JPH03232525A - Formation of uniform liquid drop - Google Patents

Formation of uniform liquid drop

Info

Publication number
JPH03232525A
JPH03232525A JP2767290A JP2767290A JPH03232525A JP H03232525 A JPH03232525 A JP H03232525A JP 2767290 A JP2767290 A JP 2767290A JP 2767290 A JP2767290 A JP 2767290A JP H03232525 A JPH03232525 A JP H03232525A
Authority
JP
Japan
Prior art keywords
liquid
nozzle
conductivity
low
droplets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2767290A
Other languages
Japanese (ja)
Other versions
JP3176607B2 (en
Inventor
Masaki Sadakata
正毅 定方
Masayuki Sato
正之 佐藤
Masahiro Saito
斎藤 正浩
Takeshi Sagai
佐賀井 武
Tamiyuki Eguchi
江口 民行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Gunma University NUC
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC, Kanegafuchi Chemical Industry Co Ltd filed Critical Gunma University NUC
Priority to JP2767290A priority Critical patent/JP3176607B2/en
Publication of JPH03232525A publication Critical patent/JPH03232525A/en
Application granted granted Critical
Publication of JP3176607B2 publication Critical patent/JP3176607B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To form uniform liquid drops of a low conductivity liquid in synchronization with a specified period by impressing an AC electrostatic field of this period to multiple liquid columns covering the outer side of the low-conductivity liquid with a high-conductivity liquid which is incompatible with this liquid. CONSTITUTION:The multiple liquid columns formed by covering the low- conductivity liquid 5 (e.g. high molecular material soln.) ejected from the inner nozzle 11 of a nozzle 1 with the high-conductivity liquid 7 (e.g. water) which is ejected from the outer nozzle 12 and is incompatible with the liquid 5 pass between parallel flat plate shaped electrodes 3. The AC electrostatic field applied between the nozzle 1 and the electrodes 3 by an AC high-voltage power source 2 of the specified period is impressed to the above mentioned multiple liquid columns during this time. Consequently, the uniform liquid drops having the low conductivity of about 5 to 1000mu diameter are formed in synchronization with this period. The particles effective for various purposes, such as chromatography, adsorbent, carrier and spacer, are produced by utilizing this method.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は低導電性液体の均一な液滴をうるための方法に
関するものであり、とくに低導電性液体として粒子形成
材料を含む液体を用いることによってクロマトグラフィ
ー スペーサー医科診断用などの種々の目的に有用な均
一な粒子の製造に応用することができるものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for obtaining uniform droplets of a low-conductivity liquid, and in particular uses a liquid containing a particle-forming material as the low-conductivity liquid. This can be applied to the production of uniform particles useful for various purposes such as chromatographic spacers for medical diagnostics.

[従来の技術] ノズルから一定の流速で噴出している液体に対して一定
周期の機械的な振動を加えると、この周期と同期した数
の液滴、すなわち均一な液滴が形成されることはよく知
られている。さらに、この技術を粒子形成材料を含む液
体に応用して均一な粒子を製造することも既に知られて
いる。たとえば、特開昭52−129686号公報には
粒子形成材料を含む6液とその被覆液からなる噴流に一
定周期の機械的な振動を加えて6液を被覆液で包んだ均
一な液滴を形成し、次いで液滴ごとに粒子を形成させる
ことによって均一な粒子をうる方法が記載されている。
[Prior Art] When a fixed period of mechanical vibration is applied to a liquid ejected from a nozzle at a constant flow rate, a number of droplets synchronized with this period, that is, uniform droplets are formed. is well known. Furthermore, it is already known to apply this technique to liquids containing particle-forming materials to produce uniform particles. For example, Japanese Patent Application Laid-Open No. 52-129686 discloses that uniform droplets of six liquids containing a particle-forming material and a coating liquid are formed by applying mechanical vibrations at a constant period to a jet consisting of six liquids containing a particle-forming material and a coating liquid. A method for obtaining uniform particles by forming and then forming particles drop by drop is described.

ニス・ビー中サンプルら(ニス・ビー・サンプルおよび
アールQボリニ、ジャーナル争すブコロイド・アンド・
インターフェイス・サイエンス第41巻、2号(197
2年) (S、 B、 Sampleand  R,B
olllnl、  journal  of’  Co
11o1d  andInterface 5cien
ce、 Vol、41. No、2.1972))は、
蒸留水の噴流に対して、機械的な振動の代りにノズルと
ノズルの近傍に置いた電極との間に一定周期の交流静電
界を印加するとその周期と同期した数の均一な液滴が形
成されることを見出している。
Niss B Sample et al.
Interface Science Volume 41, No. 2 (197
2nd year) (S, B, Sample R, B
ollllnl, journal of' Co
11o1d andInterface 5cien
ce, Vol. 41. No. 2.1972))
When an alternating current electrostatic field with a constant period is applied to a jet of distilled water instead of mechanical vibration between a nozzle and an electrode placed near the nozzle, a uniform number of droplets are formed in synchronization with the period. I am finding that it will be done.

[発明が解決しようとする課題] 機械的な振動を用いるばあいには騒音、振幅や振動数な
どの振動特性の不安定性、などが問題になる。とくに、
液滴の粒径がおよそ1000ρ以下のばあいには、同期
する振動数がおよそ1000Hz以下の可聴周波数領域
になり、生理的、心理的不快感を与える。これらの問題
点は、実際にこの技術を工業的生産に応用する際には大
きな障害になる。
[Problems to be Solved by the Invention] When mechanical vibration is used, problems such as noise and instability of vibration characteristics such as amplitude and frequency arise. especially,
If the particle size of the droplet is approximately 1000 ρ or less, the synchronized vibration frequency will be in the audible frequency range of approximately 1000 Hz or less, causing physiological and psychological discomfort. These problems become major obstacles when actually applying this technology to industrial production.

機械的な振動の代りに交流静電界を印加する方法によれ
ばこのような問題は解決するが、サンプルらの方法では
高導電性の液体でなければ均一な液滴にならない。
A method that applies an alternating current electrostatic field instead of mechanical vibration would solve this problem, but Sample et al.'s method does not produce uniform droplets unless the liquid is highly conductive.

本発明は、低導電性の液体の均一な液滴を交流静電界を
利用して形成することを目的として成されたものである
The present invention has been accomplished with the object of forming uniform droplets of a low-conductivity liquid using an alternating current electrostatic field.

[課題を解決するための手段] 本発明は、低導電性液体の外側をこれと相溶しない高導
電性液体で覆った多重液柱に対して一定同期の交流静電
界を印加することによって該周期と同期しだ液滴を形成
せしめることを特徴とする均一液滴の形成方法に関する
[Means for Solving the Problems] The present invention applies a constant synchronized alternating current electrostatic field to multiple liquid columns in which the outside of a low conductivity liquid is covered with a high conductivity liquid that is incompatible with the low conductivity liquid. The present invention relates to a method for forming uniform droplets, which is characterized by forming droplets in synchronization with a period.

[実施例コ 本発明者らは、多重ノズルを用い、低導電性の液体の外
側をこれと相溶しない高導電性の液体で覆った多重液柱
となし、この液柱に対して一定周期の交流静電界を印加
すれば該周期と同期した液滴、すなわち高導電性液体で
包まれた低導電性の液滴が形成されることを見出した。
[Example] The present inventors used multiple nozzles to create multiple liquid columns in which the outside of a low-conductivity liquid was covered with a high-conductivity liquid that was incompatible with this liquid, and It has been found that by applying an alternating current electrostatic field of , a droplet synchronized with the period, that is, a droplet of low conductivity surrounded by a highly conductive liquid is formed.

ノズルには二重以上の多重ノズルが適宜使用される。し
かしながら最外周の液体は高導電性でなければならない
。ノズルの開口部の構造は、低導電性液体のとくに微小
な液滴をえたいばあいには特開昭52−129886号
公報のように低導電性液体が縮流となるようにしてもよ
い。
As the nozzle, multiple nozzles of double or more are used as appropriate. However, the outermost liquid must be highly conductive. The structure of the opening of the nozzle may be such that when particularly minute droplets of a low conductive liquid are to be obtained, the low conductive liquid forms a contracted flow as disclosed in Japanese Patent Application Laid-Open No. 129886/1986.

低導電性の液体の電気伝導度にはとくに制限はないが、
該液体が水程度以上の値を持てば単独で交流静電界と同
期した液滴が形成しうるので強いて本発明を用いる必要
はない。もちろんこのような液体に対しても本発明を実
施することは可能である。しかしながら最外周の導電性
液体の電気伝導度はおよそ水の伝導度、0.06μS/
c■以上必要である。本発明では、交流静電界はノズル
から噴出する液柱に対してその表面に一定周期で変化す
る電荷を誘発することによって制御された初期乱れを与
える。したがって、電荷の誘発速度は交流周期よりも充
分に大きくなければならない。すなわち水もしくは水溶
液中でのイオン種の緩和時間は10’secのオーダー
であるから交流周期の下限は10’secのオーダー、
すなわち振動数の上限は数十kHzである。
There is no particular limit to the electrical conductivity of low conductive liquids, but
If the liquid has a value equal to or higher than that of water, droplets synchronized with an alternating current electrostatic field can be formed by itself, so it is not necessary to use the present invention. Of course, the present invention can also be practiced with such liquids. However, the electrical conductivity of the outermost conductive liquid is approximately the conductivity of water, 0.06μS/
c■ or more is required. In the present invention, an alternating electrostatic field provides a controlled initial disturbance to a liquid column ejected from a nozzle by inducing a periodically varying charge on its surface. Therefore, the rate of charge induction must be significantly greater than the alternating current period. In other words, since the relaxation time of ionic species in water or an aqueous solution is on the order of 10'sec, the lower limit of the AC cycle is on the order of 10'sec.
That is, the upper limit of the frequency is several tens of kHz.

また、誘発された電荷の密度も充分に大きくなければな
らない。本発明者らによればこの目安が前記の水の伝導
度である。
The density of the induced charges must also be sufficiently large. According to the present inventors, this standard is the aforementioned water conductivity.

印加電圧の大きさおよび同期する振動数の範囲は前記の
制御された初期乱れを発生させるに必要かつ充分な大き
さでなければならない。この範囲は液体の種類、液柱の
太さ、液体の噴出速度、電極の位置などにも依存するの
でこれらに対応して試行錯誤的に決めることができる。
The magnitude of the applied voltage and the range of synchronized frequencies must be large enough to produce the controlled initial disturbance described above. This range depends on the type of liquid, the thickness of the liquid column, the ejection speed of the liquid, the position of the electrode, etc., and can be determined by trial and error depending on these factors.

上述のようにして形成された均一な液滴の運動はノズル
から遠ざかるとともに空気の抵抗などによって乱れ、衝
突して合体するものも現れる。この現象は液滴の大きさ
がおよそ1■以下になると顕著になる。このような合体
は、交流静電界にその電圧よりも大きい直流電界を重畳
して液滴が同じ符号の電荷を帯びるようにすれば防ぐこ
とができる。
The movement of the uniform droplets formed as described above is disturbed by air resistance as they move away from the nozzle, and some of them collide and coalesce. This phenomenon becomes noticeable when the droplet size becomes approximately 1 square inch or less. Such coalescence can be prevented by superimposing a DC electric field larger than the voltage on the AC electrostatic field so that the droplets are charged with the same sign.

本発明を利用して均一な粒子を製造するばあいには低導
電性の液体として粒子形成材料を含む液体、たとえば、
高分子物質の溶液、公知の重合法によって重合されて均
一ポリマー粒子とされるビニル重合性モノマーとその反
応開始剤を含む溶液などが利用でき、低導電性の液体を
被覆する高導電性の液体として水、界面活性剤の水溶液
などが利用できる。このような粒子形成材料を含む液滴
にさらに公知の種々の処理を加えて均一な粒子かえられ
る。
When producing uniform particles using the present invention, a liquid containing a particle forming material as a low conductive liquid, for example,
Solutions of polymeric substances, solutions containing vinyl polymerizable monomers and their reaction initiators that are polymerized into uniform polymer particles by known polymerization methods, etc. can be used, and highly conductive liquids that coat low conductive liquids can be used. As a solvent, water, an aqueous solution of a surfactant, etc. can be used. Droplets containing such a particle-forming material can be further subjected to various known treatments to transform them into uniform particles.

次に、図面を用いて本発明を具体的に説明する。Next, the present invention will be specifically explained using the drawings.

第1図は本発明のモデル実験装置を示す。第2図は使用
した二重ノズルの先端部分の拡大図である。ノズルの構
造は本例に限定されず、三重以上のもの、特開昭52−
129888号公報のように内側の液体が縮流になる構
造のもの、寸法の異なるものなどももちろん使用可能で
ある。
FIG. 1 shows a model experimental apparatus of the present invention. FIG. 2 is an enlarged view of the tip of the double nozzle used. The structure of the nozzle is not limited to this example;
Of course, it is also possible to use a structure in which the liquid inside is condensed, as in Japanese Patent No. 129888, and a structure with different dimensions.

低導電性液体5はポンプ4によりノズル1の内側ノズル
11に一定流量で送られる。低導電性の液体には電気伝
導度をとくに限定しない種々の有機液体を使用すること
ができる。前記したようにこれらのうちで粒子形成材料
を含むものはとくに有用である。
The low conductivity liquid 5 is sent by the pump 4 to the inner nozzle 11 of the nozzle 1 at a constant flow rate. Various organic liquids whose electrical conductivity is not particularly limited can be used as the low-conductivity liquid. As mentioned above, among these, those containing particle-forming materials are particularly useful.

好適な疎水性モノマーとしてスチレン、エチルスチレン
、クロルメチル化スチレン、アクリル酸メチル、メタク
リル酸メチル、アクリロニトリル、酢酸ビニル、無水マ
レイン酸などのモノビニルモノマー ジビニルベンゼン
、エチレングリコールジメタクリレート、ポリエチレン
グリコールジメタクリレート、フタル酸ジアリルなどの
多官能性モノマーなどをあげることができる。これらの
疎水性モノマーには過酸化ベンゾイル、アゾビスイソブ
チロニトリルなどの重合開始剤が添加される。スチレン
−ジビニルベンゼン、クロルメチル化スチレン−ジビニ
ルベンゼン、スチレン−無水マレイン酸−ジビニルベン
ゼン、メタクリル酸メチル−ジビニルベンゼン、メタク
リル酸メチル−エチレングリコールジメタクリレートな
どの組み合わせは、クロマトグラフィー用の充填剤、吸
着剤あるいはイオン交換樹脂をうるために好ましいもの
である。さらにえられる粒子の構造を調整するために、
これらのモノマー溶液にベンゼン・、ジエチルベンゼン
、キシレン、トルエン、炭素数が5〜12の脂肪族飽和
炭化水素、炭素数が5〜12の脂肪族低級アルコールな
どを加えることもできる。
Suitable hydrophobic monomers include monovinyl monomers such as styrene, ethylstyrene, chloromethylated styrene, methyl acrylate, methyl methacrylate, acrylonitrile, vinyl acetate, maleic anhydride, divinylbenzene, ethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, phthalic acid. Examples include polyfunctional monomers such as diallyl. A polymerization initiator such as benzoyl peroxide or azobisisobutyronitrile is added to these hydrophobic monomers. Combinations such as styrene-divinylbenzene, chloromethylated styrene-divinylbenzene, styrene-maleic anhydride-divinylbenzene, methyl methacrylate-divinylbenzene, and methyl methacrylate-ethylene glycol dimethacrylate are packing materials and adsorbents for chromatography. Alternatively, it is preferable for obtaining an ion exchange resin. Furthermore, in order to adjust the structure of the obtained particles,
Benzene, diethylbenzene, xylene, toluene, an aliphatic saturated hydrocarbon having 5 to 12 carbon atoms, an aliphatic lower alcohol having 5 to 12 carbon atoms, and the like can also be added to these monomer solutions.

前記のビニル重合性モノマーを含む低導電性液体の粘度
は200cps以下、好ましくは50cps以下である
The viscosity of the low conductivity liquid containing the vinyl polymerizable monomer is 200 cps or less, preferably 50 cps or less.

他の粒子形成材料を含む液体の例としては高分子物質の
溶液があげられる。この溶液は、この溶液を被覆する高
導電性の液体と接触したときに急激に凝固してはならな
い。このようなばあいには液柱が液滴に分裂しない。後
述するように高導電性の液体には水あるいは水溶液がも
っばら使用されるのでその溶剤は疎水性であることが好
ましい。粒子を形成する高分子物質は、天然高分子でも
合成高分子でもよい。天然゛高分子系物質では、たとえ
ばセルロースの誘導体などを使用することができる。ま
た合成高分子物質では、たとえばポリ−7−メチル−L
−グルタメートなどのポリアミノ酸、メチルメタクリレ
ート/ヒドロキシエチルメタクリレート共重合体などが
あり、これらは機能性吸着剤や担体に適した粒子を与え
る。スチレン/ブタジェン共重合体、スチレン/クロル
メチル化スチレン共重合体のように架橋構造とイオン交
換基を導入することができるポリマーはイオン交換樹脂
用に有用である。これらの高分子物質の溶剤は、高分子
学会高分子実験学編集委員会編、「天然高分子J (1
984)、共立出版やジエイΦブランドラップ、「ポリ
マーハンドブック」、第2版、1975、ジョン・ウィ
リー・アンド・サンス・インコーポレーテ・ソド(J、
Brandrup、  polymerHand bo
ok ’ 、 2nd edition、 (1975
)、 JohnWily and 5ons Inc、
)などを参考にして選フコとができる。該溶剤の具体例
としては、たとえば塩化メチレン、クロロホルム、ジク
ロロエタン、トリクロロエタンなどの塩素化炭化水素が
単独または2種類以上混合して通常用いられる。
Examples of liquids containing other particle-forming materials include solutions of polymeric substances. The solution must not solidify rapidly when it comes into contact with the highly conductive liquid coating it. In such a case, the liquid column does not break up into droplets. As will be described later, since water or an aqueous solution is often used as a highly conductive liquid, it is preferable that the solvent is hydrophobic. The polymeric substance forming the particles may be a natural polymer or a synthetic polymer. As natural polymeric substances, for example, cellulose derivatives can be used. In addition, synthetic polymer substances such as poly-7-methyl-L
- polyamino acids such as glutamate, methyl methacrylate/hydroxyethyl methacrylate copolymers, etc., which provide particles suitable for functional adsorbents and carriers. Polymers into which a crosslinked structure and ion exchange groups can be introduced, such as styrene/butadiene copolymers and styrene/chloromethylated styrene copolymers, are useful for ion exchange resins. The solvents for these polymer substances are described in "Natural Polymers J (1
984), Kyoritsu Shuppan and JΦBrandlap, "Polymer Handbook", 2nd edition, 1975, John Wiley & Sons Incorporate Sodo (J,
Brandrup, polymer hand bo
OK', 2nd edition, (1975
), John Wily and 5ons Inc.
), etc., to make a selection. As specific examples of the solvent, chlorinated hydrocarbons such as methylene chloride, chloroform, dichloroethane, and trichloroethane are commonly used alone or in combination of two or more.

これらの溶剤に凝固促進剤として少量の低級アルコール
を添加することが効果的なばあいもある。さらにポリマ
ー粒子を多孔質にしたいばあいには炭素数が4〜12の
脂肪族アルコールを加えてもよい。
In some cases, it is effective to add a small amount of lower alcohol to these solvents as a coagulation accelerator. Furthermore, if it is desired to make the polymer particles porous, an aliphatic alcohol having 4 to 12 carbon atoms may be added.

前記粒子形成用高分子物質を含む溶液の粘度は、200
cps以下、好ましくは50cps以下である。
The viscosity of the solution containing the particle-forming polymer substance is 200
cps or less, preferably 50 cps or less.

高導電性液体の粘度は小さい方が好ましく、5ocps
以下、好ましくは20cps以下である。
The lower the viscosity of the highly conductive liquid, the lower the viscosity is, 5ocps.
It is preferably 20 cps or less.

低導電性の液体を被覆する高導電性液体7はポンプ6に
よりノズル1の外側ノズル12に一定流量送られる。高
導電性の液体には水もしくは水溶液が好適に用いられる
。界面活性剤の水溶液は低導電性の液体の液滴を安定に
保持するためにとくに効果的である。
A high conductivity liquid 7 covering a low conductivity liquid is delivered at a constant rate by a pump 6 to the outer nozzle 12 of the nozzle 1 . Water or an aqueous solution is preferably used as the highly conductive liquid. Aqueous solutions of surfactants are particularly effective for stably holding droplets of low conductivity liquids.

ノズル1から噴出する低導電性の液体を高導電性の液体
で被覆した多重液柱は、平行平板状の電極3の間を通過
する間に交流高圧電源2によりノズル1と電極3の間に
加えられた交流静電界を印加される。前記のように液滴
に同じ符号の電荷を帯びさせるためにはノズル1と電極
の間に交流電圧よりも大きい直流電圧を重ね合わせれば
よい。多重液柱が交流の周期と同期して分裂し均一な液
滴が形成される状態、すなわち同調状態を与える交流の
周波数および電圧の範囲は、液柱の噴出速度、太さ、主
に外側の高導電性液体の表面張力、密度、粘度、などに
よって定まる特定の領域を持つ。したがって、この領域
は試行錯誤的に求められるが、とくに周波数領域につい
ては、多重ノズルのうち外側ノズルのみを使用して高導
電性の液体を噴出させ、機械的な振動を加えて均一な液
滴に分裂させるばあいの同調周波数領域にほぼ等しいこ
とを本発明者らは見出しており、この領域は佐賀弁ら(
ティー・佐賀弁ら、第4回液体の微粒化とスプレーシス
テムに関する国際会議要旨集(T。
The multiple liquid columns, in which a low-conductivity liquid is coated with a high-conductivity liquid, ejected from the nozzle 1 are connected between the nozzle 1 and the electrode 3 by an AC high-voltage power source 2 while passing between the parallel plate-shaped electrodes 3 An applied alternating current electrostatic field is applied. In order to charge the droplets with the same sign as described above, it is sufficient to superimpose a DC voltage larger than the AC voltage between the nozzle 1 and the electrode. The frequency and voltage range of the AC that provides the state in which multiple liquid columns split in synchronization with the cycle of the AC and form uniform droplets, that is, the synchronized state, depends on the ejection speed and thickness of the liquid column, and mainly on the outer side. It has a specific region determined by the surface tension, density, viscosity, etc. of the highly conductive liquid. Therefore, this region is determined by trial and error, but especially in the frequency region, highly conductive liquid is ejected using only the outer nozzle of multiple nozzles, and mechanical vibration is applied to create uniform droplets. The present inventors have found that the tuning frequency region is approximately equal to the tuning frequency region when the frequency is divided into
T., Sagaben et al., Abstracts of the 4th International Conference on Liquid Atomization and Spray Systems (T.

5aka1 et al、 Proceedings 
of 4thInternational Confe
rence on LiquidAtoa+1zati
on and 5pray Systems) 、 A
2A2−4(198参照)の式から大まかに推定できる
。現実的に有用な振動数は数百Hzから数十kHzであ
り、この振動数は直径が11〜数十摩の液滴に対応して
いる。一方、同調交流電圧の大きさには最低値は明確に
認められるが上限は不明瞭である。現実的には数百ボル
ト以上が使用される。
5aka1 et al, Proceedings
of 4thInternational Confe
rence on LiquidAtoa+1zati
on and 5play Systems), A
It can be roughly estimated from the formula 2A2-4 (see 198). Practically useful frequencies are from several hundred Hz to several tens of kHz, and this frequency corresponds to droplets with a diameter of 11 to several tens of microns. On the other hand, the minimum value of the tuned AC voltage is clearly recognized, but the upper limit is unclear. In reality, several hundred volts or more are used.

前記したようにこの電圧はノズルから噴出する液柱に対
して一定周期で変化する制御された初期乱れを与える電
荷を誘発するために必要なものである。したがって、下
限は明確であるが上限は不明確であると考えられる。
As mentioned above, this voltage is necessary to induce a charge that provides a periodically varying, controlled initial disturbance to the liquid column ejected from the nozzle. Therefore, it is considered that the lower limit is clear but the upper limit is unclear.

本装置では平行平板状の電極が使用されているが電極3
の形状を制限する理由はなく、円筒状などでもよい。電
極とノズルとの間の距離にとくに厳密な制限はないが数
Im〜十数■が適切である。しかしながら、電極の他端
の位置は、液柱が分裂する位置にほぼ一致させるべきで
ある。こうすれば、とくに交流静電界に直流電界を重ね
合わしたばあいには、液柱表面に最大量の電荷を与える
ことができるばかりでなく生成しだ液滴の運動が電極電
荷の影響を受けないので安定になる。
In this device, parallel plate-shaped electrodes are used, but the electrode 3
There is no reason to limit the shape, and it may be cylindrical or the like. Although there is no particular strict limit to the distance between the electrode and the nozzle, a distance of several Im to several tens of square meters is appropriate. However, the location of the other end of the electrode should approximately coincide with the location where the liquid column splits. In this way, especially when a DC electric field is superimposed on an AC electrostatic field, not only can the maximum amount of charge be applied to the surface of the liquid column, but also the movement of the generated droplets will not be affected by the electrode charge. So it becomes stable.

液滴の生成が同調状態にあれば、ストロボスコープ9の
点滅周期が交流周期の整数倍もしくは整数分の1に一致
したとき、液滴が静止して見られ、それをカメラ8で撮
影することができる。
If the droplet generation is in a synchronous state, when the flashing cycle of the stroboscope 9 matches an integer multiple or an integer fraction of the AC cycle, the droplet will be seen stationary, and it will be photographed by the camera 8. I can do it.

以上説明した方法により、直径が5〜1000郁の低導
電性の均一な液滴をうろことができる。
By the method described above, it is possible to form uniform droplets with a diameter of 5 to 1000 mm and a low conductivity.

液滴が粒子形成材料を含むばあいには、さらにそれを粒
子にする処理が加えられる。粒子の形成材料に前記のい
ずれを用いるかによってその処理方法は異なるが、通常
、まず液滴の外側液すなわち高導電性の液体とおなじ液
体中に液滴を回収して粒子形成材料を含む均一な液滴の
分散液をうる。しかるのちに、それが前記のモノマーの
ばあいには、公知の方法によって重合開始剤にラジカル
を発生させて重合させることによって均一な粒子にする
ことができる。また、粒子形成材料を含む液滴が高分子
物質の溶液のばあいには、公知の技術を利用して、たと
えば、分散状態のままでその溶剤を揮発させるか、ある
いは分散液に凝固剤を加えて液滴を凝固させることによ
ってその高分子物質の均一な粒子にすることができる。
If the droplets contain particle-forming material, they are further processed to form particles. The processing method differs depending on which of the above particles is used as the material for forming the particles, but usually the droplets are first collected in the same liquid as the outer liquid of the droplets, that is, the highly conductive liquid, and a homogeneous solution containing the particle forming material is collected. Obtain a dispersion of droplets. Thereafter, if the monomer is the above-mentioned monomer, it can be made into uniform particles by generating radicals in the polymerization initiator and polymerizing it by a known method. If the droplets containing the particle-forming material are a solution of a polymeric substance, known techniques may be used, for example, to evaporate the solvent while the particles are in a dispersed state, or to add a coagulant to the dispersion. In addition, the droplets can be solidified into uniform particles of the polymeric material.

以下に本発明の方法を実施例によってさらに詳細に説明
するが、本発明は下記実施例のみに限定されるものでは
ない。
EXAMPLES The method of the present invention will be explained in more detail with reference to examples below, but the present invention is not limited to the following examples.

実施例1 第1図の装置を使用して本発明のモデル実験を行った。Example 1 A model experiment of the present invention was conducted using the apparatus shown in FIG.

第2図は本実験に使用した二重ノズルの先端部分の断面
拡大図である。
FIG. 2 is an enlarged cross-sectional view of the tip of the double nozzle used in this experiment.

ノズル1を構成する外側ノズル12の内径は400ρ、
内側ノズルの内径および外径はそれぞれ150 fおよ
び250fであった。
The inner diameter of the outer nozzle 12 constituting the nozzle 1 is 400ρ,
The inner and outer diameters of the inner nozzle were 150 f and 250 f, respectively.

低導電性のモデル液体5として灯油を使用し、内側ノズ
ル11からの噴出流速が300cm/seeとなるよう
にポンプ4でノズル1に送った。
Kerosene was used as the model liquid 5 with low conductivity, and was sent to the nozzle 1 with the pump 4 so that the jet flow rate from the inner nozzle 11 was 300 cm/see.

高導電性のモデル液体として電気伝導度が0.3μS/
cmのイオン交換水を使用し、外側ノズルからの噴出流
速が300cm/secとなるようにポンプ6でノズル
1に送った。
As a highly conductive model liquid, the electrical conductivity is 0.3μS/
cm of ion-exchanged water was used and sent to the nozzle 1 with a pump 6 so that the jet flow rate from the outer nozzle was 300 cm/sec.

平行平板状の電極3には液体の噴出方向の長さが25m
5、幅が30a+厘のステンレス製板を使用した。電極
はノズルから10mm離し、電極の他端がノズルから3
5麿■の位置に来るようにした。
The parallel plate-shaped electrode 3 has a length of 25 m in the liquid ejection direction.
5. A stainless steel plate with a width of 30 mm was used. The electrode should be 10mm away from the nozzle, and the other end of the electrode should be 3mm away from the nozzle.
I made it to be in the position of 5-year-old.

本実験では電極とノズルの間に直流電圧を重畳せず2k
Vの交流電圧のみを用いた。
In this experiment, no DC voltage was superimposed between the electrode and the nozzle.
Only an alternating voltage of V was used.

交流電圧の周期を1〜3 kHzまで0.5kHzごと
に変えて灯油をイオン交換水で被覆した二重液柱の分裂
状態を観察した。1.0.1.5および3.0kHzで
は不規則な分裂であるが、2.0と2.5kHzでは印
加した交流電圧の周期に同期して液柱が分裂し均一な液
滴が観察された。さらに詳細に液柱の噴出速度を変えて
同調周期領域を観察した結果を均一領域上下限周波数を
用いて第3図に示す。第3図中の直線は、内側ノズルを
外し、外側ノズルのみを用いて同じイオン交換水を対応
する流速で噴出させたばあいに前記の佐賀弁らの式で求
められる同調周期領域の計算値を示している。第3図が
示すように同調周波数領域に関してはこのような方法で
予測することができる。
The splitting state of a double liquid column in which kerosene was coated with ion-exchanged water was observed by changing the cycle of the alternating current voltage from 1 to 3 kHz in 0.5 kHz increments. At 1.0, 1.5 and 3.0kHz, the droplets were irregularly split, but at 2.0 and 2.5kHz, the liquid column split in synchronization with the cycle of the applied AC voltage, and uniform droplets were observed. Ta. In more detail, the result of observing the tuning period region by changing the ejection speed of the liquid column is shown in FIG. 3 using the upper and lower limit frequencies of the uniform region. The straight line in Figure 3 is the calculated value of the tuning period region obtained by the above-mentioned formula of Sagaben et al. when the inner nozzle is removed and the same ion-exchanged water is ejected at the corresponding flow rate using only the outer nozzle. It shows. As shown in FIG. 3, the tuning frequency region can be predicted using this method.

同調状態をうるために必要な下限交流電圧は1kVであ
った。
The lower limit AC voltage required to obtain a tuned state was 1 kV.

同調状態の液滴のストロボ撮影写真は一つの灯油の液滴
が水で包まれた二重の液滴が均一に形成されていること
を明らかに示していた。この液滴の平均直径は530加
で、すべての液滴が500〜600Iにあり、極めてシ
ャープな分布を持つものであった。
Strobe photography of the synchronous droplets clearly showed that one kerosene droplet was uniformly formed into double droplets surrounded by water. The average diameter of the droplets was 530 mm, all of the droplets were in the range of 500 to 600 mm, and had an extremely sharp distribution.

本発明では、低導電性の液体として灯油を、高導電性の
液体としてイオン交換水を使用したが、これらに代わっ
て前記の粒子形成材料を含む液体を低導電性の液体とし
て、界面活性剤を含む水溶液を高導電性の液体として使
用しても同様に均一な多重液滴が形成される。
In the present invention, kerosene was used as the low conductivity liquid and ion exchange water was used as the high conductivity liquid, but instead of these, the liquid containing the particle forming material was used as the low conductivity liquid, and a surfactant was used as the low conductivity liquid. Even if an aqueous solution containing .

[発明の効果] 本発明の方法によれば低導電性液体、たとえば高分子物
質の溶液あるいは重合性モノマーを含む液を、高導電性
液体、たとえば界面活性剤の水溶液で包んだ均一な二重
液滴を騒音などを出すことなく安定的につくることがで
きるので、本方法を利用してクロマトグラフィー、吸着
剤、担体、スペーサーなどの種々の目的に極めて有効な
均一な粒子を製造することができる。
[Effects of the Invention] According to the method of the present invention, a uniform double layer is formed by wrapping a low conductive liquid, such as a solution of a polymeric substance or a liquid containing a polymerizable monomer, with a highly conductive liquid, such as an aqueous solution of a surfactant. Since droplets can be produced stably without making noise, this method can be used to produce uniform particles that are extremely effective for various purposes such as chromatography, adsorbents, carriers, and spacers. can.

【図面の簡単な説明】 第1図は本発明を具体的に説明するために使用したモデ
ル実験装置であり、第2図は第1図のノズルの断面の拡
大図であり、第3図は二重液柱の分裂が同調する交流電
圧(2kV)の周波数領域を上下限周波数を用いて示し
たものであり、直線は佐賀弁らの予測式による値を、プ
ロットは実測値を示す。 (図面の主要符号) (1):ノズル (2)二交流電圧電源 (3):電 極 (5):低導電性液体 (7) 、高導電性液体 01):内側ノズル 02):外側ノズル 第 1 図 才2図 液の噴出流速(cm/s)
[Brief Description of the Drawings] Figure 1 is a model experimental device used to specifically explain the present invention, Figure 2 is an enlarged cross-sectional view of the nozzle in Figure 1, and Figure 3 is an enlarged cross-sectional view of the nozzle in Figure 1. The frequency range of the AC voltage (2 kV) in which the splitting of the double liquid column is synchronized is shown using the upper and lower limit frequencies; the straight line shows the value based on the prediction formula of Sagaben et al., and the plot shows the actually measured value. (Main symbols in the drawing) (1): Nozzle (2) Two AC voltage power supply (3): Electrode (5): Low conductivity liquid (7), High conductivity liquid 01): Inner nozzle 02): Outer nozzle Figure 1 Figure 2 Liquid jet flow velocity (cm/s)

Claims (1)

【特許請求の範囲】 1 低導電性液体の外側をこれと相溶しない高導電性液
体で覆った多重液柱に対して一定周期の交流静電界を印
加することによって該周期と同期した液滴を形成せしめ
ることを特徴とする均一液滴の形成方法。 2 低導電性液体が粒子形成材料を含む液体で、高導電
性液体が水もしくは水溶液である請求項1記載の均一液
滴の形成方法。
[Claims] 1. Droplets synchronized with a constant period by applying an alternating current electrostatic field with a constant period to multiple liquid columns in which the outside of a low conductive liquid is covered with a highly conductive liquid that is incompatible with the low conductive liquid. A method for forming uniform droplets, characterized by forming a uniform droplet. 2. The method for forming uniform droplets according to claim 1, wherein the low conductivity liquid is a liquid containing a particle forming material, and the high conductivity liquid is water or an aqueous solution.
JP2767290A 1990-02-07 1990-02-07 Method for forming uniform droplets Expired - Lifetime JP3176607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2767290A JP3176607B2 (en) 1990-02-07 1990-02-07 Method for forming uniform droplets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2767290A JP3176607B2 (en) 1990-02-07 1990-02-07 Method for forming uniform droplets

Publications (2)

Publication Number Publication Date
JPH03232525A true JPH03232525A (en) 1991-10-16
JP3176607B2 JP3176607B2 (en) 2001-06-18

Family

ID=12227444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2767290A Expired - Lifetime JP3176607B2 (en) 1990-02-07 1990-02-07 Method for forming uniform droplets

Country Status (1)

Country Link
JP (1) JP3176607B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523142A (en) * 2003-04-10 2006-10-12 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Formation and control of fluid species
US8765485B2 (en) 2003-08-27 2014-07-01 President And Fellows Of Harvard College Electronic control of fluidic species
US8841071B2 (en) 2011-06-02 2014-09-23 Raindance Technologies, Inc. Sample multiplexing
US8871444B2 (en) 2004-10-08 2014-10-28 Medical Research Council In vitro evolution in microfluidic systems
US8986628B2 (en) 2002-06-28 2015-03-24 President And Fellows Of Harvard College Method and apparatus for fluid dispersion
US9012390B2 (en) 2006-08-07 2015-04-21 Raindance Technologies, Inc. Fluorocarbon emulsion stabilizing surfactants
US9017623B2 (en) 2007-02-06 2015-04-28 Raindance Technologies, Inc. Manipulation of fluids and reactions in microfluidic systems
US9068699B2 (en) 2007-04-19 2015-06-30 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
US9074242B2 (en) 2010-02-12 2015-07-07 Raindance Technologies, Inc. Digital analyte analysis
US9150852B2 (en) 2011-02-18 2015-10-06 Raindance Technologies, Inc. Compositions and methods for molecular labeling
US9273308B2 (en) 2006-05-11 2016-03-01 Raindance Technologies, Inc. Selection of compartmentalized screening method
US9328344B2 (en) 2006-01-11 2016-05-03 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
US9366632B2 (en) 2010-02-12 2016-06-14 Raindance Technologies, Inc. Digital analyte analysis
US9399797B2 (en) 2010-02-12 2016-07-26 Raindance Technologies, Inc. Digital analyte analysis
US9498759B2 (en) 2004-10-12 2016-11-22 President And Fellows Of Harvard College Compartmentalized screening by microfluidic control
US9562837B2 (en) 2006-05-11 2017-02-07 Raindance Technologies, Inc. Systems for handling microfludic droplets
US9562897B2 (en) 2010-09-30 2017-02-07 Raindance Technologies, Inc. Sandwich assays in droplets
US9925504B2 (en) 2004-03-31 2018-03-27 President And Fellows Of Harvard College Compartmentalised combinatorial chemistry by microfluidic control
US10351905B2 (en) 2010-02-12 2019-07-16 Bio-Rad Laboratories, Inc. Digital analyte analysis
US10520500B2 (en) 2009-10-09 2019-12-31 Abdeslam El Harrak Labelled silica-based nanomaterial with enhanced properties and uses thereof
US10533998B2 (en) 2008-07-18 2020-01-14 Bio-Rad Laboratories, Inc. Enzyme quantification
US10647981B1 (en) 2015-09-08 2020-05-12 Bio-Rad Laboratories, Inc. Nucleic acid library generation methods and compositions
US10837883B2 (en) 2009-12-23 2020-11-17 Bio-Rad Laboratories, Inc. Microfluidic systems and methods for reducing the exchange of molecules between droplets
US11174509B2 (en) 2013-12-12 2021-11-16 Bio-Rad Laboratories, Inc. Distinguishing rare variations in a nucleic acid sequence from a sample
US11193176B2 (en) 2013-12-31 2021-12-07 Bio-Rad Laboratories, Inc. Method for detecting and quantifying latent retroviral RNA species
US11268887B2 (en) 2009-03-23 2022-03-08 Bio-Rad Laboratories, Inc. Manipulation of microfluidic droplets
US11511242B2 (en) 2008-07-18 2022-11-29 Bio-Rad Laboratories, Inc. Droplet libraries
US11901041B2 (en) 2013-10-04 2024-02-13 Bio-Rad Laboratories, Inc. Digital analysis of nucleic acid modification
US11898193B2 (en) 2011-07-20 2024-02-13 Bio-Rad Laboratories, Inc. Manipulating droplet size

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101640272B1 (en) * 2009-02-02 2016-07-15 바스프 에스이 Method for producing polymers and reactor for carrying out said method
JP6048356B2 (en) * 2013-09-27 2016-12-21 豊田合成株式会社 Air conditioning register

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8986628B2 (en) 2002-06-28 2015-03-24 President And Fellows Of Harvard College Method and apparatus for fluid dispersion
US11187702B2 (en) 2003-03-14 2021-11-30 Bio-Rad Laboratories, Inc. Enzyme quantification
US9038919B2 (en) 2003-04-10 2015-05-26 President And Fellows Of Harvard College Formation and control of fluidic species
JP2011025243A (en) * 2003-04-10 2011-02-10 President & Fellows Of Harvard College Formation and control of fluid species
JP2014111257A (en) * 2003-04-10 2014-06-19 President & Fellows Of Harvard College Formation and control of fluid species
US20150283546A1 (en) 2003-04-10 2015-10-08 President And Fellows Of Harvard College Formation and control of fluidic species
JP2006523142A (en) * 2003-04-10 2006-10-12 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Formation and control of fluid species
US10293341B2 (en) 2003-04-10 2019-05-21 President And Fellows Of Harvard College Formation and control of fluidic species
US11141731B2 (en) 2003-04-10 2021-10-12 President And Fellows Of Harvard College Formation and control of fluidic species
US8765485B2 (en) 2003-08-27 2014-07-01 President And Fellows Of Harvard College Electronic control of fluidic species
US9789482B2 (en) 2003-08-27 2017-10-17 President And Fellows Of Harvard College Methods of introducing a fluid into droplets
US9878325B2 (en) 2003-08-27 2018-01-30 President And Fellows Of Harvard College Electronic control of fluidic species
US10625256B2 (en) 2003-08-27 2020-04-21 President And Fellows Of Harvard College Electronic control of fluidic species
US11383234B2 (en) 2003-08-27 2022-07-12 President And Fellows Of Harvard College Electronic control of fluidic species
US11821109B2 (en) 2004-03-31 2023-11-21 President And Fellows Of Harvard College Compartmentalised combinatorial chemistry by microfluidic control
US9925504B2 (en) 2004-03-31 2018-03-27 President And Fellows Of Harvard College Compartmentalised combinatorial chemistry by microfluidic control
US11786872B2 (en) 2004-10-08 2023-10-17 United Kingdom Research And Innovation Vitro evolution in microfluidic systems
US9186643B2 (en) 2004-10-08 2015-11-17 Medical Research Council In vitro evolution in microfluidic systems
US9029083B2 (en) 2004-10-08 2015-05-12 Medical Research Council Vitro evolution in microfluidic systems
US8871444B2 (en) 2004-10-08 2014-10-28 Medical Research Council In vitro evolution in microfluidic systems
US9498759B2 (en) 2004-10-12 2016-11-22 President And Fellows Of Harvard College Compartmentalized screening by microfluidic control
US9328344B2 (en) 2006-01-11 2016-05-03 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
US9410151B2 (en) 2006-01-11 2016-08-09 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
US9534216B2 (en) 2006-01-11 2017-01-03 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
US9273308B2 (en) 2006-05-11 2016-03-01 Raindance Technologies, Inc. Selection of compartmentalized screening method
US11351510B2 (en) 2006-05-11 2022-06-07 Bio-Rad Laboratories, Inc. Microfluidic devices
US9562837B2 (en) 2006-05-11 2017-02-07 Raindance Technologies, Inc. Systems for handling microfludic droplets
US9498761B2 (en) 2006-08-07 2016-11-22 Raindance Technologies, Inc. Fluorocarbon emulsion stabilizing surfactants
US9012390B2 (en) 2006-08-07 2015-04-21 Raindance Technologies, Inc. Fluorocarbon emulsion stabilizing surfactants
US9440232B2 (en) 2007-02-06 2016-09-13 Raindance Technologies, Inc. Manipulation of fluids and reactions in microfluidic systems
US11819849B2 (en) 2007-02-06 2023-11-21 Brandeis University Manipulation of fluids and reactions in microfluidic systems
US9017623B2 (en) 2007-02-06 2015-04-28 Raindance Technologies, Inc. Manipulation of fluids and reactions in microfluidic systems
US10603662B2 (en) 2007-02-06 2020-03-31 Brandeis University Manipulation of fluids and reactions in microfluidic systems
US10357772B2 (en) 2007-04-19 2019-07-23 President And Fellows Of Harvard College Manipulation of fluids, fluid components and reactions in microfluidic systems
US11224876B2 (en) 2007-04-19 2022-01-18 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
US9068699B2 (en) 2007-04-19 2015-06-30 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
US11618024B2 (en) 2007-04-19 2023-04-04 President And Fellows Of Harvard College Manipulation of fluids, fluid components and reactions in microfluidic systems
US10675626B2 (en) 2007-04-19 2020-06-09 President And Fellows Of Harvard College Manipulation of fluids, fluid components and reactions in microfluidic systems
US10960397B2 (en) 2007-04-19 2021-03-30 President And Fellows Of Harvard College Manipulation of fluids, fluid components and reactions in microfluidic systems
US10533998B2 (en) 2008-07-18 2020-01-14 Bio-Rad Laboratories, Inc. Enzyme quantification
US11596908B2 (en) 2008-07-18 2023-03-07 Bio-Rad Laboratories, Inc. Droplet libraries
US11534727B2 (en) 2008-07-18 2022-12-27 Bio-Rad Laboratories, Inc. Droplet libraries
US11511242B2 (en) 2008-07-18 2022-11-29 Bio-Rad Laboratories, Inc. Droplet libraries
US11268887B2 (en) 2009-03-23 2022-03-08 Bio-Rad Laboratories, Inc. Manipulation of microfluidic droplets
US10520500B2 (en) 2009-10-09 2019-12-31 Abdeslam El Harrak Labelled silica-based nanomaterial with enhanced properties and uses thereof
US10837883B2 (en) 2009-12-23 2020-11-17 Bio-Rad Laboratories, Inc. Microfluidic systems and methods for reducing the exchange of molecules between droplets
US11254968B2 (en) 2010-02-12 2022-02-22 Bio-Rad Laboratories, Inc. Digital analyte analysis
US10808279B2 (en) 2010-02-12 2020-10-20 Bio-Rad Laboratories, Inc. Digital analyte analysis
US9399797B2 (en) 2010-02-12 2016-07-26 Raindance Technologies, Inc. Digital analyte analysis
US10351905B2 (en) 2010-02-12 2019-07-16 Bio-Rad Laboratories, Inc. Digital analyte analysis
US9366632B2 (en) 2010-02-12 2016-06-14 Raindance Technologies, Inc. Digital analyte analysis
US9228229B2 (en) 2010-02-12 2016-01-05 Raindance Technologies, Inc. Digital analyte analysis
US9074242B2 (en) 2010-02-12 2015-07-07 Raindance Technologies, Inc. Digital analyte analysis
US11390917B2 (en) 2010-02-12 2022-07-19 Bio-Rad Laboratories, Inc. Digital analyte analysis
US9562897B2 (en) 2010-09-30 2017-02-07 Raindance Technologies, Inc. Sandwich assays in droplets
US11635427B2 (en) 2010-09-30 2023-04-25 Bio-Rad Laboratories, Inc. Sandwich assays in droplets
US11747327B2 (en) 2011-02-18 2023-09-05 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
US11768198B2 (en) 2011-02-18 2023-09-26 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
US9150852B2 (en) 2011-02-18 2015-10-06 Raindance Technologies, Inc. Compositions and methods for molecular labeling
US11168353B2 (en) 2011-02-18 2021-11-09 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
US11965877B2 (en) 2011-02-18 2024-04-23 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
US8841071B2 (en) 2011-06-02 2014-09-23 Raindance Technologies, Inc. Sample multiplexing
US11898193B2 (en) 2011-07-20 2024-02-13 Bio-Rad Laboratories, Inc. Manipulating droplet size
US11901041B2 (en) 2013-10-04 2024-02-13 Bio-Rad Laboratories, Inc. Digital analysis of nucleic acid modification
US11174509B2 (en) 2013-12-12 2021-11-16 Bio-Rad Laboratories, Inc. Distinguishing rare variations in a nucleic acid sequence from a sample
US11193176B2 (en) 2013-12-31 2021-12-07 Bio-Rad Laboratories, Inc. Method for detecting and quantifying latent retroviral RNA species
US10647981B1 (en) 2015-09-08 2020-05-12 Bio-Rad Laboratories, Inc. Nucleic acid library generation methods and compositions

Also Published As

Publication number Publication date
JP3176607B2 (en) 2001-06-18

Similar Documents

Publication Publication Date Title
JPH03232525A (en) Formation of uniform liquid drop
CA2226496C (en) Vacuum flash evaporated polymer composites
JP3560914B2 (en) Plasma accelerated chemical vapor deposition using low vapor pressure compounds.
Park et al. Electrosprayed polymer particles: effect of the solvent properties
US4954371A (en) Flash evaporation of monomer fluids
US4863756A (en) Method and equipment for coating substrates by means of a plasma discharge using a system of magnets to confine the plasma
EP0662866B1 (en) Electrospray coating apparatus and process
JPH02107371A (en) Method and apparatus for pretreating plastic molded product and molded product
US5015423A (en) Method of making uniform polymer particles
US4748043A (en) Electrospray coating process
EP0270656B1 (en) Vapour deposition of monomer fluids
US7799389B2 (en) Method and device for depositing thin films by electrohydrodynamic, in particular post-discharge, spraying
Meiners et al. Surface modification of polymer materials by transient gas discharges at atmospheric pressure
JPH09290179A (en) Electrostatic atomization method and apparatus
JP2002532621A (en) Plasma enhanced chemical deposition for high and / or low index polymers
Sato The production of essentially uniform-sized liquid droplets in gaseous or immiscible liquid media under applied AC potential
TW201321088A (en) Apparatus and process for depositing a thin layer of resist on a substrate
US5021201A (en) Process for preparing uniform discoid particles
Boufi et al. Formation of polymeric films on cellulosic surfaces by admicellar polymerization
JP2002532577A (en) Method for producing a nonlinear optical polymer
Borra et al. Atmospheric Pressure Deposition of Thin Functional Coatings: Polymer Surface Patterning by DBD and Post‐Discharge Polymerization of Liquid Vinyl Monomer from Surface Radicals
JPS61290783A (en) Method and apparatus for preparing piezo-electric material
JPH04344250A (en) Ink discharge device to be used in ink jet printing system
JP2005529729A (en) Electrostatic degassing method
JP2854390B2 (en) Method for forming uniform droplets

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

EXPY Cancellation because of completion of term