JPS642414B2 - - Google Patents

Info

Publication number
JPS642414B2
JPS642414B2 JP58009084A JP908483A JPS642414B2 JP S642414 B2 JPS642414 B2 JP S642414B2 JP 58009084 A JP58009084 A JP 58009084A JP 908483 A JP908483 A JP 908483A JP S642414 B2 JPS642414 B2 JP S642414B2
Authority
JP
Japan
Prior art keywords
liquid
pressure pulse
droplets
droplet
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58009084A
Other languages
Japanese (ja)
Other versions
JPS59136127A (en
Inventor
Kyoji Uku
Shinji Kato
Hisashi Morikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP58009084A priority Critical patent/JPS59136127A/en
Publication of JPS59136127A publication Critical patent/JPS59136127A/en
Publication of JPS642414B2 publication Critical patent/JPS642414B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)
  • Spray Control Apparatus (AREA)

Description

【発明の詳細な説明】 本発明は液滴径のそろつた液滴群を生成する方
法およびそれに用いる装置に関する。 粒径のそろつた液滴群をうる方法として、オリ
フイス孔から生成する層流液体噴流に規則的な圧
力パルスを与え、該噴流を規則正しく等体積の液
滴群に分断する方法が知られている。 この方法は、Tomotika〔Proc.Roy.Soc.,
A150,322(1935)〕の液体柱の安定性に関する研
究により原理的に知られている。その機構は、液
体柱の表面に加えられた微小な乱れが時間ととも
に成長し、その振幅が液体柱の半径に等しくなり
液体柱が分断され、乱れの波長に応じ液滴が生成
されるというものである。したがつて、液体柱状
噴流の表面に周期的に微小な乱れを加えてやれば
粒径のそろつた液滴を生成させることが可能にな
る。 前記のオリフイス孔から生成する層流液体噴流
に規則的な圧力パルスを与える方法は、圧力パル
スにより層流液体噴流表面に微小な乱れを発生さ
せようというものである。 この分野の研究は、現在も数多くの研究者によ
り行なわれているが、液滴径の均一な液滴群をう
る方法としては未だ工業的に完成したものとはい
い難い。現在のところ、既往の定性的な研究よ
り、この方法で粒径のそろつた液滴を生成するた
めには液滴にすべき液体の物性、液滴を生成させ
る雰囲気の物性、オリフイス孔径、噴流速度によ
つて決まる適当な振動数を選べばよいことがわか
つている。しかし、どの程度の強さの振幅を与え
ればよいかということについては不明確であり、
従来、振動発生機構の消費電力が振幅の代わりに
用いられてきた。 たとえば、米国のHaasはAIChE Journal,vol
21,383(1975)で叙上の方法に基づき、バイブレ
ーターの往復振動で、1個のオリフイス孔と1個
の液体導入口よりなる液体容器に取り付けたピス
トンを動かして圧力パルスを発生させ、粒径のそ
ろつた液滴群を生成する装置を開示している。そ
のばあい、与える振動の強さはバイブレーターに
加える電力で設定されている。 また米国のYatesらはProceedings of
ICLAS′78,181(1978)で同じく叙上の方法に基
づき、圧電セラミツクの体積変化で121個のオリ
フイス孔と2個の液体導入口よりなる液体容器に
圧力パルスを発生させ、粒径のそろつた液滴群を
生成する装置を開示している。このばあい、与え
る振動の強さは圧電セラミツクに加える電力で設
定されている。 しかし、圧力パルスの振幅を振動発生機構(バ
イブレーター、圧電セラミツクなど)の消費電力
で代用することは、 (1) 振動発生機構には特性があり、消費電力と発
生する圧力パルスの関係は、振動発生機構によ
り異なる (2) 一般に装置は種々の固有振動数をもつてお
り、同じ振動発生機を用いた装置でも、消費電
力と発生する圧力パルスの関係は振動数により
変わる といつたことから普偏性に欠け、粒径のそろつた
液滴を生成できる電力の範囲は個々の液滴生成装
置によつて異なり、そのつどその範囲を測定しな
ければならないという欠点があつた。 本発明者らはこの方法に基づく液滴生成装置を
試作し、粒径のそろつた液滴を生成できる条件を
検討し、数種類の系で粒径のそろつた液滴を生成
することのできるオリフイス孔径、噴流速度、振
動数および振動発生機構の消費電力の範囲を求め
た。ここでいう液滴径のそろつた液滴を生成でき
る条件とは、ストロボスコープを用い液滴生成現
象を加えた圧力パルスの振動数で同期させること
ができたばあいの条件を意味する。同期しないば
あいでは、生成液滴の液滴径が不ぞろいであるこ
とは、たとえばHass〔AIChE J.vol21,383
(1975)〕の文献にも述べられているとおりであ
る。 実験の結果、液滴径のそろつた液滴を生成でき
る条件の範囲は系によつてはかなり狭い範囲のも
のもあり、また液滴径のそろつた液滴を生成する
ために必要とされる消費電力は装置の形状や振動
発生機構の種類によつて異なり、液滴径のそろつ
た液滴を生成するための制御因子として不適当で
あることが確認された。 本発明者らはさらに鋭意研究を重ねた結果、装
置形状および振動発生機構が異なつても振動数が
同じばあい圧力パルスの振幅と液滴径のそろつた
液滴を生成しうる条件が普偏的な関係にあること
を見出し、本発明を完成するに至つた。 すなわち本発明は、オリフイス孔から流出する
層流液体噴流に振動発生機構を用いて規則的な圧
力パルスを与える際、噴流速度と流出されるべき
液体の圧力パルスとを検出し、噴流速度の変化に
応じて圧力パルスの振動数および(または)振幅
を調整するべく振動発生機構を制御することを特
徴とする液滴径のそろつた液滴の生成法に関す
る。 液滴径のそろつた液滴を生成できる圧力パルス
の振動数と振幅条件は、流出されるべき液体の物
性、該液体が噴出される雰囲気の物性、オリフイ
ス孔径および噴流速度によつて決まる。それらの
うち噴流速度以外は対象とする液体や周囲の環
境、装置の構成によつて決定されるものであつて
容易に調整できるものではない。本発明は前記の
ごとく、噴流速度と圧力パルスの振動数および振
幅との本発明者らによつて初めて見出された普偏
的な関係を利用し、噴流速度に応じて振動発生機
構を制御して圧力パルスの振動数と振幅とを液滴
径のそろつた液滴を生成しうる範囲内に調整する
ものである。 したがつて、一旦具体的な流出されるべき液体
の物性、該液体が噴出される雰囲気の物性、オリ
フイス孔径および噴流速度と圧力パルスの振動数
および振幅との関係を測定すれば、振動発生機構
が異なつても噴流速度に応じて振動発生機構を制
御し、液滴径のそろつた液滴を生成せしめること
ができる。 本発明の方法は、液滴径のそろつた液滴を生成
できる圧力パルス条件が狭く振動発生機構を厳密
に操作して所望の圧力パルスを発生させなければ
ならないばあいにその効果をとくに発揮すること
ができる。圧力パルス条件が狭いケースとして
は、たとえば圧力パルスの振動数が小さいばあ
い、たとえば30〜3000Hzのばあいや、液中で液滴
の生成を行なうばあいがあげられる。 本発明の方法はたとえば抽出装置の液滴生成部
や重合体粒子、核燃料などの粒径のそろつた粒子
の製造が要求されるプロセスに利用することがで
きるが、それらの分野のみに限られず、液滴径の
そろつた液滴が要求される技術分野に広く利用で
きる。 本発明の方法を実施するのに用いる装置として
は、オリフイス孔と流出されるべき液体の導入口
とをそれぞれ少なくとも1個有する液体容器に該
液体容器内部の流出されるべき液体に圧力パルス
を生ぜしめる振動発生機構と流出されるべき液体
の圧力パルスの検出器とが設けられてなる液滴発
生部と、該液滴発生部に供給される液体の流量検
出部と、前記振動発生機構の制御部とから構成さ
れており、該制御部が流出されるべき液体を前記
液体容器に供給される流量の検出値から算出され
たオリフイス孔からの噴流速度に応じて圧力パル
スの振動数および(または)振幅を調整するよう
に設定されてなるものが好ましい。 圧力パルスの検出器の検出部には高い精度が要
求されるので、検出部に圧電型圧力変換器を用い
るのが好ましい。 つぎに本発明の装置の実施態様を図に基づいて
説明するが、本発明はかかる実施態様のみに限ら
れるものではない。 第1図に示す実施態様において、液滴にされる
べき液体は流量計1を経て液体容器2に入り、オ
リフイス板3のオリフイス孔4より噴出され振動
5となる。振動発生機構は発信器6と振動発生機
7とダイヤフラム8から構成されており、圧力パ
ルスは発信器6によりドライブされる振動発生機
7の振動を液体容器2に設けられているダイヤフ
ラム8に伝えることにより生ずる。液体容器2に
は圧電型圧力変換器9が設けられており、液体容
器2内の圧力パルスを検出する。発信器6をコン
ロールするための制御部10には流量計1からの
流量情報と圧力変換器9からの圧力パルスの振動
数および振幅の情報が入力される。制御部10
は、流量情報に基づきオリフイスからの液体の噴
流速度を算出し、えられた噴流速度に応じて圧力
パルスをあらかじめ設定された条件の範囲内に調
整するべく発信器6に制御信号を出力する。この
制御部10に用いる回路は通常のものでよい。ま
た液体容器2内の圧力パルスが前記設定条件内に
あるかどうかを圧力変換器9からの信号により比
較し、もしズレがあるときは再度調整を行なう。 第2図に本発明の装置の別の実施態様の概略図
を示す。この実施態様では振動発生機構が発信器
11と圧電セラミツク12とから構成されてい
る。 つぎに本発明を実施例および比較例をあげて説
明するが、本発明はかかる実施例のみに限定され
るものではない。 実施例 1 振動発生機として動電形振動発生機を使用し、
第1図に示す装置を用いて水中に液滴径のそろつ
たトルエン滴群を生成させた。オリフイス板とし
て直径0.4mmの孔を1個有するものを用いた。ま
たダイヤフラムとしてステンレス製の断面形状が
波形の厚さ0.1mmのもので、直径が6cmと3.5cmの
2種類のものを用いた。 圧力パルスの振動数を200Hzに設定し、液体の
噴流速度を変化させたときの液滴径(1.0〜1.1
mm)がそろつた液滴を生成できる圧力パルスを生
ぜしめうる圧電型圧力変換器よりえられた圧力振
幅の上限値をそれぞれ測定した。その結果を第3
図に示す。第3図中−△−は直径6cmのダイヤフ
ラムを用いたとき、…〇…は直径3.5cmのダイヤ
フラムを用いたときのグラフである。 第3図に示すように、異なる直経のダイヤフラ
ムを用いても噴流速度に対する圧力パルス振幅の
上限値はほぼ一致している。 比較例 1 実施例1と同一の条件で水中にトルエン滴を生
成させ、液体の噴流速度を変化させたときの液滴
径(1.0〜1.1mm)がそろつた液滴の生成できる圧
力パルスの振幅を生ぜしめるために振動発生機に
加えられる電圧の上限値を測定した。結果を第4
図に示す。第4図中−△−は直径6cmのダイヤフ
ラムを用いたとき、…〇…は直径3.5cmのダイヤ
フラムを用いたときのグラフである。 第4図に示すごとく、電圧と噴流速度との関係
はダイヤフラムの直径が変わると著しく異なり、
電圧で制御するときは振動発生機構が変わるごと
に制御値を変更しなければならない。 実施例 2 第2図に示す振動発生機として圧電セラミツク
を用いた装置を用いたほかは実施例1と同一条件
で、噴流速度を変化させたときの圧電型圧力変換
器によりえられた圧力振幅の上限値を測定した。
その結果を第3図に…□…で示す。 第3図に示すように、実施例1でえられたダイ
ヤフラムを用いたときの結果によく一致してい
る。 実施例1〜2の結果から、圧力パルスの振幅は
振動発生機構によらず一定の関係にあり、液滴径
のそろつた液滴を生成せしめうる条件の制御に用
いる因子としてきわめて適当であることがわか
る。 実施例 3 第2図に示す液滴生成装置に直径0.8mmのオリ
フイス孔を有するオリフイス板を取り付け、110
Hzの振動数の圧力パルスを用いたほかは実施例2
と同様にして液滴径のそろつたトルエン滴を生成
できる圧力パルスの振幅の上限値および下限値を
噴流速度60〜67cm/secの範囲で測定した。その
結果、第5図に斜線で示す部分が液滴径(1.7〜
1.8mm)のそろつたトルエン滴を生成できる条件
範囲であることがわかつた。 つぎに制御部10を噴流速度が変化しても圧力
パルスの振幅が第5図に示す範囲に入るように設
定した。 まずトルエンをオリフイス孔での噴流速度が約
62cm/secになるように液体容器に導入したとこ
ろ、制御部はトルエンの圧力パルスの振幅が1.5
×10-3barとなるように圧電セラミツクの入力を
制御し(第5図中のA点)、その結果液滴径
(1.75mm)のそろつたトルエン滴が水中に生成さ
れた。 つぎにトルエンの導入速度に外乱を加えてオリ
フイス孔での噴流速度が約65cm/secになるよう
に変えたところ、制御部はトルエンの圧力パルス
の振幅が3.4×10-3barとなるように圧電セラミツ
クの入力を制御し(第5図中のB点)、その結果
液滴径(1.8mm)のそろつたトルエン滴を生成せ
しめることができた。 比較例 2 制御部10に噴流速度による圧力パルスの振幅
の制御条件を設定しなかつたほかは実施例3と同
じ条件(第5図中のA点)でトルエン滴を水中に
生成せしめた。 ついでトルエンの導入速度に外乱を加えてオリ
フイス孔での噴流速度が約65cm/secとなるよう
に変えたところ(第5図中のC点)、液滴径の不
ぞろいなトルエン滴群が生成された。 実施例 4 振動発生機として圧電セラミツクを用いた第2
図に示す装置に直径0.4mmのオリフイス孔を有す
るオリフイス板を取り付け、160Hzおよび240Hzの
振動数の圧力パルスを用いてそれぞれ水中に均一
な液滴径(1.0mm)のスチレンモノマー滴が生成
されうる圧力パルスの振幅と噴流速度の関係を調
べた。結果を第6図に示す。第6図において実線
で囲まれた領域および点線で囲まれた領域は、そ
れぞれ160Hzおよび240Hzの振動数の圧力パルスを
用いたばあいに均一な液滴径のスチレンモノマー
滴がえられる条件範囲である。 つぎに制御部10を噴流速度が変化しても圧力
パルスの振幅および振動数の両者が第6図に示す
実線または点線で囲まれた領域のいずれかに入る
ように設定した。 まずスチレンモノマーをオリフイス孔での噴流
速度が約65cm/secとなるように液体容器に導入
したところ、制御部はスチレンモノマーの圧力パ
ルスの振動数が160Hz、振幅が1.3×10-3barとな
るように圧電セラミツクの入力を制御し(第6図
中のD点)その結果液滴径1.0mmの均一なスチレ
ンモノマー滴が生成された。 つぎにスチレンモノマーの導入速度に外乱を加
えてオリフイス孔での噴流速度が約100cm/secと
なるように変えたところ、制御部は噴流速度/振
動数がほぼ一定になるようにスチレンモノマーの
圧力パルスの振動数として240Hzを選んだのち、
圧力パルスの振幅を6.8×10-3barになるように圧
電セラミツクの入力を制御し(第6図中のE点)、
その結果液滴径1.0mmの均一なスチレンモノマー
滴が生成された。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a group of droplets having uniform droplet diameters and an apparatus used therefor. A known method for obtaining droplet groups with uniform particle sizes is to apply regular pressure pulses to a laminar liquid jet generated from an orifice hole, thereby regularly dividing the jet into droplet groups of equal volume. . This method is used by Tomotika [Proc.Roy.Soc.
A150, 322 (1935)], it is known in principle from research on the stability of liquid columns. The mechanism is that a minute disturbance applied to the surface of a liquid column grows over time, and when its amplitude becomes equal to the radius of the liquid column, the liquid column is divided and droplets are generated according to the wavelength of the disturbance. It is. Therefore, by periodically adding small disturbances to the surface of the liquid columnar jet, it becomes possible to generate droplets with uniform particle sizes. The method of applying regular pressure pulses to the laminar liquid jet generated from the orifice hole is to generate minute turbulence on the surface of the laminar liquid jet using the pressure pulses. Research in this field is currently being carried out by many researchers, but it is still difficult to say that a method for obtaining a group of droplets with a uniform droplet diameter has been completed industrially. At present, based on existing qualitative research, in order to generate droplets with uniform particle sizes using this method, the physical properties of the liquid to be formed into droplets, the physical properties of the atmosphere in which the droplets are generated, the orifice hole diameter, the jet flow, etc. It has been found that it is sufficient to choose an appropriate frequency determined by the speed. However, it is unclear how strong the amplitude should be.
Conventionally, power consumption of a vibration generating mechanism has been used instead of amplitude. For example, Haas in the United States is AIChE Journal, vol.
21, 383 (1975), a pressure pulse is generated by moving a piston attached to a liquid container consisting of one orifice hole and one liquid inlet using the reciprocating vibration of a vibrator. An apparatus for producing droplets of uniform diameter is disclosed. In that case, the strength of the vibrations applied is set by the power applied to the vibrator. In addition, Yates et al.
Based on the same method described in ICLAS'78, 181 (1978), a pressure pulse is generated in a liquid container consisting of 121 orifice holes and two liquid inlet ports by changing the volume of piezoelectric ceramic, and the particle size is uniform. Disclosed is an apparatus for producing clusters of droplets. In this case, the strength of the vibration applied is set by the electric power applied to the piezoelectric ceramic. However, substituting the power consumption of the vibration generation mechanism (vibrator, piezoelectric ceramic, etc.) for the amplitude of the pressure pulse is difficult. (1) The vibration generation mechanism has characteristics, and the relationship between power consumption and the generated pressure pulse Depends on the generation mechanism (2) In general, devices have various natural frequencies, and even in devices using the same vibration generator, the relationship between power consumption and generated pressure pulses changes depending on the frequency. The power range that can generate droplets with uniform particle size and lacks polarity varies depending on the individual droplet generation device, and the disadvantage is that the range must be measured each time. The present inventors prototyped a droplet generation device based on this method, investigated the conditions under which droplets with uniform particle sizes could be generated, and established an orifice that can generate droplets with uniform particle sizes in several types of systems. The range of pore diameter, jet velocity, vibration frequency, and power consumption of the vibration generation mechanism was determined. The conditions under which droplets with uniform droplet diameters can be generated here means the conditions where the droplet generation phenomenon can be synchronized with the frequency of the pressure pulse using a stroboscope. In the case of non-synchronization, the droplet diameters of the generated droplets are uneven, as explained by Hass [AIChE J.vol21, 383].
(1975)]. As a result of experiments, the range of conditions that can produce droplets with uniform droplet diameters is quite narrow depending on the system, and the range of conditions that can produce droplets with uniform droplet diameters is quite narrow. It was confirmed that power consumption differs depending on the shape of the device and the type of vibration generation mechanism, and is inappropriate as a control factor for generating droplets with uniform droplet diameters. As a result of further intensive research, the present inventors found that even if the device shape and vibration generation mechanism are different, if the vibration frequency is the same, the conditions under which droplets with the same pressure pulse amplitude and droplet diameter can be generated are universally found. The present inventors have discovered that there is a relationship between the two, and have completed the present invention. That is, the present invention detects the jet velocity and the pressure pulse of the liquid to be discharged when applying regular pressure pulses to a laminar liquid jet flowing out from an orifice hole using a vibration generating mechanism, and detects changes in the jet velocity. The present invention relates to a method for producing droplets with uniform droplet diameters, which is characterized by controlling a vibration generation mechanism to adjust the frequency and/or amplitude of a pressure pulse in accordance with the oscillation frequency and/or amplitude of a pressure pulse. The frequency and amplitude conditions of the pressure pulse that can generate droplets with uniform droplet diameters are determined by the physical properties of the liquid to be discharged, the physical properties of the atmosphere into which the liquid is ejected, the orifice diameter, and the jet velocity. Of these, the speeds other than the jet speed are determined by the target liquid, the surrounding environment, and the configuration of the device, and cannot be easily adjusted. As mentioned above, the present invention controls the vibration generation mechanism according to the jet velocity by utilizing the polarized relationship discovered for the first time by the inventors between the jet velocity and the frequency and amplitude of the pressure pulse. The frequency and amplitude of the pressure pulse are adjusted within a range that can produce droplets of uniform diameter. Therefore, once the physical properties of the liquid to be discharged, the physical properties of the atmosphere into which the liquid is ejected, the relationship between the orifice hole diameter and jet velocity and the frequency and amplitude of the pressure pulse can be determined, the vibration generation mechanism can be determined. Even if the jet speeds are different, the vibration generating mechanism can be controlled according to the jet velocity to generate droplets with uniform droplet diameters. The method of the present invention is particularly effective when the pressure pulse conditions for generating droplets with uniform droplet diameters are narrow and the vibration generation mechanism must be strictly manipulated to generate the desired pressure pulse. be able to. Cases where the pressure pulse conditions are narrow include, for example, when the frequency of the pressure pulse is small, for example, 30 to 3000 Hz, and when droplets are generated in a liquid. The method of the present invention can be used, for example, in the droplet generation part of an extraction device, in processes that require the production of particles of uniform size such as polymer particles, nuclear fuel, etc., but is not limited to these fields. It can be widely used in technical fields that require droplets with uniform droplet diameters. The apparatus used to carry out the method of the invention includes a liquid container having at least one orifice hole and at least one inlet for the liquid to be discharged, which produces pressure pulses in the liquid to be discharged inside the liquid container. a droplet generating section including a vibration generating mechanism for tightening the liquid and a pressure pulse detector for the liquid to be discharged; a flow rate detecting section for the liquid supplied to the droplet generating section; and control of the vibration generating mechanism. The control section controls the frequency of the pressure pulse and (or ) is preferably set to adjust the amplitude. Since high accuracy is required for the detection section of the pressure pulse detector, it is preferable to use a piezoelectric pressure transducer for the detection section. Next, embodiments of the apparatus of the present invention will be described based on the drawings, but the present invention is not limited to such embodiments. In the embodiment shown in FIG. 1, liquid to be made into droplets enters a liquid container 2 via a flow meter 1, is ejected from an orifice hole 4 of an orifice plate 3, and is vibrated 5. The vibration generating mechanism is composed of a transmitter 6, a vibration generator 7, and a diaphragm 8, and the pressure pulse transmits the vibration of the vibration generator 7 driven by the transmitter 6 to the diaphragm 8 provided in the liquid container 2. This is caused by A piezoelectric pressure transducer 9 is provided in the liquid container 2 to detect pressure pulses within the liquid container 2. A control unit 10 for controlling the transmitter 6 receives flow rate information from the flow meter 1 and information on the frequency and amplitude of the pressure pulse from the pressure transducer 9. Control unit 10
calculates the jet velocity of the liquid from the orifice based on the flow rate information, and outputs a control signal to the transmitter 6 in order to adjust the pressure pulse within a preset condition range according to the obtained jet velocity. The circuit used for this control section 10 may be a normal circuit. Also, whether or not the pressure pulse in the liquid container 2 is within the set conditions is compared with the signal from the pressure transducer 9, and if there is a deviation, the adjustment is made again. FIG. 2 shows a schematic diagram of another embodiment of the device of the invention. In this embodiment, the vibration generating mechanism is composed of a transmitter 11 and a piezoelectric ceramic 12. Next, the present invention will be explained with reference to Examples and Comparative Examples, but the present invention is not limited only to these Examples. Example 1 Using an electrodynamic vibration generator as a vibration generator,
A group of toluene droplets with uniform droplet diameters were generated in water using the apparatus shown in FIG. An orifice plate having one hole with a diameter of 0.4 mm was used. The diaphragms were made of stainless steel and had a corrugated cross-section with a thickness of 0.1 mm, and two types of diaphragms, 6 cm and 3.5 cm, were used. The droplet diameter (1.0 to 1.1
The upper limit of the pressure amplitude obtained by the piezoelectric pressure transducer that can generate a pressure pulse capable of producing a droplet with a uniform diameter (mm) was measured. The result is the third
As shown in the figure. In Fig. 3, -△- is a graph when a diaphragm with a diameter of 6 cm is used, and ◯... is a graph when a diaphragm with a diameter of 3.5 cm is used. As shown in FIG. 3, even if diaphragms with different diameters are used, the upper limit values of the pressure pulse amplitude relative to the jet velocity are almost the same. Comparative Example 1 Toluene droplets are generated in water under the same conditions as in Example 1, and the amplitude of the pressure pulse that can generate droplets with a uniform droplet diameter (1.0 to 1.1 mm) when the jet velocity of the liquid is changed. We measured the upper limit of the voltage that can be applied to the vibration generator to produce this. 4th result
As shown in the figure. In Fig. 4, -△- is a graph when a diaphragm with a diameter of 6 cm is used, and ○... is a graph when a diaphragm with a diameter of 3.5 cm is used. As shown in Figure 4, the relationship between voltage and jet velocity changes significantly as the diameter of the diaphragm changes.
When controlling with voltage, the control value must be changed every time the vibration generation mechanism changes. Example 2 Pressure amplitude obtained by a piezoelectric pressure transducer when changing the jet velocity under the same conditions as Example 1 except that a device using piezoelectric ceramic was used as the vibration generator shown in Fig. 2 The upper limit of .
The results are shown in Figure 3 by ...□.... As shown in FIG. 3, the results match well with the results obtained when the diaphragm obtained in Example 1 was used. From the results of Examples 1 and 2, the amplitude of the pressure pulse has a constant relationship regardless of the vibration generation mechanism, and is extremely suitable as a factor used to control conditions that can generate droplets with uniform droplet diameters. I understand. Example 3 An orifice plate having an orifice hole with a diameter of 0.8 mm was attached to the droplet generation device shown in FIG.
Example 2 except that a pressure pulse with a frequency of Hz was used.
In the same manner as above, the upper and lower limits of the amplitude of the pressure pulse capable of producing toluene droplets with uniform droplet diameters were measured at jet speeds in the range of 60 to 67 cm/sec. As a result, the shaded area in Figure 5 is the droplet diameter (1.7~
It was found that the conditions were within the range in which uniform toluene droplets with a diameter of 1.8 mm could be produced. Next, the control unit 10 was set so that the amplitude of the pressure pulse would fall within the range shown in FIG. 5 even if the jet velocity changed. First, the jet velocity of toluene at the orifice hole is approximately
When the toluene pressure pulse was introduced into the liquid container at a rate of 62 cm/sec, the control unit detected that the amplitude of the toluene pressure pulse was 1.5 cm/sec.
The input to the piezoelectric ceramic was controlled so that the pressure was x10 -3 bar (point A in FIG. 5), and as a result, toluene droplets with a uniform droplet diameter (1.75 mm) were produced in the water. Next, we added a disturbance to the introduction speed of toluene and changed it so that the jet velocity at the orifice hole was approximately 65 cm/sec, and the control unit adjusted the amplitude of the toluene pressure pulse to be 3.4 × 10 -3 bar. By controlling the input to the piezoelectric ceramic (point B in Figure 5), we were able to generate toluene droplets with a uniform droplet diameter (1.8 mm). Comparative Example 2 Toluene droplets were generated in water under the same conditions as in Example 3 (point A in FIG. 5) except that the control unit 10 was not set to control the amplitude of the pressure pulse based on the jet velocity. Next, when we added a disturbance to the introduction speed of toluene and changed the jet velocity at the orifice to about 65 cm/sec (point C in Figure 5), a group of toluene droplets with uneven droplet diameters were generated. Ta. Example 4 Second example using piezoelectric ceramic as a vibration generator
An orifice plate with an orifice hole with a diameter of 0.4 mm is attached to the apparatus shown in the figure, and styrene monomer droplets with a uniform droplet diameter (1.0 mm) can be generated in water using pressure pulses with frequencies of 160 Hz and 240 Hz, respectively. The relationship between pressure pulse amplitude and jet velocity was investigated. The results are shown in Figure 6. In Figure 6, the area surrounded by a solid line and the area surrounded by a dotted line are the range of conditions in which styrene monomer droplets with a uniform droplet diameter can be obtained when using pressure pulses with frequencies of 160 Hz and 240 Hz, respectively. be. Next, the control unit 10 was set so that even if the jet velocity changed, both the amplitude and frequency of the pressure pulse would fall within either the region surrounded by the solid line or the dotted line shown in FIG. 6. First, styrene monomer was introduced into the liquid container so that the jet velocity at the orifice hole was approximately 65 cm/sec, and the control unit detected that the frequency of the styrene monomer pressure pulse was 160 Hz and the amplitude was 1.3 × 10 -3 bar. The input to the piezoelectric ceramic was controlled in this way (point D in Figure 6), and as a result, uniform styrene monomer droplets with a droplet diameter of 1.0 mm were produced. Next, a disturbance was added to the introduction speed of the styrene monomer so that the jet velocity at the orifice hole was approximately 100 cm/sec. After choosing 240Hz as the pulse frequency,
The input to the piezoelectric ceramic was controlled so that the amplitude of the pressure pulse was 6.8×10 -3 bar (point E in Figure 6).
As a result, uniform styrene monomer droplets with a droplet diameter of 1.0 mm were produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の装置の一実施態様のブロツク
図、第2図は本発明の装置の別の実施態様のブロ
ツク図、第3図は実施例1〜2でそれぞれ測定し
た噴流速度と圧電型圧力変換器でえられた均一な
液滴をうるための圧力パルスの振幅の上限値との
関係を示すグラフ、第4図は比較例1で測定した
噴流速度と振動発生機に加える均一な液滴をうる
ための電圧の上限値との関係を示すグラフ、第5
図は実施例3で測定した噴流速度と圧電型圧力変
換器でえられた均一な液滴をうるための圧力パル
スの振幅の領域を示すグラフ、第6図は実施例4
で測定した160Hzおよび240Hzの圧力パルスの振動
数における噴流速度と圧電型圧力変換器でえられ
た均一な液滴をうるための圧力パルスの振幅の領
域を示すグラフである。 図面の主要符号、1……流量計、2……液体容
器、4……オリフイス孔、5……液滴、6,11
……発信器、7……振動発生機、8……ダイヤフ
ラム、9……圧電型圧力変換器、10……制御
部、12……圧電セラミツク。
Fig. 1 is a block diagram of one embodiment of the device of the present invention, Fig. 2 is a block diagram of another embodiment of the device of the present invention, and Fig. 3 shows the jet velocity and piezoelectricity measured in Examples 1 and 2, respectively. A graph showing the relationship between the upper limit of the amplitude of the pressure pulse to obtain uniform droplets obtained by the mold pressure transducer, and Figure 4 shows the relationship between the jet velocity measured in Comparative Example 1 and the uniform droplet applied to the vibration generator. Graph showing the relationship with the upper limit of the voltage for obtaining droplets, 5th
The figure is a graph showing the jet velocity measured in Example 3 and the amplitude range of the pressure pulse to obtain uniform droplets obtained by the piezoelectric pressure transducer.
FIG. 2 is a graph showing the jet velocity at the pressure pulse frequencies of 160 Hz and 240 Hz measured in FIG. Main symbols in the drawing: 1...flow meter, 2...liquid container, 4...orifice hole, 5...liquid droplet, 6, 11
... Transmitter, 7 ... Vibration generator, 8 ... Diaphragm, 9 ... Piezoelectric pressure transducer, 10 ... Control section, 12 ... Piezoelectric ceramic.

Claims (1)

【特許請求の範囲】 1 オリフイス孔から流出する層流液体噴流に振
動発生機構を用いて規則的な圧力パルスを与える
際、噴流速度と流出されるべき液体の圧力パルス
とを検出し、噴流速度の変化に応じて圧力パルス
の振動数および(または)振幅を調整するべく振
動発生機構を制御することを特徴とする液滴径の
そろつた液滴の生成法。 2 圧力パルスの振動数が30〜3000Hzの範囲であ
る特許請求の範囲第1項記載の方法。 3 液中で液滴生成を行なう特許請求の範囲第1
項記載の方法。 4 オリフイス孔と流出されるべき液体の導入口
とをそれぞれ少なくとも1個有する液体容器に該
液体容器内部の流出されるべき液体に圧力パルス
を生ぜしめる振動発生機構と流出されるべき液体
の圧力パルスの検出器とが設けられてなる液滴発
生部と、該液滴発生部に供給される液体の流量検
出部と、前記振動発生機構の制御部とから構成さ
れており、該制御部が流出されるべき液体を前記
液体容器に供給される流量の検出値から算出され
たオリフイス孔からの噴流速度に応じて圧力パル
スの振動数および(または)振幅を調整するよう
に設定されてなる液滴径のそろつた液滴の生成装
置。 5 前記圧力パルスの検出器の検出部が圧電型圧
力変換器で構成されてなる特許請求の範囲第4項
記載の装置。 6 液中で液滴の生成を行なう特許請求の範囲第
4項記載の装置。
[Claims] 1. When applying regular pressure pulses to a laminar liquid jet flowing out from an orifice hole using a vibration generating mechanism, the jet velocity and the pressure pulse of the liquid to be discharged are detected, and the jet velocity is 1. A method for producing droplets with uniform droplet diameters, characterized by controlling a vibration generation mechanism to adjust the frequency and/or amplitude of a pressure pulse in response to changes in the pressure pulse. 2. The method according to claim 1, wherein the frequency of the pressure pulse is in the range of 30 to 3000 Hz. 3 Claim 1 that generates droplets in a liquid
The method described in section. 4. A vibration generating mechanism that generates a pressure pulse in the liquid to be drained inside the liquid container having at least one orifice hole and at least one inlet for the liquid to be drained, and a pressure pulse in the liquid to be drained. The device includes a droplet generation section provided with a detector, a flow rate detection section for the liquid supplied to the droplet generation section, and a control section for the vibration generation mechanism, and the control section The liquid droplet is configured to adjust the frequency and/or amplitude of the pressure pulse according to the jet velocity from the orifice hole calculated from the detected value of the flow rate of the liquid to be supplied to the liquid container. A device that generates droplets with uniform diameter. 5. The device according to claim 4, wherein the detection section of the pressure pulse detector is constituted by a piezoelectric pressure transducer. 6. The device according to claim 4, which generates droplets in a liquid.
JP58009084A 1983-01-21 1983-01-21 Method and device for forming droplet Granted JPS59136127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58009084A JPS59136127A (en) 1983-01-21 1983-01-21 Method and device for forming droplet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58009084A JPS59136127A (en) 1983-01-21 1983-01-21 Method and device for forming droplet

Publications (2)

Publication Number Publication Date
JPS59136127A JPS59136127A (en) 1984-08-04
JPS642414B2 true JPS642414B2 (en) 1989-01-17

Family

ID=11710748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58009084A Granted JPS59136127A (en) 1983-01-21 1983-01-21 Method and device for forming droplet

Country Status (1)

Country Link
JP (1) JPS59136127A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441109U (en) * 1987-09-04 1989-03-13

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237935A (en) * 1986-04-08 1987-10-17 Mitsubishi Kakoki Kaisha Ltd Average particle diameter droplet preparation device
DE4022648C2 (en) * 1990-07-17 1994-01-27 Nukem Gmbh Method and device for producing spherical particles from a liquid phase
DE69814397D1 (en) 1998-02-11 2003-06-12 Transucrania S A METHOD AND DEVICE FOR PRODUCING GRANULATE PRODUCTS
WO2000038206A1 (en) 1998-12-22 2000-06-29 Mitsubishi Denki Kabushiki Kaisha Switch, click for switches, and method of fixing click for switches
JP2013063406A (en) * 2011-09-20 2013-04-11 Ricoh Co Ltd Method and apparatus for manufacturing fine particle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441109U (en) * 1987-09-04 1989-03-13

Also Published As

Publication number Publication date
JPS59136127A (en) 1984-08-04

Similar Documents

Publication Publication Date Title
Lindblad et al. Production of uniform-sized liquid droplets
EP0674541B1 (en) Production of particulate materials
US5601235A (en) Aerosol generator
Schneider et al. Source of uniform‐sized liquid droplets
Chaudhary et al. The nonlinear capillary instability of a liquid jet. Part 2. Experiments on jet behaviour before droplet formation
US5340090A (en) Method and apparatus for droplet stream manufacturing
CA1101919A (en) Apparatus for exciting an array of ink jet nozzles and method of forming
CA1068760A (en) Meniscus dampening drop generator
JPH03232525A (en) Formation of uniform liquid drop
WO1999003630A1 (en) Apparatus and method for manufacturing a three-dimensional object
JPS642414B2 (en)
US5540384A (en) Ultrasonic spray coating system
WO1991006842A1 (en) Rheometer
US3067948A (en) Sonic atomizer for liquids
Gupta et al. Filtration of particulate suspensions in acoustically driven porous media
EP0400977B1 (en) Ultrasonic systems
JP3712744B2 (en) Uniform particle size droplet production equipment
Al-Suleimani et al. How orderly is ultrasonic atomization
Brenn et al. An experimental method for the investigation of droplet oscillations in a gaseous medium
Rooney 6. Nonlinear phenomena
JP3529685B2 (en) Droplet generator
AU677520B2 (en) Device for manufacturing pastilles
EP0097413A1 (en) A fluid jet print head, and a method of stimulating the break up of a fluid stream emanating therefrom
JPH0618581Y2 (en) Droplet manufacturing equipment
Verma et al. A simple source of uniform sized droplets