4-one
US4524216A (en) Method of preparing p-orsellinic acid esters
US4297503A (en) Novel benzamide derivative and method of preparing metoclopramide using same
JP3276522B2 (en) Method for producing guanamines
SU1145020A1 (en) Method of obtaining 3-carboxycoumarins
US5352827A (en) Synthesis of acyl cyanides in a hydrous reaction medium
SU1101442A1 (en) Process for preparing 10-styrylpyrimido (1,2-a)indol-2-ones
SU666166A1 (en) Method of obtaining c1-c2-aliphatic esters of o-trichlorovinyl benzol acid