JPS642059B2 - - Google Patents

Info

Publication number
JPS642059B2
JPS642059B2 JP17264882A JP17264882A JPS642059B2 JP S642059 B2 JPS642059 B2 JP S642059B2 JP 17264882 A JP17264882 A JP 17264882A JP 17264882 A JP17264882 A JP 17264882A JP S642059 B2 JPS642059 B2 JP S642059B2
Authority
JP
Japan
Prior art keywords
abs
molded product
injection molded
eva
vinyl chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17264882A
Other languages
Japanese (ja)
Other versions
JPS5962147A (en
Inventor
Tetsuo Maeda
Akihiro Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP17264882A priority Critical patent/JPS5962147A/en
Publication of JPS5962147A publication Critical patent/JPS5962147A/en
Publication of JPS642059B2 publication Critical patent/JPS642059B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はEVAを含有する耇合ABSず可塑剀を
含有する塩化ビニル系暹脂からなる環境応力き裂
性の改良された二重射出成圢物に関する。 ABSは意匠䞊の目的で、あるいは耐候性を改
良する目的で、成圢物衚面を他皮材料で被芆する
こずが行なわれるが、ここで甚いられる他皮材料
ずは、金属あるいは塗料などが䞀般的である。時
ずしお、䞻に意匠䞊の目的でABS成圢物の䞀郚
あるいは党郚を可塑剀を含有する塩化ビニル系暹
脂で被芆する芁求が起きるが、ABSず塩化ビニ
ル系暹脂ずが接觊するず、接觊面のABS偎にき
裂が発生し、著しい堎合には砎断する事故が頻発
する。この珟象は塩化ビニル系暹脂の含有する可
塑剀がABS偎に移行し、ABSが可塑剀により環
境応力き裂砎壊するこずにより起こり、ABSの
可塑剀による耐環境応力き裂性が劣るこずに起因
するものである。 ABSの可塑剀に察する耐環境応力き裂性を改
良する詊みずしお、たずえば暹脂盞の分子量を䞊
げる、暹脂盞のアクリロニトリル含有率を䞊げ
る、及びゎム成分含有率を䞊げる等の方法が行な
われたが、いずれの方法も実甚䞊充分な改良効果
を埗るに至らなか぀た。 このため、ABSを可塑剀を含有する塩化ビニ
ル系暹脂ず接觊しお甚いるこずは通垞行なわれ
ず、ABSの甚途に制限を加えおいた。 特にABSず塩化ビニル系暹脂を二重射出成圢
しお䞀䜓成圢物を䜜るず、二重射出成圢時の残留
応力のために䞡暹脂のABSにき裂が発生しお実
甚に耐える成圢物は埗られない。 本発明者はABSず可塑剀を含有する塩化ビニ
ル系暹脂から成る二重射出成圢の環境応力き裂砎
壊を防止する方法に぀いお鋭意怜蚎を加えた結
果、ABS100重量郚にEVA0.1〜50重量郚混合し
た耇合ABSず、重量以䞊の可塑剀を含有す
る塩化ビニル系暹脂ずからなる二重射出成圢物に
おいおは、接觊面のABSにき裂が発生しない事
実を芋出し、本発明の完成に至぀た。 本発明による二重射出成圢物は、可塑剀の移行
によるき裂発生珟象が解消されるため自動車郚品
等に奜適に甚いられる。 本発明に甚いられるABSは、ゎム盞ず暹脂盞
ずからなるが、ゎム盞ずしおはゞ゚ン系ゎム、ア
クリルゎム、EPDMゎムなどが䜿甚可胜である
が、特にゞ゚ン系ゎムが奜たしい。ゞ゚ン系ゎム
盞の具䜓䟋ずしおは、ポリブタゞ゚ン、ポリむ゜
プレン、ポリブタゞ゚ン―スチレン、ポリ
ブタゞ゚ン―アクリロニトリル、ポリブタゞ
゚ン―メチルメタクリレヌトなどがあり、暹脂
盞ずしおはポリアクリロニトリル―スチレン、
ポリアクリロニトリル―メチルメタクリレヌト
―スチレン、ポリアクリロニトリル―α―メ
チルスチレン―スチレンなどがある。ゞ゚ン系
ゎム盞は皮類以䞊のゞ゚ン系ゎムの混合物であ
぀およく、たた暹脂盞も皮類以䞊の暹脂の混合
物であ぀およい。 本発明に甚いられるABSは〜30重量のゎ
ムを含有しおいるこずが奜たしい。ゎム含有率が
重量未満であ぀おは、EVAず混合しお埗た
暹脂の耐可塑剀性が充分でなく、30重量を越え
るず剛性が䜎䞋する。 ABSの補造方法に぀いおは特に制限はなく、
公知の重合技術が適甚される。 本発明に甚いられるEVAは、゚チレンず酢酞
ビニル、堎合によ぀おはこれらの二皮の単量䜓及
びこれらず共重合可胜なビニル単量䜓を含む共重
合䜓である。ここで甚いられる共重合可胜なビニ
ル単量䜓ずは、アクリル酞゚チル、アクリル酞ブ
チル、アクリル酞ヘキシル、アクリル酞オクチ
ル、メチルメタクリレヌトなどのメタアクリ
ル系単量䜓、スチレン、α―メチルスチレン、ビ
ニルトル゚ンなどのスチレン系単量䜓、アクリロ
ニトリル、メタクリロニトリルなどのリトリル系
単量䜓、塩化ビニル、塩化ビニリデンなどのハロ
ゲン含有単量䜓などである。 EVAの重合方法は特に制限はなく、公知重合
技術が適甚される。 本発明に甚いられるEVAはガラス転移枩床が
20℃以䞋、奜たしくは10℃以䞋であるこずが望た
しい。ガラス転移枩床が、20℃を越えるず、
ABSず混合しお埗た暹脂の耐可塑剀性が䜎く奜
たしくない。 本発明に甚いられるEVAは溶解床パラメヌタ
ヌが8.4〜10.0calc.c.1/2、奜たしくは8.7〜9.7
calc.c.1/2の範囲にあるこずが望たしい。溶解
床パラメヌタヌが前蚘の範囲を逞脱するず、
ABSず混合しお埗た暹脂の耐可塑剀性が䜎く奜
たしくない。なお、ここでいう溶解床パラメヌタ
ヌはJohn WileySons瀟出版「ポリマヌハンド
ブツク」に蚘茉されおいる溶解床パラメヌタヌ倀
を甚い、共重合䜓の溶解床パラメヌタヌΎTは、
皮類のビニル単量䜓から成る共重合䜓を構成する
個々のビニル単量䜓の単独重合䜓の溶解床パラメ
ヌタヌΎoず、その重量分率Woずから、匏(1)によ
り算出する。 匏(1) ÎŽTn 〓n=1 ・ΎoWon 〓n=1 Wo 〔(cal/c.c.)1/2〕 䟋えばポリ゚チレン、ポリ酢酞ビニル、ポリブ
チルアクリレヌトの溶解床パラメヌタヌをそれぞ
れ8.19.48.8ずするず、゚チレン15重量、酢
酞ビニル70重量、ブチルアクリレヌト15重量
からなる共重合䜓の溶解床パラメヌタヌΎTは9.1
ず蚈算される。 本発明に甚いられるEVAはゲル含有率が50重
量以䞋であるこずが奜たしい。EVAのゲル含
有率が50重量を越えるず、ABSず混合しお埗
た暹脂の耐可塑剀性が䜎く奜たしくない。なおこ
こでいうゲル含有率ずは次の方法により求めたも
のである。即ち、EVAを100のメチル゚チルケ
トン䞭に添加し、宀枩にお時間激しく撹拌す
る。このものを15000rpmにお時間遠心分離し、
沈殿物の也燥重量を求める。埗られた也燥重量に
100を乗じ、ゲル含有率重量ずする。 本発明においおはABS100重量郚にEVA0.1〜
50重量郚、奜たしくは〜30重量郚添加する。
EVAの添加量が0.1重量郚未満ではABSず混合し
お埗た暹脂の耐可塑剀性が充分でなく、50重量郹
を越えるずその効果が飜和するばかりでなく、
ABSず混合しお埗た暹脂の剛性が䜎䞋しお奜た
しくない。 本発明においおは、ABSずEVAの混合過皋を
必芁ずするが、混合方法に぀いおは特に制限はな
い。EVAが乳化重合で補造される堎合には、
EVAラテツクスずABSラテツクスずをラテツク
ス混合しお暹脂を回収する方法、EVAラテツク
スずABS粉末をミキサヌ混合しお抌出機に䟛絊
する方法、EVAラテツクスをABS溶融物䞭に添
加しお溶融混緎する方法などにより混合物を埗る
こずができる。EVAが固䜓ずしお入手できる堎
合には、ABSずミキサヌ混合しお抌出機に䟛絊
するこずにより混合物を埗るこずができる。 本発明に甚いる塩化ビニル系暹脂ずは、塩化ビ
ニルを構成単䜍ずする単独重合䜓あるいは共重合
䜓である。塩化ビニル系共重合䜓を構成する単量
䜓ずしおは、塩化ビニリデン等のハロゲン化ビニ
ル単量䜓、゚チレン、プロピレン、―ブテン、
―ブテン、む゜ブチレン、ノルボルネン等のオ
レフむン単量䜓、ブタゞ゚ン、む゜プレン、クロ
ロプレン等のゞ゚ン系単量䜓、アクリル酞゚チ
ル、アクリル酞ブチル、アクリル酞ヘキシル、ア
クリル酞オクチル、メチルメタクリレヌト等の
メタアクリル系単量䜓、アクリロニトリル、
メタクリロニトリル等のニトリル系単量䜓、スチ
レン、α―メチルスチレン、ビニルトル゚ン等の
スチレン系単量䜓、メチルビニル゚ヌテル、゚チ
ルビニル゚ヌテル、プニルビニル゚ヌテル等の
ビニル゚ヌテル単量䜓、酢酞ビニル等の脂肪酞ビ
ニル単量䜓などがあり、これらを単独あるいは䜵
甚しお甚いるこずができる。 塩化ビニル系暹脂の重合方法に぀いおは特に制
限はなく、乳化重合、懞濁重合の公知の技術を適
甚できる。 たた本発明に甚いる塩化ビニル系暹脂は改質の
ために他の重合䜓を混合するこずができるが、こ
こで甚いる他の重合䜓ずは、ABS、ポリメチ
ルメタクリレヌト―ブタゞ゚ン―スチレン、ポ
リメチルメタクリレヌト、ポリメチルメタクリ
レヌト―ブチルアクリレヌト、ニトリルゎム、
゚ピクロルヒドリンゎム、EVA、ポリ゚チレ
ン―プロピレンゎム、ポリスチレン―ブタゞ
゚ンゎムなどがある。 曎に本発明に甚いる塩化ビニル系暹脂は重量
以䞊の可塑剀を含有しおいるが、ここで甚いる
可塑剀ずしおは、ゞメチルフタレヌト、ゞ゚チル
フタレヌト、ゞむ゜ブチルフタレヌト、ゞブチル
フタレヌト、ゞヘプチルフタレヌト、ゞオクチル
フタレヌト、ゞノニルフタレヌト、ゞむ゜デシル
フタレヌト、ゞトリデシルフタレヌト、ゞシクロ
ヘキシルフタレヌト等のフタル酞゚ステル、コハ
ク酞ゞむ゜デシル、アゞピン酞ゞオクチル、アゞ
ピン酞ゞむ゜デシル、アれラむン酞ゞオクチル、
セバシン酞ゞブチル、セバシン酞ゞオクチル、テ
トラヒドロフタル酞ゞオクチル等の脂肪族塩基
酞゚ステル、ゞ゚チレングリコヌルゞベンゟ゚ヌ
ト、ゞペンタ゚リスリトヌルヘキサ゚ステル等の
グリコヌル゚ステル、オレむン酞ブチル、アセチ
ルリシノヌル酞メチル等の脂肪酞゚ステル、トリ
クレゞルフオスプヌト、トリオクチルフオスフ
゚ヌト、トリプニルフオスプヌト、トリクロ
ロ゚チルフオスプヌト等のリン酞゚ステル、゚
ポキシ化倧豆油、゚ポキシ化アマニ油、゚ポキシ
ステアリン酞ブチル、゚ポキシステアリン酞オク
チル等の゚ポキシ化合物、トリメリツト酞トリオ
クチル、゚チルフタリル゚チルグリコレヌト、ブ
チルフタリルブチルグリコレヌト、アセチルク゚
ン酞トリブチルなどがある。これらの可塑剀は単
独、あるいは䜵甚しお甚いるこずができる。 本発明においおはEVAを含有する耇合ABSず
塩化ビニル系暹脂を二重射出成圢するが、二重射
出成圢方法及び装眮に぀いおは埓来技術及び装眮
をそのたた䜿甚できる。 二重射出成圢品ずは皮類の異なる材料からな
る郚分により構成される成圢品を指す。二重射出
成圢品を埗るには、二重射出成圢機を甚いおもよ
いし、独立した個の射出成圢機を甚いおもよ
い。二重射出成圢機は個の射出機構を有しおお
り、各々の射出機構から別々に材料を射出する。
たた型締機構は個有する堎合もあるが、個の
金型が単䞀の型締機構の䞭で回転する機構を有す
る堎合もある。いずれの堎合においおも別々の射
出機構から射出成圢された成圢品が金型内で組み
合わされお単䞀の成圢品を構成する。独立した
個の射出成圢機を甚いる堎合には、第䞀の射出成
圢機で第䞀の材料を射出成圢し、次いでこの成圢
品を第二の射出成圢機の金型内郚に組み蟌み、第
二の射出成圢機で第二の材料を射出成圢しお単䞀
の成圢品を埗る。 本発明の二重射出成圢品はEVAを含有する塩
化ビニル系暹脂を必須構成単䜍ずするが、目的に
応じお他の暹脂を構成単䜍ずする倚重射出成圢品
ずするこずができる。ここで述べる他の暹脂ず
は、ポリスチレン、ハむむンパクトポリスチレ
ン、ポリスチレン―メチルメタクリレヌト、
ABS、ポリアクリロニトリル―アクリル酞゚
゚ステル―スチレンAAS、ポリアクリロ
ニトリル―EPDM―スチレンAES等のスチ
レン系暹脂、ポリ゚チレン、ポリプロピレン、塩
玠化ポリ゚チレン、塩玠化ポリプロピレン等のオ
レフむン系暹脂、ポリメチルメタクリレヌト暹
脂、ナむロン、ナむロン66、ナむロン610、ナ
むロン612、ナむロン11、ナむロン12等のポリア
ミド暹脂、ポリカヌボネヌト暹脂、ポリサルホン
暹脂、ポリプニレンオキサむド系暹脂などであ
るが、塩化ビニル系暹脂ずの接觊により環境応力
き裂珟象の発生するスチレン系暹脂、ポリメチル
メタクリレヌト暹脂、ポリカヌボネヌト暹脂など
は、塩化ビニル系暹脂ずの接觊を避けお甚いるこ
ずが奜たしい。 これたで説明した通り、本発明の二重射出成圢
品はEVAを含有する耇合ABSず塩化ビニル系暹
脂ずを構成単䜍ずしおおり、EVAを含有する耇
合ABSが可塑剀に察する耐環境応力き裂性に優
れるため、可塑剀を含む塩化ビニル系暹脂ず二重
射出成圢しお界面の耇合ABSにクラツクが発生
しない。このため本発明の成圢品は通垞のABS
ず塩化ビニル系暹脂からなる二重射出成圢品で
頻々ず発生した割れによる事故が防止され、自動
車郚品、匱電郚品、雑貚等に奜適に甚いられる。 本発明の二重射出成圢品の構成単䜍である
EVAを含有する耇合ABSは、二重射出成圢品の
みならず、可塑剀を含有する塩化ビニル系暹脂ず
接觊する他の態様においおも奜適に甚いられる。 以䞋実斜䟋をあげ、曎に本発明に぀いお説明す
るが、明现曞蚘茉の郚及びはいずれも重量基準
で瀺した。 実斜䟋  ブタゞ゚ン15、アクリロニトリル23.8、ス
チレン61.2からなるABS粉末100郚ず衚に瀺
した詊料No.〜のEVAラテツクス10郚固圢
分換算ずをヘンシ゚ルミキサヌで混合した埌、
抌出機に䟛絊しお耇合ABSペレツトを埗た。 この耇合ABSを東芝機械株匏䌚瀟補IS80CN―
射出成圢機により成圢枩床220℃で射出成圢し、
200×30×mmの平板状成圢物を埗た。 この成圢物を200×30×mmのキダビテむヌ寞
法を有する金型にはめ蟌み、衚に瀺した詊料No.
の塩化ビニルコンパりンドを前蚘射出成圢機に
より成圢枩床150℃で射出成圢し、二重射出成圢
物を埗た。 埗られた二重射出成圢物の環境応力き裂性を以
䞋の方法により評䟡した。 この二重射出成圢物に30mmの歪みを䞎えお治
具に固定し、60℃の恒枩槜䞭に日間攟眮す
る。 日経過埌、成圢物を治具からはずしお塩化
ビニル局を剥離し、耇合ABS成圢物の衚面状
態を芳察する。 耇合ABS成圢物の環境応力き裂性を次の方
法により評䟡し、結果を衚にたずめた。 ほずんど無倉化 成圢物の䞡端に现かいき裂が発生する 现かいき裂が成圢物を暪断する 倪いき裂が成圢物を暪断する き裂が深く生長し、曲げるず盎ちに砎断
する 砎断する 実斜䟋  実斜䟋で甚いたABS粉末100郚ず衚に瀺し
た詊料No.のEVAラテツクス10郚固圢分換算
ずをヘンシ゚ルミキサヌで混合した埌、抌出機に
䟛絊しお耇合ABSペレツトを埗た。 この耇合ABSを実斜䟋ず同様に射出成圢し
お、平板状成圢物を埗た。 この成圢物を200×30×mmのキダビテむヌ寞
法を有する金型にはめ蟌み、衚に瀺した詊料No.
〜の塩化ビニルコンパりンドを実斜䟋ず同
様に射出成圢しお二重射出成圢物を埗た。 この二重射出成圢物を実斜䟋ず同様に評䟡し
お、その結果を衚にたずめた。 実斜䟋  実斜䟋で甚いたABS粉末100郚に衚に瀺し
た詊料No.のEVAラテツクス〜30郚固圢分
換算を添加しお耇合ABSペレツトを埗た。 この耇合ABSを実斜䟋ず同様に射出成圢し
お、平板状成圢物を埗た。 この成圢物を200×30×mmのキダビテむヌ寞
法を有する金型にはめ蟌み、衚に瀺した詊料No.
の塩化ビニルコンパりンドを実斜䟋ず同様に
射出成圢しお重射出成圢物を埗た。 この重射出成圢物を実斜䟋ず同様に評䟡し
お、その結果を衚にたずめた。 実斜䟋  ブタゞ゚ン40、アクリロニトリル17.4、ス
チレン42.6からなるABSラテツクス80郚固圢
分換算ず衚に瀺した詊料No.のEVAラテツ
クス20郚固圢分換算ずをラテツクス状態のた
た混合した。 この混合ラテツクスに塩化カルシりム氎溶液を
添加し、加熱撹拌しおラテツクスを析出した。埗
られたスラリヌをろ過、氎掗、也燥しお耇合
ABS粉末を埗た。 この耇合ABS100郚ずAS暹脂アクリロニト
リル30、スチレン70100郚を混合し、抌出
機に䟛絊しおペレツトを埗た。 埗られたペレツトを実斜䟋ず同様に射出成圢
しお、平板状成圢物を埗た。 この成圢物を200×30×mmのキダビテむヌ寞
法を有する金型にはめ蟌み、衚に瀺した詊料No.
の塩化ビニルコンパりンドを実斜䟋ず同様に
射出成圢しお重射出成圢物を埗た。 この重射出成圢物を実斜䟋ず同様に評䟡し
た結果、環境応力き裂性のランクはであ぀た。 比范䟋  衚に瀺した各皮ABSを実斜䟋で甚いた射
出成圢機により射出成圢しお200×30×mmの平
板状成圢物を埗た。各皮ABSの成圢枩床は実隓
No.242526は220℃、実隓No.27は260℃、実隓No.
2829は270℃で行な぀た。 この成圢物を200×30×mmのキダビテむヌ寞
法を有する金型にはめ蟌み、衚に瀺した詊料No.
の塩化ビニルコンパりンドを実斜䟋ず同様に
射出成圢しお重射出成圢物を埗た。 この重射出成圢物を実斜䟋ず同様に評䟡し
お、その結果を衚にたずめた。 衚䞭のメルトフロヌむンデツクスは、ASTM
−1238に準拠した方法で枬定し、枩床250℃、
荷重Kgで行な぀た。 なお、実隓No.24のABSは実斜䟋で甚いた
ABSである。 比范䟋  実斜䟋で甚いたABS粉末100郚に衚に瀺し
た詊料No.のEVAラテツクス55郚固圢分換算
を添加しお耇合ABSペレツトを埗た。 この耇合ABSを実斜䟋の方法に埓぀お環境
応力き裂性を評䟡したずころ、ランクはであ぀
た。しかしながらこの重射出成圢物は極めお剛
性が䜎く、実甚に耐えないず評䟡された。
The present invention relates to a double injection molded product with improved environmental stress cracking resistance, which is made of a composite ABS containing EVA and a vinyl chloride resin containing a plasticizer. For ABS, the surface of the molded product is coated with other materials for design purposes or to improve weather resistance, and the other materials used here are generally metals or paints. It is. Sometimes, there is a demand to coat part or all of ABS molded products with vinyl chloride resin containing plasticizers, mainly for design purposes, but when ABS and vinyl chloride resin come into contact, the contact surface Cracks occur on the ABS side, and in severe cases, accidents often occur where it breaks. This phenomenon occurs when the plasticizer contained in the vinyl chloride resin migrates to the ABS side, causing ABS to undergo environmental stress cracking fracture due to the plasticizer, and is caused by the poor environmental stress cracking resistance of ABS due to the plasticizer. It is something to do. Attempts have been made to improve the environmental stress cracking resistance of ABS to plasticizers, such as increasing the molecular weight of the resin phase, increasing the acrylonitrile content of the resin phase, and increasing the rubber component content. None of the methods resulted in a practically sufficient improvement effect. For this reason, ABS is not normally used in contact with a vinyl chloride resin containing a plasticizer, which limits the uses of ABS. In particular, when double injection molding of ABS and vinyl chloride resin is used to make an integral molded product, cracks occur in the ABS of both resins due to residual stress during the double injection molding, making it impossible to make a molded product that can withstand practical use. I can't. As a result of intensive study on a method for preventing environmental stress crack failure in double injection molding made of vinyl chloride resin containing ABS and plasticizer, the inventor found that 100 parts by weight of ABS and 0.1 to 5 parts by weight of EVA were added to 100 parts by weight of ABS. We discovered that in a double injection molded product made of a mixed composite ABS and a vinyl chloride resin containing 1% by weight or more of a plasticizer, no cracks occur in the ABS on the contact surface, and we have completed the present invention. I've reached it. The double injection molded product according to the present invention is suitable for use in automobile parts and the like because the phenomenon of cracking caused by plasticizer migration is eliminated. The ABS used in the present invention consists of a rubber phase and a resin phase, and diene rubber, acrylic rubber, EPDM rubber, etc. can be used as the rubber phase, and diene rubber is particularly preferred. Specific examples of the diene rubber phase include polybutadiene, polyisoprene, poly(butadiene-styrene), poly(butadiene-acrylonitrile), poly(butadiene-methyl methacrylate), and the resin phase includes poly(acrylonitrile-styrene). ,
Examples include poly(acrylonitrile-methyl methacrylate-styrene) and poly(acrylonitrile-α-methylstyrene-styrene). The diene rubber phase may be a mixture of two or more diene rubbers, and the resin phase may also be a mixture of two or more resins. Preferably, the ABS used in the present invention contains 5 to 30% by weight of rubber. If the rubber content is less than 5% by weight, the resin obtained by mixing with EVA will not have sufficient plasticizer resistance, and if it exceeds 30% by weight, the rigidity will decrease. There are no particular restrictions on the manufacturing method of ABS.
Known polymerization techniques are applied. The EVA used in the present invention is a copolymer containing ethylene and vinyl acetate, and in some cases, these two types of monomers and a vinyl monomer copolymerizable with them. The copolymerizable vinyl monomers used here include (meth)acrylic monomers such as ethyl acrylate, butyl acrylate, hexyl acrylate, octyl acrylate, and methyl methacrylate, styrene, and α-methylstyrene. , styrene monomers such as vinyltoluene, lytrile monomers such as acrylonitrile and methacrylonitrile, and halogen-containing monomers such as vinyl chloride and vinylidene chloride. There are no particular restrictions on the EVA polymerization method, and known polymerization techniques can be applied. The EVA used in the present invention has a glass transition temperature of
It is desirable that the temperature is 20°C or lower, preferably 10°C or lower. When the glass transition temperature exceeds 20℃,
The resin obtained by mixing with ABS has low plasticizer resistance, which is not preferable. EVA used in the present invention has a solubility parameter of 8.4 to 10.0 (cal/cc) 1/2 , preferably 8.7 to 9.7.
(cal/cc) Desirably in the range of 1/2 . If the solubility parameter deviates from the above range,
The resin obtained by mixing with ABS has low plasticizer resistance, which is not preferable. The solubility parameter here uses the solubility parameter value described in "Polymer Handbook" published by John Wiley & Sons, and the solubility parameter ÎŽ T of the copolymer is m
It is calculated by formula (1) from the solubility parameter ÎŽ o of the homopolymer of each vinyl monomer constituting the copolymer composed of different types of vinyl monomers and its weight fraction W o . Equation (1) ÎŽ T = n 〓 n=1・Ύ o W o  n 〓 n=1 W o [(cal/cc) 1/2 ] For example, the solubility parameters of polyethylene, polyvinyl acetate, and polybutyl acrylate are respectively 8.1, 9.4, 8.8, ethylene 15% by weight, vinyl acetate 70% by weight, butyl acrylate 15% by weight
The solubility parameter ÎŽ T of the copolymer consisting of is 9.1
It is calculated as follows. The EVA used in the present invention preferably has a gel content of 50% by weight or less. If the gel content of EVA exceeds 50% by weight, the resin obtained by mixing with ABS will have low plasticizer resistance, which is undesirable. Note that the gel content referred to herein is determined by the following method. That is, EVA is added to 100 g of methyl ethyl ketone and stirred vigorously at room temperature for 6 hours. This was centrifuged at 15000 rpm for 1 hour.
Determine the dry weight of the precipitate. To the resulting dry weight
Multiply by 100 to obtain gel content (wt%). In the present invention, EVA0.1 to 100 parts by weight of ABS
Add 50 parts by weight, preferably 1 to 30 parts by weight.
If the amount of EVA added is less than 0.1 part by weight, the plasticizer resistance of the resin obtained by mixing with ABS will not be sufficient, and if it exceeds 50 parts by weight, not only will the effect be saturated,
This is not preferable because the rigidity of the resin obtained by mixing with ABS decreases. In the present invention, a mixing process of ABS and EVA is required, but there are no particular restrictions on the mixing method. When EVA is manufactured by emulsion polymerization,
A method of mixing EVA latex and ABS latex and recovering the resin, a method of mixing EVA latex and ABS powder with a mixer and feeding it to an extruder, a method of adding EVA latex to ABS melt and melt-kneading it, etc. A mixture can be obtained by If EVA is available as a solid, the mixture can be obtained by mixing it with ABS in a mixer and feeding it into an extruder. The vinyl chloride resin used in the present invention is a homopolymer or copolymer having vinyl chloride as a constituent unit. Monomers constituting the vinyl chloride copolymer include halogenated vinyl monomers such as vinylidene chloride, ethylene, propylene, 1-butene,
Olefin monomers such as 2-butene, isobutylene, norbornene, diene monomers such as butadiene, isoprene, chloroprene, (meth) acrylate, butyl acrylate, hexyl acrylate, octyl acrylate, methyl methacrylate, etc. Acrylic monomer, acrylonitrile,
Nitrile monomers such as methacrylonitrile, styrene monomers such as styrene, α-methylstyrene, and vinyltoluene, vinyl ether monomers such as methyl vinyl ether, ethyl vinyl ether, and phenyl vinyl ether, and fatty acid vinyls such as vinyl acetate. There are monomers, etc., and these can be used alone or in combination. There are no particular restrictions on the method of polymerizing the vinyl chloride resin, and known techniques such as emulsion polymerization and suspension polymerization can be applied. In addition, the vinyl chloride resin used in the present invention can be mixed with other polymers for modification, but the other polymers used here include ABS, poly(methyl methacrylate-butadiene-styrene), poly(methyl methacrylate-butadiene-styrene), Methyl methacrylate, poly(methyl methacrylate-butyl acrylate), nitrile rubber,
These include epichlorohydrin rubber, EVA, poly(ethylene-propylene) rubber, and poly(styrene-butadiene) rubber. Furthermore, the vinyl chloride resin used in the present invention contains 1% by weight or more of a plasticizer, and examples of the plasticizer used here include dimethyl phthalate, diethyl phthalate, diisobutyl phthalate, dibutyl phthalate, diheptyl phthalate, and dioctyl phthalate. , phthalate esters such as dinonyl phthalate, diisodecyl phthalate, ditridecyl phthalate, dicyclohexyl phthalate, diisodecyl succinate, dioctyl adipate, diisodecyl adipate, dioctyl azelate,
Aliphatic dibasic acid esters such as dibutyl sebacate, dioctyl sebacate, and dioctyl tetrahydrophthalate; glycol esters such as diethylene glycol dibenzoate and dipentaerythritol hexaester; fatty acid esters such as butyl oleate and methyl acetyl ricinoleate; Phosphate esters such as sulfophosphate, trioctylphosphate, triphenylphosphate, trichloroethylphosphate, epoxidized soybean oil, epoxidized linseed oil, butyl epoxy stearate, octyl epoxy stearate, etc. The compounds include trioctyl trimellitate, ethyl phthalyl ethyl glycolate, butylphthalyl butyl glycolate, and tributyl acetyl citrate. These plasticizers can be used alone or in combination. In the present invention, composite ABS containing EVA and vinyl chloride resin are double injection molded, but conventional techniques and equipment can be used as they are for the double injection molding method and apparatus. A double injection molded product refers to a molded product that is made up of parts made of two different materials. To obtain a double injection molded article, a double injection molding machine or two independent injection molding machines may be used. A dual injection molding machine has two injection mechanisms, each of which injects material separately.
Further, there are cases in which there are two mold clamping mechanisms, but there are also cases in which the molds have a mechanism in which two molds rotate within a single mold clamping mechanism. In either case, molded products injection molded from separate injection mechanisms are combined in a mold to form a single molded product. independent 2
When using two injection molding machines, the first injection molding machine injects the first material, then this molded product is assembled inside the mold of the second injection molding machine, and the second injection molding machine The machine injects the second material into a single molded article. The double injection molded product of the present invention has a vinyl chloride resin containing EVA as an essential constituent unit, but depending on the purpose, a multiple injection molded product can have other resins as a constituent unit. Other resins mentioned here include polystyrene, high impact polystyrene, poly(styrene-methyl methacrylate),
ABS, styrenic resins such as poly(acrylonitrile-acrylic acid ester-styrene) (AAS), poly(acrylonitrile-EPDM-styrene) (AES), olefin resins such as polyethylene, polypropylene, chlorinated polyethylene, chlorinated polypropylene, These include polymethyl methacrylate resin, polyamide resins such as nylon 6, nylon 66, nylon 610, nylon 612, nylon 11, and nylon 12, polycarbonate resins, polysulfone resins, and polyphenylene oxide resins, but they cannot be combined with vinyl chloride resins. It is preferable to use styrene resins, polymethyl methacrylate resins, polycarbonate resins, etc., which cause environmental stress cracking upon contact, while avoiding contact with vinyl chloride resins. As explained above, the double injection molded product of the present invention has composite ABS containing EVA and vinyl chloride resin as constituent units, and the composite ABS containing EVA has excellent environmental stress cracking resistance against plasticizers. Because of its excellent properties, cracks do not occur in the composite ABS at the interface when double injection molded with vinyl chloride resin containing plasticizer. For this reason, the molded product of the present invention is made of ordinary ABS.
Accidents caused by cracks that frequently occur in double-injection molded products made of polyvinyl chloride resin and polyvinyl chloride resin are prevented, and the product is suitable for use in automobile parts, light electrical parts, miscellaneous goods, etc. It is a constituent unit of the double injection molded product of the present invention.
Composite ABS containing EVA is suitably used not only in double injection molded products but also in other embodiments in which it comes into contact with vinyl chloride resin containing a plasticizer. The present invention will be further explained below with reference to Examples, and all parts and percentages stated in the specification are expressed on a weight basis. Example 1 100 parts of ABS powder consisting of 15% butadiene, 23.8% acrylonitrile, and 61.2% styrene and 10 parts of EVA latex (in terms of solid content) of samples No. A to J shown in Table 1 were mixed in a Henschel mixer. rear,
Composite ABS pellets were obtained by feeding into an extruder. This composite ABS is manufactured by Toshiba Machine Co., Ltd. IS80CN―
Injection molded with a V injection molding machine at a molding temperature of 220℃,
A flat molded product measuring 200 x 30 x 3 mm was obtained. This molded product was fitted into a mold with cavity dimensions of 200 x 30 x 6 mm, and sample No. shown in Table 2 was obtained.
A vinyl chloride compound of K was injection molded using the injection molding machine described above at a molding temperature of 150°C to obtain a double injection molded product. The environmental stress cracking resistance of the obtained double injection molded product was evaluated by the following method. This double injection molded product was strained by 30 mm, fixed in a jig, and left in a constant temperature bath at 60°C for 5 days. After 5 days, the molded product was removed from the jig, the vinyl chloride layer was peeled off, and the surface condition of the composite ABS molded product was observed. The environmental stress cracking resistance of the composite ABS molded product was evaluated by the following method, and the results are summarized in Table 3. Almost no change; Fine cracks occur at both ends of the molded product; Fine cracks cross the molded product; Thick cracks cross the molded product; Cracks grow deep and break immediately when bent; Breaking Example 2 100 parts of the ABS powder used in Example 1 and 10 parts of EVA latex of sample No. A shown in Table 1 (solid content equivalent)
After mixing with a Henschel mixer, the mixture was fed to an extruder to obtain composite ABS pellets. This composite ABS was injection molded in the same manner as in Example 1 to obtain a flat molded product. This molded product was fitted into a mold with cavity dimensions of 200 x 30 x 6 mm, and sample No. shown in Table 2 was obtained.
The vinyl chloride compounds L to Q were injection molded in the same manner as in Example 1 to obtain double injection molded products. This double injection molded product was evaluated in the same manner as in Example 1, and the results are summarized in Table 4. Example 3 To 100 parts of the ABS powder used in Example 1, 1 to 30 parts (in terms of solid content) of EVA latex of Sample No. A shown in Table 1 was added to obtain composite ABS pellets. This composite ABS was injection molded in the same manner as in Example 1 to obtain a flat molded product. This molded product was fitted into a mold with cavity dimensions of 200 x 30 x 6 mm, and sample No. shown in Table 2 was obtained.
The vinyl chloride compound of K was injection molded in the same manner as in Example 1 to obtain a double injection molded product. This double injection molded product was evaluated in the same manner as in Example 1, and the results are summarized in Table 5. Example 4 80 parts of ABS latex (in terms of solid content) consisting of 40% butadiene, 17.4% acrylonitrile, and 42.6% styrene and 20 parts of EVA latex of sample No. A shown in Table 1 (in terms of solid content) were mixed in a latex state. Mixed as is. An aqueous calcium chloride solution was added to this mixed latex, and the mixture was heated and stirred to precipitate a latex. The resulting slurry is filtered, washed with water, dried and composited.
ABS powder was obtained. 100 parts of this composite ABS and 100 parts of AS resin (acrylonitrile 30%, styrene 70%) were mixed and fed to an extruder to obtain pellets. The obtained pellets were injection molded in the same manner as in Example 1 to obtain a plate-shaped molded product. This molded product was fitted into a mold with cavity dimensions of 200 x 30 x 6 mm, and sample No. shown in Table 2 was obtained.
The vinyl chloride compound of K was injection molded in the same manner as in Example 1 to obtain a double injection molded product. This double injection molded product was evaluated in the same manner as in Example 1, and as a result, the environmental stress cracking resistance was ranked as . Comparative Example 1 Various types of ABS shown in Table 6 were injection molded using the injection molding machine used in Example 1 to obtain flat molded products of 200 x 30 x 3 mm. The molding temperature of various ABS is determined by experiment.
Nos. 24, 25, and 26 were at 220℃, Experiment No. 27 was at 260℃, and Experiment No.
28 and 29 were conducted at 270°C. This molded product was fitted into a mold with cavity dimensions of 200 x 30 x 6 mm, and sample No. shown in Table 2 was obtained.
The vinyl chloride compound of K was injection molded in the same manner as in Example 1 to obtain a double injection molded product. This double injection molded product was evaluated in the same manner as in Example 1, and the results are summarized in Table 6. The melt flow index in the table is ASTM
Measured in accordance with D-1238, temperature 250℃,
The test was carried out with a load of 5 kg. In addition, the ABS of Experiment No. 24 was used in Example 1.
It is ABS. Comparative Example 2 55 parts of EVA latex of sample No. A shown in Table 1 was added to 100 parts of the ABS powder used in Example 1 (solid content equivalent).
was added to obtain composite ABS pellets. When this composite ABS was evaluated for environmental stress cracking resistance according to the method of Example 1, it was ranked as . However, this double injection molded product had extremely low rigidity and was evaluated to be impractical.

【衚】【table】

【衚】【table】

【衚】 おコンパりンドずする。
[Table] Compound.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  ABS100重量郚にEVA0.1〜50重量郚混合し
た耇合ABSず、重量以䞊の可塑剀を含有す
る塩化ビニル系暹脂からなる二重射出成圢物。
1. A double injection molded product consisting of a composite ABS in which 100 parts by weight of ABS is mixed with 0.1 to 50 parts by weight of EVA, and a vinyl chloride resin containing 1% by weight or more of a plasticizer.
JP17264882A 1982-10-01 1982-10-01 Double injection molded article Granted JPS5962147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17264882A JPS5962147A (en) 1982-10-01 1982-10-01 Double injection molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17264882A JPS5962147A (en) 1982-10-01 1982-10-01 Double injection molded article

Publications (2)

Publication Number Publication Date
JPS5962147A JPS5962147A (en) 1984-04-09
JPS642059B2 true JPS642059B2 (en) 1989-01-13

Family

ID=15945778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17264882A Granted JPS5962147A (en) 1982-10-01 1982-10-01 Double injection molded article

Country Status (1)

Country Link
JP (1) JPS5962147A (en)

Also Published As

Publication number Publication date
JPS5962147A (en) 1984-04-09

Similar Documents

Publication Publication Date Title
KR100408332B1 (en) Impact modifier,process for production,and resin composition containing the same
US4801646A (en) Low gloss weather and impact resistant resins
US4393172A (en) High-notched-impact core-shell polymers having improved weather resistance
JPH0733473B2 (en) Filled polymer blend
KR100656124B1 (en) Impact-resistant thermoplastic resin composition
US2552904A (en) Vinyl resin plasticized with liquid copolymer of diolefin and nitrile
CA2819519A1 (en) Plastisol for spray-molded plastic articles
US4476266A (en) Thermoplastic resin compositions
JPS642059B2 (en)
JPH0359811B2 (en)
JPH0224211B2 (en)
US5709956A (en) Co-extruded multilayer laminate
EP0011729B1 (en) A process for preparing rubber-modified high nitrile copolymers with improved impact resistance
JPS63245414A (en) Production of graft polymer
US3935153A (en) Process for preparing styrene resins containing polyester plasticizers
JP3361094B2 (en) Free flowing powdered polyvinyl chloride composition
US4975487A (en) Polymeric polyblend composition
JPH0219782B2 (en)
JP7350163B2 (en) Thermoplastic resin compositions and molded products manufactured therefrom
EP0694383B1 (en) Extruded product
JPS63145312A (en) Production of powdery graft polymer
JPH107877A (en) Abs type composition suitable for extrusion processing and deep drawing processing
JPH0474185B2 (en)
EP0527390A1 (en) Thermoplastic moulding composition
JPH0212184B2 (en)