JPS641914B2 - - Google Patents

Info

Publication number
JPS641914B2
JPS641914B2 JP951382A JP951382A JPS641914B2 JP S641914 B2 JPS641914 B2 JP S641914B2 JP 951382 A JP951382 A JP 951382A JP 951382 A JP951382 A JP 951382A JP S641914 B2 JPS641914 B2 JP S641914B2
Authority
JP
Japan
Prior art keywords
carbon
heating element
graphite
temperature
linear body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP951382A
Other languages
Japanese (ja)
Other versions
JPS58128686A (en
Inventor
Takaaki Kawakubo
Hikari Yoshida
Yoshihisa Suda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Pencil Co Ltd
Original Assignee
Mitsubishi Pencil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pencil Co Ltd filed Critical Mitsubishi Pencil Co Ltd
Priority to JP951382A priority Critical patent/JPS58128686A/en
Publication of JPS58128686A publication Critical patent/JPS58128686A/en
Publication of JPS641914B2 publication Critical patent/JPS641914B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は炭素系コイル状抵抗発熱体に関する。
ここに炭素系と言う用語は炭素質(非晶質)及び
黒鉛質(結晶質)を包括して示す。従つて、炭素
系コイル状抵抗発熱体は実質的に炭素から成り炭
素固有の性質を有する炭素質コイル状抵抗発熱体
及び実質的に黒鉛から成る黒鉛固有の性質を有す
る黒鉛質コイル状抵抗発熱体の両者を包含する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a carbon-based coiled resistance heating element.
The term carbonaceous here includes carbonaceous (amorphous) and graphite (crystalline). Therefore, the carbon-based coiled resistance heating element consists of a carbonaceous coiled resistance heating element that is substantially made of carbon and has properties specific to carbon, and a graphite coiled resistance heating element that is substantially made of graphite and has properties specific to graphite. It includes both.

炭素系材料は、非酸化性雰囲気においては溶
融、変形することなく優れた耐熱性耐食性を示
す。又金属に近い電気伝導性を示す。この性質は
高温電気炉用発熱体として有用であり、以前はタ
ンマン炉やクリプトール炉の如き実験室用に利用
されて来たが、近年では半導体工業の発展に伴
い、その分野での生産設備として大いに活用され
つつある。高温炉としては他に燃焼炉、電気アー
ク炉、プラズマ炉、電子ビーム炉等があるが、電
気抵抗炉は、温度の均一性や温度コントロールの
精密さ、炉内気圏コントロールの容易さ、或いは
騒音、排ガス等の公害防止面で他の炉よりも優位
にある。
Carbon-based materials exhibit excellent heat resistance and corrosion resistance without melting or deforming in a non-oxidizing atmosphere. It also exhibits electrical conductivity close to that of metals. This property is useful as a heating element for high-temperature electric furnaces, and in the past it was used in laboratories such as Tammann furnaces and Kryptor furnaces, but in recent years, with the development of the semiconductor industry, it has been used as a heating element for production equipment in that field. It is being used extensively. There are other high-temperature furnaces such as combustion furnaces, electric arc furnaces, plasma furnaces, and electron beam furnaces, but electric resistance furnaces are characterized by uniformity of temperature, precision of temperature control, ease of controlling the atmosphere inside the furnace, and low noise. It has an advantage over other furnaces in terms of preventing pollution such as exhaust gas.

抵抗発熱体としての炭素系材料は以下の有用な
特徴を有する。すなわち常圧下では溶融すること
なく昇華温度は約3650℃と高い。蒸気圧は2200℃
で10-6atmのオーダーで極めて低い。腐食性ガス
に対して耐食性が大きい。輻射能は約0.8と大き
い。高温でも金属材料のような軟化を起すことも
なく、強度は2500℃迄温度に比例して増大する。
適当な電気抵抗を有し、特に黒鉛質は約500℃以
上では温度に比例して抵抗は増加する。熱膨張係
数が小さいので耐熱衝撃性が極めて良い。高純度
の物が得やすく、高真空下でもガス発生が少な
い。白金、ロジウム、タングステン、モリブデ
ン、タンタル或いは炭化ケイ素等の他種競合材料
よりも安価である。
Carbon-based materials as resistive heating elements have the following useful characteristics. In other words, under normal pressure, it does not melt and its sublimation temperature is as high as approximately 3650°C. Steam pressure is 2200℃
is extremely low, on the order of 10 -6 atm. High corrosion resistance against corrosive gases. The radioactivity is large, approximately 0.8. Unlike metal materials, it does not soften even at high temperatures, and its strength increases in proportion to temperature up to 2500℃.
Graphite has a suitable electrical resistance, and the resistance increases in proportion to temperature above about 500°C. It has a small coefficient of thermal expansion, so it has extremely good thermal shock resistance. It is easy to obtain high purity products and generates little gas even under high vacuum. Cheaper than other competing materials such as platinum, rhodium, tungsten, molybdenum, tantalum or silicon carbide.

しかしながら、炭素系材料は、展延性に乏しく
金属やプラスチクスのように、目的とする形状を
任意に精密加工することが極めて困難な材料であ
る。それ故従来は大型成形された炭素材ブロツク
より切り出してNC旋盤等で切削加工するなど複
雑困難な作業を余儀なくされていた。特に管状或
いは板状発熱体等の場合は抵抗を高める為にら線
状或いは長さ方向に切り込みを入れる等様々な工
夫が考えられているが、加工が困難であるばかり
でなく、重量も大きく切り込みを入れた個所は機
械的強度が脆弱になるので、発熱体の構造及び端
子接続部は膨張・収縮を始めとする様々な曲げや
引張の応力がかからないように設計しなければな
らないし、取扱いにも注意を払う必要があるとい
う欠点を有する。
However, carbon-based materials have poor malleability and, like metals and plastics, are extremely difficult to precisely machine into desired shapes. Therefore, in the past, it was necessary to perform complex and difficult work such as cutting out a large molded carbon material block and cutting it with an NC lathe. In particular, in the case of tubular or plate-shaped heating elements, various methods have been considered to increase the resistance, such as making cuts in a circular or longitudinal direction, but these are not only difficult to process, but also weigh heavily. The mechanical strength of the notched area becomes weak, so the structure of the heating element and terminal connections must be designed so that they are not subjected to various bending and tensile stresses, including expansion and contraction, and must be handled carefully. It also has the disadvantage of requiring special attention.

一方最近、炭素繊維から作られる布やひも等が
可撓性を有する発熱体として考えられている。可
撓性が付与されていることにより、炉体に巻付け
る等のことが可能で、従来の炭素系発熱体の欠点
をある程度補うことが出来るが、布或いはひも状
ではそれ自体弾性に乏しい為、炉体との密着性を
保たせるには特別の保持具を工夫しなければなら
ないし、密着性を保たせる為に緊縛しすぎると、
膨張、収縮等から生じる応力耐久性の問題もあ
る。また、炭素繊維自体が高価であるのでそれか
ら作られる布、ひもも必然的に高価である。
On the other hand, recently, cloths, strings, etc. made from carbon fibers have been considered as flexible heating elements. Due to its flexibility, it can be wrapped around the furnace body, and can compensate for the drawbacks of conventional carbon-based heating elements to some extent, but in the form of cloth or string, it itself lacks elasticity. In order to maintain close contact with the furnace body, special holders must be devised, and if it is tied too tightly to maintain close contact,
There is also the problem of stress durability caused by expansion, contraction, etc. Furthermore, since carbon fiber itself is expensive, cloth and string made from it are also necessarily expensive.

炉体との密着性、発熱体内部に生じる応力の緩
和、炉体への取付け方法及び取扱いの容易性等を
考慮すると、従来から金属線を材質として行われ
ているコイル状発熱体が、適当な弾性と可撓性を
有することにより好ましいのであるが、炭素質材
料をコイル状に賦形してコイル状発熱体が供され
れば、最も理想的な抵抗発熱体である。しかし乍
ら従来から行われている炭素ブロツクから切出す
方法では、コイル状で高い強度を有する炭素系コ
イル状発熱体の製造は至難とされ、未だ製品化に
至つていない。
Considering the adhesion with the furnace body, the relaxation of stress generated inside the heating element, the method of attachment to the furnace body, the ease of handling, etc., the coiled heating element, which has traditionally been made of metal wire, is suitable. Although it is preferable because it has good elasticity and flexibility, if a coil-shaped heating element is provided by forming a carbonaceous material into a coil shape, it is the most ideal resistance heating element. However, it is considered extremely difficult to manufacture a coiled carbon-based coil-shaped heating element with high strength using the conventional method of cutting it from a carbon block, and it has not yet been commercialized.

本発明の目的は、その製作が従来事実上不可能
であつた炭素系のコイル状抵抗発熱体を提供する
ことにある。
An object of the present invention is to provide a carbon-based coiled resistance heating element, the production of which has heretofore been virtually impossible.

本願発明者らは、炭素材のもつ優れた耐熱性耐
食性輻射能、高強度、適当な電気伝導性、耐熱衝
撃性を活かし、炭素質又は黒鉛質のコイル状発熱
体を任意の寸法形状で精度高く、且つ安易に製造
せんが為鋭意研究した結果、有機質線状体或は、
炭素繊維、黒鉛ウイスカ、結晶質黒鉛粉体、非晶
質炭素粉体で複合強化された有機質線状体をコイ
ル状の任意の形態に賦形させた後、必要に応じて
炭素前駆体処理を施し、さらに不活性雰囲気中に
加熱処理をすることによつて、炭素質もしくは黒
鉛質のコイル状発熱体を得ることに想到し、本発
明の目的を達成した。
The inventors of the present application took advantage of the carbon material's excellent heat resistance, corrosion resistance, radiation, high strength, appropriate electrical conductivity, and thermal shock resistance to create a carbonaceous or graphite coiled heating element in any size and shape with precision. As a result of intensive research to avoid expensive and easy production, organic linear bodies or
After forming an organic linear body compositely reinforced with carbon fiber, graphite whiskers, crystalline graphite powder, and amorphous carbon powder into any desired coil shape, carbon precursor treatment is performed as necessary. The inventors have come up with the idea of obtaining a carbonaceous or graphite coiled heating element by applying heat treatment in an inert atmosphere, thereby achieving the object of the present invention.

本発明の炭素系コイル状抵抗発熱体は極めて高
い加工精度で後加工を必要とせず、優れた耐熱
性、耐食性、輻射能、高強度、適当な電気伝導
性、耐熱衝撃性をもつもので、信頼性のある精度
の高い弾性率を保有しており、さらに軽量で、適
当な可撓性をも有し、電気炉の炉体への密着性は
極めて良好であり、コイル弾性が膨張、収縮等か
ら生じる内部応力を吸収することができて、炉体
への取付方法、端子部の設計にも格別の工夫を必
要としないなどの利点を有する。
The carbon-based coiled resistance heating element of the present invention has extremely high processing accuracy, does not require post-processing, and has excellent heat resistance, corrosion resistance, radiation, high strength, appropriate electrical conductivity, and thermal shock resistance. It has a reliable and highly accurate elastic modulus, is lightweight, has appropriate flexibility, and has extremely good adhesion to the electric furnace body, and the coil elasticity does not expand or contract. It has the advantage of being able to absorb internal stress caused by such factors, and does not require any special ingenuity in the method of attachment to the furnace body or the design of the terminals.

本発明の炭素系コイル状抵抗発熱体に用いられ
る有機質線状体は、有機高分子物質及びアスフア
ルトピツチ類、乾留ピツチ類等の一種又は二種以
上の混合物を線状体に成形したものより成り、複
合強化された有機質線状体は有機高分子物質及び
アスフアルトピツチ類、乾留ピツチ類等の一種又
は二種以上の混合物に対し炭素繊維、黒鉛ウイス
カ、結晶質黒鉛粉体、非晶質炭素粉体等の一種又
は二種以上を均一に分散せしめ、高度に配向させ
て線状体に成形したものより成る。
The organic linear body used in the carbon-based coiled resistance heating element of the present invention is made of a linear body formed from a mixture of one or more of organic polymer substances, asphalt pitches, carbonized pitches, etc. Composite reinforced organic linear bodies are carbon fibers, graphite whiskers, crystalline graphite powders, amorphous carbon powders, etc., for organic polymer substances and one or more mixtures of asphalt pitches, carbonized pitches, etc. It is made by uniformly dispersing one or more types of bodies, etc., and forming them into a linear body in a highly oriented manner.

一般に線状体とは直径0.1m/mから数m/m
あたりまでを言い、直径数μm以下を繊維体、数
m/m以上を棒状体としているが、本発明では直
径を厳密に区別しない。
In general, a linear body has a diameter of 0.1 m/m to several m/m.
Generally speaking, a fiber with a diameter of several μm or less is considered a fibrous body, and a diameter of several m/m or more is considered a rod-like body, but the present invention does not strictly distinguish the diameters.

また、本発明に用いる有機高分子物質としては
ポリ塩化ビニル、ポリアクリロニトリル、ポリビ
ニルアルコール、ポリ塩化ビニル−酢酸ビニル共
重合体、ポリアミド、ポリイミド等の熱可塑性樹
脂、フエノール樹脂、フラン樹脂、エポキシ樹
脂、不飽和ポリエステル樹脂等の熱硬化性樹脂、
リグニン、セルロース、トラガントガム、アラビ
アガム、糖類等の如き縮合多環芳香族を分子の基
本構造内に持つ天然高分子物質、及び前記には含
有されない、ナフタレンスルホン酸のホルマリン
縮合物、インダンスレン系建染染料及びその中間
体の如き、縮合多環芳香族を分子の基本構造内に
持つ合成高分子物質がある。
Further, organic polymer substances used in the present invention include polyvinyl chloride, polyacrylonitrile, polyvinyl alcohol, polyvinyl chloride-vinyl acetate copolymer, polyamide, thermoplastic resin such as polyimide, phenolic resin, furan resin, epoxy resin, Thermosetting resins such as unsaturated polyester resins,
Natural polymeric substances having a condensed polycyclic aromatic group in the basic structure of the molecule, such as lignin, cellulose, gum tragacanth, gum arabic, sugars, etc., and formalin condensates of naphthalene sulfonic acid, indanthrene series, which are not contained in the above. There are synthetic polymeric substances, such as vat dyes and their intermediates, which have fused polycyclic aromatics in their basic molecular structure.

ピツチ類としては、石油アスフアルト、コール
タールピツチ、ナフサ分解ピツチ及び石油アスフ
アルトコールタールピツチ、合成樹脂等の炭化水
素化合物の400℃以下の乾留物が用いられる。
As pitches, carbonized distillates of hydrocarbon compounds such as petroleum asphalt, coal tar pitch, naphtha cracked pitch, petroleum asphalt coal tar pitch, and synthetic resins at temperatures below 400°C are used.

又、これらの物質の内には、単独においては賦
形性に乏しいもの、及び理想的な炭素化が進行し
難いものがあるが、賦形性に乏しいものは例えば
前記中の熱可塑性樹脂の一種又は二種以上をブレ
ンドして成形バインダーとして、複合させて用い
ることが可能であり、理想的な炭素化が進行し難
いものは、鉄、ニツケル、コバルトの酸化物や塩
化アルミニウム等のルイス酸に代表される炭素化
促進触媒や他の化合物と混合させ加熱して脱水素
処理を施すことにより容易に炭素前駆体を形成し
共炭素化することが可能である。
Also, among these substances, there are those that have poor shaping properties and those that are difficult to progress to ideal carbonization, but those that have poor shaping properties are, for example, the thermoplastic resins mentioned above. It is possible to use one or more of them in combination as a molding binder by blending them, and those that are difficult to ideally carbonize are Lewis acids such as iron, nickel, and cobalt oxides and aluminum chloride. It is possible to easily form a carbon precursor and co-carbonize it by mixing it with a carbonization promoting catalyst such as exemplified by and other compounds, heating it, and subjecting it to dehydrogenation treatment.

本発明において複合強化剤として用いられる炭
素繊維、黒鉛ウイスカ、結晶質黒鉛粉末、非晶質
炭素粉末について説明を加える。
The carbon fibers, graphite whiskers, crystalline graphite powder, and amorphous carbon powder used as composite reinforcing agents in the present invention will be explained below.

複合強化有機質線状体におけるこれら複合強化
剤の含有量は、使用するマトリツクス材の種類及
び目的とする有機質線状体の直径によつても異な
るが該有機質線状体組成物中20〜80重量%、好ま
しくは40〜70重量%であることを要する。
The content of these composite reinforcing agents in the composite reinforced organic linear body varies depending on the type of matrix material used and the diameter of the intended organic linear body, but it is 20 to 80% by weight in the organic linear body composition. %, preferably 40 to 70% by weight.

本発明に用いられる複合強化剤は、目的とする
炭素系コイル状抵抗発熱体の線径、機械的強度、
弾性率、熱衝撃性、電気伝導性、経済性等によつ
て異なるが、複合強化有機質線状体中の複合強化
剤含有量の上記範囲内において、炭素繊維、黒鉛
ウイスカ、結晶質黒鉛粉末、非晶質炭素粉末の
内、一種又は二種以上を適宜選択して添加され
る。
The composite reinforcing agent used in the present invention is characterized by the wire diameter, mechanical strength,
Carbon fiber, graphite whisker, crystalline graphite powder, carbon fiber, graphite whisker, crystalline graphite powder, One or more types of amorphous carbon powder are appropriately selected and added.

本発明の有機質線状体は、有機高分子物質であ
る、熱可塑性樹脂硬化性樹脂、天然高分子物質、
合成高分子物質、ピツチ類の内一種又は二種以上
を直接溶融させるか又は、必要に応じて溶剤、可
塑剤もしくは、炭素化促進触媒、架橋剤、重合開
始剤等を添加して、良く分散させた後ペレツト化
し、押出成形機等を用いて所望の直径に押出成形
して製造される。
The organic linear body of the present invention is an organic polymer substance, a thermoplastic resin curable resin, a natural polymer substance,
Disperse well by directly melting one or more of the synthetic polymer substances and pituits, or by adding a solvent, plasticizer, carbonization accelerating catalyst, crosslinking agent, polymerization initiator, etc. as necessary. After that, it is pelletized and extruded into a desired diameter using an extruder or the like.

また、複合強化された有機質線状体を得るに
は、上記配合物に、目的に応じて、炭素繊維、黒
鉛ウイスカ、結晶質黒鉛粉末、非晶質炭素粉末の
内、一種又は二種以上を添加すれば良い。
In order to obtain a composite reinforced organic linear body, one or more of carbon fibers, graphite whiskers, crystalline graphite powder, and amorphous carbon powder may be added to the above compound depending on the purpose. Just add it.

二種以上の配合組成物の混合に際しては、配合
組成物を高速ブレンダーにして分散させ、次に加
圧ニーダー、二本ロール、コニーダー等の高度に
剪断力がかけられる混練機を用いて、配合組成物
を均一に分散、混練せしめる手法を用いた方が良
い。
When mixing two or more types of blended compositions, the blended compositions are dispersed using a high-speed blender, and then blended using a kneader that can apply a high shear force, such as a pressure kneader, two-roll kneader, or co-kneader. It is better to use a method of uniformly dispersing and kneading the composition.

押出成形に際しては、線状体の物性を改善する
目的で、適当な延伸操作を施すことが好ましい。
During extrusion molding, it is preferable to perform an appropriate stretching operation for the purpose of improving the physical properties of the linear body.

第2工程としてコイル状に賦形する場合は、得
られた有機線状体及び複合強化有機質線状体を所
望の断面、寸法の滑らかな表面を有する、1000℃
以上の高温に耐える耐熱性物質による円形或いは
多角形の棒又はパイプを支持基材としてこれにコ
イル状に巻きつけその両端を固定する。
When forming into a coil shape as the second step, the obtained organic linear body and composite reinforced organic linear body are heated at 1000°C with a smooth surface of desired cross section and dimensions.
A circular or polygonal rod or pipe made of a heat-resistant material that can withstand the above-mentioned high temperatures is used as a supporting base material, and is wound around the support base material in a coil shape, and both ends of the rod or pipe are fixed.

次に、これらの形状を維持し乍ら炭化及び黒鉛
化する為に、炭素化促進触媒もしくは架橋剤又は
重合開始剤等を添加する方法、酸処理を施す方
法、塩素やオゾン又は加熱空気等の雰囲気中で50
〜300℃に加熱して架橋する方法、紫外線、電子
線或いは放射線等を照射させて架橋硬化させる方
法等のいずれかの手段によつて不溶、不融化処理
を施し、炭素前駆体処理を行う。
Next, in order to carbonize and graphitize while maintaining these shapes, a method of adding a carbonization accelerating catalyst, a crosslinking agent, a polymerization initiator, etc., a method of acid treatment, a method of applying chlorine, ozone, heated air, etc. 50 in the atmosphere
Insoluble or infusible treatment is performed by any of the following methods, such as a method of crosslinking by heating to ~300° C., a method of crosslinking and curing by irradiation with ultraviolet rays, electron beams, radiation, etc., and carbon precursor treatment.

次に炭素前駆体処理を施されたコイル状賦形物
は、変形防止と張力付加の目的で耐熱性の棒又は
パイプ等の支持基材に巻き付け担持させたまゝ窒
素、アルゴンガス等の不活性気相中で炭素質コイ
ル状抵抗発熱体の場合は最高500〜1500℃、好ま
しくは1000〜1500℃に到る迄序々に加熱せしめ
る。更に、黒鉛質コイル状抵抗発熱体を得る為に
は最高2000〜3000℃、好ましくは2500〜3000℃に
到る迄加熱せしめることにより達成される。
Next, the coil-shaped excipient that has been treated with the carbon precursor is wrapped around a support base material such as a heat-resistant rod or pipe for the purpose of preventing deformation and adding tension. In the case of a carbonaceous coiled resistance heating element, it is gradually heated to a maximum temperature of 500 to 1500°C, preferably 1000 to 1500°C. Further, in order to obtain a graphite coiled resistance heating element, heating is performed to a maximum temperature of 2000 to 3000°C, preferably 2500 to 3000°C.

次に、本発明を実施例によつて具体的に説明す
る。
Next, the present invention will be specifically explained using examples.

実施例 1 平均重合度700のストレート塩化ビニル樹脂100
重量部に対し、DOP30重量部をヘンシエルミキ
サー中に均質分散を行う。次に加圧ニーダーにて
材料温度を150℃に保ち乍ら加熱下で十分に混練
する。
Example 1 Straight vinyl chloride resin 100 with an average degree of polymerization of 700
Homogeneously disperse 30 parts by weight of DOP in a Henschel mixer. Next, the material is thoroughly kneaded under heating using a pressure kneader while maintaining the material temperature at 150°C.

継いで素材をペレタイザーにてペレツト化し、
スクリユー押出成形機を用いて、直径0.8mmφの
ポリ塩化ビニル線状体を得た。これを平滑な表面
を有する直径10.0mmφの炭素質ボビンに捲き付け
た。次にこれを空気存在下で100℃10時間、更に
180℃24時間保ち、不溶不融の炭素前駆体化処理
を施した後、窒素気相中10℃/hrの昇温速度で
500℃迄上昇させ、継いで50℃/hrの昇温速度で
1000℃迄昇温しその温度で3時間保持した後、室
温迄自然放冷した。
Next, the material is made into pellets using a pelletizer.
A polyvinyl chloride linear body with a diameter of 0.8 mmφ was obtained using a screw extrusion molding machine. This was wound around a carbonaceous bobbin with a diameter of 10.0 mm and a smooth surface. Next, this was heated at 100℃ for 10 hours in the presence of air.
After being kept at 180℃ for 24 hours and treated to become an insoluble and infusible carbon precursor, it was heated at a heating rate of 10℃/hr in a nitrogen gas phase.
Raise the temperature to 500℃, and then increase the temperature at a rate of 50℃/hr.
The temperature was raised to 1000°C, maintained at that temperature for 3 hours, and then allowed to cool naturally to room temperature.

炭素質ボビンより賦形物を離型し、線径0.4mm
φコイル内径10.0mmφコイル長500mmの炭素質コ
イル状抵抗発熱体を得た。
The excipient is released from the carbonaceous bobbin, and the wire diameter is 0.4mm.
A carbonaceous coiled resistance heating element with a φ coil inner diameter of 10.0 mm and a φ coil length of 500 mm was obtained.

実施例 2 フラン樹脂(フルフリルアルコール初期縮合
物)100重量部と平均重合度700のストレート塩化
ビニル樹脂100重量部に平均粒度2.0μmの結晶性
黒鉛粉末50重量部及び可塑剤として、D.O.P.10重
量部を加え、ヘンシエルミキサーで均一分散させ
た後、材料温度を140℃に保ち乍ら加圧ニーダー
中で30分間混練して均質な組成物を得た。
Example 2 100 parts by weight of furan resin (furfuryl alcohol initial condensate) and 100 parts by weight of straight vinyl chloride resin with an average degree of polymerization of 700, 50 parts by weight of crystalline graphite powder with an average particle size of 2.0 μm, and 10 parts by weight of DOP as a plasticizer. was added and uniformly dispersed using a Henschel mixer, and then kneaded for 30 minutes in a pressure kneader while maintaining the material temperature at 140°C to obtain a homogeneous composition.

次に、真空予備成形機中で十分に脱気した予備
成形組成物をプランジヤー型油圧押出成形機にて
直径1.0mmφに押出成形して線状体を得た。
Next, the preformed composition, which had been sufficiently degassed in the vacuum preformer, was extruded into a diameter of 1.0 mm using a plunger type hydraulic extruder to obtain a linear body.

継いでこの線状体を直径15.0mmφの炭素丸棒に
巻き付け両端を固定した。
This linear body was then wrapped around a carbon round rod with a diameter of 15.0 mm and both ends were fixed.

このコイル状賦形体を空気存在下180℃に加熱
したオーブン中に24時間保ち、塩化ビニル樹脂が
分解して発生する塩化水素によつてフラン樹脂を
十分硬化させて不溶不融の炭素前駆体化処理を施
した後、窒素気相中10℃/hrで300℃迄、更に20
℃/hrで500℃迄昇温し以後50℃/hrの昇温速度
で1000℃迄昇温させ、1000℃で3時間保持した後
室温迄自然放冷した。
This coiled excipient is kept in an oven heated to 180°C in the presence of air for 24 hours, and the furan resin is sufficiently hardened by the hydrogen chloride generated when the vinyl chloride resin decomposes, turning it into an insoluble and infusible carbon precursor. After treatment, heat up to 300°C at 10°C/hr in a nitrogen gas phase and then 20°C.
The temperature was raised to 500°C at a rate of 50°C/hr, then raised to 1000°C at a rate of 50°C/hr, held at 1000°C for 3 hours, and then allowed to cool naturally to room temperature.

炭素質ボビンより賦形物を離型し、線径0.75mm
φ、コイル内径15.0mmφ、コイル長500mmの炭素
質コイル状抵抗発熱体を得た。
The excipient is released from the carbonaceous bobbin, and the wire diameter is 0.75mm.
A carbonaceous coiled resistance heating element with a coil inner diameter of 15.0 mm and a coil length of 500 mm was obtained.

実施例 3 実施例1で得られた、炭素質コイル状賦形物
を、炭素質支持体から取はずさないで、アルゴン
気相中で1000℃迄は300℃/hr、1000℃以上2800
℃迄は400℃/hrで昇温し、2800℃で60分保持し
た後自然放冷して黒鉛化処理を施し、目的とする
黒鉛質コイル状抵抗発熱体を得た。
Example 3 The carbonaceous coiled excipient obtained in Example 1 was heated at 300°C/hr up to 1000°C and at 2800°C above 1000°C in an argon gas phase without removing it from the carbonaceous support.
The temperature was raised at a rate of 400°C/hr to 2800°C, and after being held at 2800°C for 60 minutes, it was naturally cooled and graphitized to obtain the intended graphite coiled resistance heating element.

Claims (1)

【特許請求の範囲】[Claims] 1 有機線状体をコイル状に賦形した後炭素化さ
せることから成る実質的に炭素から成り炭素固有
の性質を有する炭素系コイル状抵抗発熱体の製造
方法。
1. A method for manufacturing a carbon-based coiled resistance heating element that is substantially made of carbon and has properties unique to carbon, which comprises shaping an organic linear body into a coil shape and then carbonizing it.
JP951382A 1982-01-26 1982-01-26 Carbon coil resistance heater Granted JPS58128686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP951382A JPS58128686A (en) 1982-01-26 1982-01-26 Carbon coil resistance heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP951382A JPS58128686A (en) 1982-01-26 1982-01-26 Carbon coil resistance heater

Publications (2)

Publication Number Publication Date
JPS58128686A JPS58128686A (en) 1983-08-01
JPS641914B2 true JPS641914B2 (en) 1989-01-13

Family

ID=11722327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP951382A Granted JPS58128686A (en) 1982-01-26 1982-01-26 Carbon coil resistance heater

Country Status (1)

Country Link
JP (1) JPS58128686A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9052240B2 (en) 2012-06-29 2015-06-09 Rosemount Inc. Industrial process temperature transmitter with sensor stress diagnostics

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138094A (en) * 1983-01-25 1984-08-08 東レ株式会社 Graphite resistance heater reinforced with carboneceous fiber
EP1757996B1 (en) * 2004-06-16 2015-02-18 MITSUBISHI PENCIL Co., Ltd. Heater for fixing and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS444541Y1 (en) * 1967-03-24 1969-02-19
JPS5487950A (en) * 1977-12-24 1979-07-12 Tokai Konetsu Kogyo Kk Linear or banddshaped carbonized silicon heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9052240B2 (en) 2012-06-29 2015-06-09 Rosemount Inc. Industrial process temperature transmitter with sensor stress diagnostics

Also Published As

Publication number Publication date
JPS58128686A (en) 1983-08-01

Similar Documents

Publication Publication Date Title
JPH0144671B2 (en)
JP3943123B2 (en) Method for producing carbon fiber reinforced carbon composite material suitable for heat sink for semiconductor
CA1081313A (en) Glassy carbon grid-like electrodes and method of manufacturing same
US5868967A (en) Carbon thread and process for producing it
JPS641914B2 (en)
US4916292A (en) Coiled resistance heating element of carbonaceous material
JPS6014783A (en) Coiled resistance heater of oxidation resistant carbons
JP3333361B2 (en) Manufacturing method of CCM spring washer
JPH10172738A (en) Glass like carbon heating element
US5292408A (en) Pitch-based high-modulus carbon fibers and method of producing same
JPH0848509A (en) Production of carbonaceous porous body
JPH0513154A (en) Manufacture of resistant heating element
JPH06144811A (en) Metal-coated carbonaceous spring
JPH0768064B2 (en) Carbon fiber reinforced composite material
JPS61275114A (en) Production of graphite
JP4353550B2 (en) Carbon-based composite sliding material having self-lubricating property and manufacturing method thereof
JPH02275709A (en) Heat-and corrosion-resistant inorganic material and production thereof
JPH0551257A (en) Production of carbon fiber reinforced carbon material
JPS61251503A (en) Carbon stick and production thereof
JPH0841730A (en) Production of high-thermal conductivity carbon fiber
JP2004217466A (en) Carbon fiber, carbon fiber bundle for carbon composite material and method of manufacturing the same
JPS59223210A (en) Carbonaceous article and its manufacture
JP2002020179A (en) Combined carbon-molded body and its manufacturing method
JPS58110411A (en) Manufacture of carbonaceous material
JPH01126268A (en) Production of composite carbon fiber/carbon material