JPS641777Y2 - - Google Patents

Info

Publication number
JPS641777Y2
JPS641777Y2 JP1986089842U JP8984286U JPS641777Y2 JP S641777 Y2 JPS641777 Y2 JP S641777Y2 JP 1986089842 U JP1986089842 U JP 1986089842U JP 8984286 U JP8984286 U JP 8984286U JP S641777 Y2 JPS641777 Y2 JP S641777Y2
Authority
JP
Japan
Prior art keywords
signal
circuit section
circuit
phase
transistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986089842U
Other languages
Japanese (ja)
Other versions
JPS61206312U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986089842U priority Critical patent/JPS641777Y2/ja
Publication of JPS61206312U publication Critical patent/JPS61206312U/ja
Application granted granted Critical
Publication of JPS641777Y2 publication Critical patent/JPS641777Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Amplifiers (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、原信号を正確に再現することがで
き、しかも不要信号の発生を抑圧することのでき
る復調回路に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a demodulation circuit that can accurately reproduce an original signal and suppress the generation of unnecessary signals.

従来の技術 近年の半導体集積回路技術の進歩は目ざましく
各種の回路が半導体集積回路化されるに至つてい
る。テレビジヨン受像機、ラジオ受信機あるいは
他の通信機器で使用される復調回路もまた、この
例にもれない。かかる復調回路の半導体集積回路
化に際して特に問題となるのは不要信号の発生で
ある。復調回路では信号の変換動作が必ず実行さ
れ、このとき、高調波等のスプリアス信号が発生
し、この復調回路を内蔵する機器の特性が著しく
悪化するところとなり、場合によつては、他の通
信機器へ妨害を与える不都合を招く。
BACKGROUND OF THE INVENTION Recent advances in semiconductor integrated circuit technology have been remarkable, and various circuits have been made into semiconductor integrated circuits. Demodulation circuits used in television receivers, radio receivers, or other communication equipment are also examples of this. When implementing such a demodulation circuit into a semiconductor integrated circuit, a particular problem is the generation of unnecessary signals. A demodulation circuit always performs a signal conversion operation, and at this time, spurious signals such as harmonics are generated, significantly deteriorating the characteristics of equipment that incorporates this demodulation circuit, and in some cases, causing interference with other communications. This may cause inconvenience due to interference with equipment.

ところで、復調回路が個別部品で構成されるも
のであるときには、復調回路部分のみをシールド
することにより比較的容易に上記の不都合を排除
することができる。しかしながら、復調回路を半
導体集積化する場合には、復調回路部分のみなら
ずこの前後の回路部分も伴せて単一の半導体基体
内へ一体に作り込まれるのが普通であり、不要信
号の発生部分のみをシールドすることがすこぶる
困難である。したがつて、単一の半導体基体内に
おける不要信号の伝達が生じ、得られる半導体集
積回路の特性が劣化する。
By the way, when the demodulation circuit is composed of individual components, the above-mentioned disadvantage can be relatively easily eliminated by shielding only the demodulation circuit portion. However, when a demodulation circuit is integrated into a semiconductor, it is common that not only the demodulation circuit part but also the circuit parts before and after it are integrated into a single semiconductor substrate, which may cause the generation of unnecessary signals. It is extremely difficult to shield only a portion. Therefore, unnecessary signals are transmitted within a single semiconductor substrate, and the characteristics of the resulting semiconductor integrated circuit are deteriorated.

このような問題点に鑑みて、従来の復調回路に
比して約10分の1以下の信号を処理することがで
きるローレベル復調回路として乗算形復調回路が
現在のところ多く用いられている。この乗算形復
調回路は、これがテレビジヨン受像機で用いられ
た場合、同期復調回路あるいは疑似同期復調回路
と称され、また、FM信号の復調のために用いら
れた場合にはクアドラチユア(Quadrature)検
波回路と称されている。
In view of these problems, multiplicative demodulation circuits are currently widely used as low-level demodulation circuits that can process about one-tenth or less of a signal compared to conventional demodulation circuits. This multiplier demodulation circuit is called a synchronous demodulation circuit or pseudo-synchronous demodulation circuit when used in a television receiver, and is called a quadrature detection circuit when used for demodulating an FM signal. It is called a circuit.

第1図は、上記の乗算形復調回路の構成を示す
ブロツク図であり、図中1は入力信号の印加され
る端子、2は入力信号の搬送波に相当する信号を
発生する回路部、3は入力信号と信号発生回路部
2で発生させた搬送波相当の信号とを乗算して復
調信号を発生する乗算回路部、4はローパスフイ
ルタそして5は復調信号の出力端子である。
FIG. 1 is a block diagram showing the configuration of the multiplier type demodulation circuit described above. In the figure, 1 is a terminal to which an input signal is applied, 2 is a circuit section that generates a signal corresponding to the carrier wave of the input signal, and 3 is a circuit section that generates a signal corresponding to the carrier wave of the input signal. A multiplication circuit section generates a demodulated signal by multiplying the input signal by a signal corresponding to a carrier wave generated by the signal generation circuit section 2, 4 is a low-pass filter, and 5 is an output terminal for the demodulated signal.

以上の構成からなる復調回路では、すでに説明
したように乗算回路部3に入力信号と搬送波相当
の信号が印加されるのであるが、両信号間に位相
差の存在している場合には、復調特性の悪化する
ことがすでによく知られている。たとえば、出力
端子5に発生する復調信号のレベルが位相差のな
いとき“1”であるとすると、位相差が90゜にな
つた場合には“0”となる。
In the demodulation circuit with the above configuration, the input signal and the signal equivalent to the carrier wave are applied to the multiplier circuit section 3 as described above, but if there is a phase difference between the two signals, the demodulation circuit It is already well known that the characteristics deteriorate. For example, if the level of the demodulated signal generated at the output terminal 5 is "1" when there is no phase difference, it becomes "0" when the phase difference becomes 90 degrees.

考案が解決しようとする問題点 ところで、第1図で示した乗算形復調回路の構
成要素である搬送波相当の信号発生回路部2の信
号伝達時間は有限であり、信号発生時に位相遅れ
が生じる。このため、入力信号との間に位相差が
生じ復調信号の特性が悪化する。
Problems to be Solved by the Invention Incidentally, the signal transmission time of the signal generation circuit section 2 corresponding to a carrier wave, which is a component of the multiplier type demodulation circuit shown in FIG. 1, is finite, and a phase delay occurs when a signal is generated. Therefore, a phase difference occurs between the input signal and the demodulated signal, which deteriorates the characteristics of the demodulated signal.

一般に、元の信号(被変調信号)は、異る振幅
と周波数をもつ信号の合成されたものであるた
め、これらの信号のビート成分が複雑に組み合わ
された信号が復調信号として出力端子5に発生す
る。このような復調回路がテレビジヨン受像機の
映像検波回路として用いられた場合、4.5MHzの
音声信号と3.58MHzの色副搬送波信号とのビート
信号(920KHz)が発生し、画質が著しく悪化す
る。また、直線性も悪化するため、微分利得、微
分位相が悪化する。
Generally, the original signal (modulated signal) is a composite of signals with different amplitudes and frequencies, so a signal that is a complex combination of beat components of these signals is output to the output terminal 5 as a demodulated signal. Occur. When such a demodulation circuit is used as a video detection circuit for a television receiver, a beat signal (920KHz) consisting of a 4.5MHz audio signal and a 3.58MHz color subcarrier signal is generated, resulting in a significant deterioration in image quality. Furthermore, linearity also deteriorates, resulting in deterioration of differential gain and differential phase.

かかる不都合の発生は、信号発生回路部2が振
幅制限アンプとタンク回路とからなり、入力信号
をそのままこれらの回路に通して搬送波を発生さ
せる構成を具備している疑似同期復調回路におい
て特に顕著化する。すなわち、入力信号が上記の
振幅制限アンプを通過することにより位相遅れが
生じ、入力信号との間に位相差が生じることにな
る。
The occurrence of such inconvenience is particularly noticeable in a pseudo-synchronous demodulation circuit in which the signal generation circuit section 2 includes an amplitude-limiting amplifier and a tank circuit, and is configured to pass the input signal as it is through these circuits to generate a carrier wave. do. That is, a phase delay occurs when the input signal passes through the above-mentioned amplitude limiting amplifier, resulting in a phase difference between the input signal and the input signal.

問題点を解決するための手段 本考案は、従来の復調回路、特に、疑似復調回
路において顕著化する上記の不都合を排除するこ
とのできる復調回路を提供するものであつて、本
考案の特徴は、入力端子に入力される被変調信号
が差動形式で印加される差動増幅器を構成主体と
して含み、前記被変調信号の搬送波信号を発生す
る回路部と、前記回路部で発生させた前記搬送波
信号と前記被変調信号が入力され、これらを乗算
して復調信号を発生する乗算回路部とを備えてな
る復調回路において、前記入力端子と前記乗算回
路部との間に、コレクタ負荷抵抗とエミツタ帰還
抵抗を有する2個のトランジスタで構成した差動
増幅器からなる位相補償回路部を配置し、前記被
変調信号の位相を前記搬送波信号の位相に一致さ
せるところにある。
Means for Solving the Problems The present invention provides a demodulation circuit that can eliminate the above-mentioned disadvantages that are noticeable in conventional demodulation circuits, especially pseudo demodulation circuits. , a circuit section that mainly includes a differential amplifier to which a modulated signal inputted to an input terminal is applied in a differential format, and that generates a carrier wave signal of the modulated signal; and the carrier wave generated by the circuit section. In the demodulation circuit, the demodulation circuit includes a multiplication circuit section which receives a signal and the modulated signal and multiplies them to generate a demodulated signal. A phase compensation circuit section consisting of a differential amplifier constituted by two transistors having a feedback resistor is arranged to match the phase of the modulated signal with the phase of the carrier wave signal.

作 用 本考案の復調回路では、コレクタ負荷抵抗の値
の選定で入力信号の位相補償を行うことができ
る。
Operation In the demodulation circuit of the present invention, phase compensation of the input signal can be performed by selecting the value of the collector load resistance.

実施例 以下に図面を参照して本考案の復調回路につい
て実施例と共に説明する。
Embodiments Hereinafter, a demodulation circuit of the present invention will be described along with embodiments with reference to the drawings.

第2図は、本考案の復調回路の構成を示すブロ
ツク図であり、第1図で示す従来の復調回路と異
る点は入力端子1と乗算回路部3との間に位相補
償回路6が配置され、入力端子1に印加された入
力信号が位相補償回路部6で位相補正されて乗算
回路部3に印加される構成が採られている点であ
る。
FIG. 2 is a block diagram showing the configuration of the demodulation circuit of the present invention. The difference from the conventional demodulation circuit shown in FIG. The configuration is such that an input signal applied to the input terminal 1 is phase-corrected by the phase compensation circuit section 6 and then applied to the multiplication circuit section 3.

ところで、この位相補償回路部6は、信号発生
回路部2において生じる位相遅延分と同じ量の位
相遅延を入力信号に付与する位相遅延作用を有す
るものであり、この位相補償回路部6を通じて入
力信号を乗算回路部3へ印加することにより、入
力信号と信号発生回路部2から乗算回路部3へ印
加される搬送波相当の信号との位相が一致すると
ころとなり、復調信号の特性の悪化が防止され
る。
By the way, this phase compensation circuit section 6 has a phase delay effect of imparting to the input signal the same amount of phase delay as the phase delay generated in the signal generation circuit section 2, and the input signal is By applying this to the multiplier circuit section 3, the phase of the input signal and the signal corresponding to the carrier wave applied from the signal generation circuit section 2 to the multiplier circuit section 3 match, and deterioration of the characteristics of the demodulated signal is prevented. Ru.

第3図は、第2図により基本構成を示した本考
案にかかる復調回路の具体的な構成を示す図であ
る。図中7および8は入力信号の印加される端
子、9,10はエミツタフオロワトランジスタ、
11,12は搬送波信号を得るための差動増幅器
を構成するトランジスタ、13と14は選択回路
を構成するコイルとコンデンサ、15と16は直
流バイアス供給用の抵抗、17,18は振幅制限
用のダイオード、19,20はエミツタフオロワ
トランジスタ、21〜25はエミツタ電流供給用
の抵抗、26,27は入力信号電圧を電流に変換
するための差動増幅器を構成するトランジスタ、
28,29はトランジスタ26と27のエミツタ
抵抗、30,31および32,33は乗算回路部
を形成する差動増幅器構成用のトランジスタ、3
4,35は位相補償回路部を形成する差動増幅器
構成用のトランジスタ、36〜39は位相補償用
差動増幅器の効果を完全にするための緩衝増幅器
を構成するエミツタフオロワトランジスタ、4
0,41はトランジスタ34,35のエミツタ帰
還抵抗、42,43は同じくコレクタ負荷抵抗、
44は位相補償用差動増幅器の電源用トランジス
タ、45,46はトランジスタ44のベースバイ
アス決定用抵抗、47〜50はトランジスタ36
〜39のエミツタ電流供給用抵抗、51,52,
53ならびに54,55,56はトランジスタ1
1,12、トランジスタ26,27ならびにトラ
ンジスタ34,35で構成される差動増幅器の電
流源用トランジスタならびに抵抗、57および5
8は電流源用トランジスタのベースバイアス供給
用のダイオードならびに抵抗、59,60は出力
負荷抵抗、61および62は出力端子、そして6
3は復調回路全体の電源端子である。
FIG. 3 is a diagram showing a specific configuration of the demodulation circuit according to the present invention whose basic configuration is shown in FIG. 2. In the figure, 7 and 8 are terminals to which input signals are applied, 9 and 10 are emitter follower transistors,
11 and 12 are transistors forming a differential amplifier for obtaining a carrier signal, 13 and 14 are coils and capacitors forming a selection circuit, 15 and 16 are resistors for DC bias supply, and 17 and 18 are for amplitude limiting. diodes, 19 and 20 are emitter follower transistors, 21 to 25 are resistors for supplying emitter current, 26 and 27 are transistors forming a differential amplifier for converting input signal voltage into current,
28, 29 are emitter resistors of transistors 26 and 27; 30, 31 and 32, 33 are transistors for forming a differential amplifier forming a multiplier circuit;
4 and 35 are transistors for configuring a differential amplifier forming a phase compensation circuit section; 36 to 39 are emitter follower transistors configuring a buffer amplifier for perfecting the effect of the differential amplifier for phase compensation; 4
0 and 41 are emitter feedback resistances of transistors 34 and 35, 42 and 43 are collector load resistances,
44 is a power supply transistor for the differential amplifier for phase compensation, 45 and 46 are resistors for determining the base bias of transistor 44, and 47 to 50 are transistors 36
~39 emitter current supply resistors, 51, 52,
53, 54, 55, and 56 are transistors 1
1, 12, transistors 26, 27 and transistors 34, 35 for current source transistors and resistors, 57 and 5
8 is a diode and a resistor for supplying base bias of the current source transistor, 59 and 60 are output load resistances, 61 and 62 are output terminals, and 6
3 is a power supply terminal for the entire demodulation circuit.

以上の回路要素によつて構成された本考案の復
調回路において、入力端子7,8に入力信号が印
加されると、この入力信号はエミツタフオロワト
ランジスタ9,10を通つてトランジスタ11と
12で構成される差動増幅器に入力され、さらに
選択回路によつて選択されるとともに振幅制限用
ダイオード17,18によつて振幅制限され、エ
ミツタフオロワトランジスタ19,20を経て乗
算回路部に加わる。このようにして乗算回路部に
加わる搬送波信号は入力信号に対して回路の信号
伝達時間分の時間差Δtをもつ。したがつて、仮
に乗算回路部の入力端子となるトランジスタ2
6,27のベースに入力信号が直接印加され、回
路の動作周波数がfoであると、搬送波信号と入力
信号との位相差Δは Δ=2πfoΔt としてあらわされ、動作周波数に比例する位相差
Δが発生する。
In the demodulation circuit of the present invention configured with the above circuit elements, when an input signal is applied to the input terminals 7 and 8, this input signal passes through the emitter follower transistors 9 and 10 to the transistors 11 and 12. is input to a differential amplifier composed of . In this way, the carrier wave signal applied to the multiplication circuit section has a time difference Δt corresponding to the signal transmission time of the circuit with respect to the input signal. Therefore, if transistor 2 becomes the input terminal of the multiplication circuit section,
When the input signal is directly applied to the base of 6 and 27 and the operating frequency of the circuit is fo, the phase difference Δ between the carrier signal and the input signal is expressed as Δ=2πfoΔt, and the phase difference Δ proportional to the operating frequency is Occur.

ところで、本考案では図示するように、入力信
号の乗算回路部への印加が上記のように直接的で
はなく、エミツタフオロワトランジスタ36,3
7を径て位相補償用差動増幅器を構成するトラン
ジスタ34,35のベースに印加され、ここで位
相補償されたのちエミツタフオロワトランジスタ
38,39を介して乗算回路部の入力端子となる
トランジスタ26と27のベースに印加されてい
る。
By the way, in the present invention, as shown in the figure, the input signal is not directly applied to the multiplier circuit section as described above, but is applied to the emitter follower transistors 36, 3.
The voltage is applied to the bases of the transistors 34 and 35 that constitute the differential amplifier for phase compensation through the transistor 7, and after the phase is compensated here, the transistor becomes the input terminal of the multiplier circuit section via the emitter follower transistors 38 and 39. It is applied to the bases of 26 and 27.

ところで、位相補償用差動増幅器の位相補償効
果はトランジスタ34と35のコレクタ負荷抵抗
42と43の値の増減に対応して増減する。した
がつて、上記のコレクタ負荷抵抗42と43の抵
抗値を選定して入力信号の位相補償をするなら
ば、乗算回路部に加わる入力信号と搬送波信号の
位相を一致させることが可能となり、両信号間に
位相差が存在することによつてもたらされる復調
出力の特性劣化の問題が排除され、出力端子6
1,62に特性劣化のない復調出力を発生させる
ことができる。
By the way, the phase compensation effect of the phase compensation differential amplifier increases or decreases in accordance with the increase or decrease in the values of the collector load resistances 42 and 43 of the transistors 34 and 35. Therefore, if the phase of the input signal is compensated by selecting the resistance values of the collector load resistors 42 and 43 described above, it becomes possible to match the phase of the input signal applied to the multiplication circuit section and the carrier wave signal. This eliminates the problem of deterioration of the characteristics of the demodulated output caused by the presence of a phase difference between the signals.
1 and 62, a demodulated output without characteristic deterioration can be generated.

なお、図示する復調回路の設計に際しては、抵
抗40と42ならびに41と43の比を位相補償
用差動増幅器の利得が1になるように設定するな
らば回路設計の複雑さを軽減することができる。
When designing the illustrated demodulation circuit, the complexity of the circuit design can be reduced if the ratios of the resistors 40 and 42 and 41 and 43 are set so that the gain of the phase compensation differential amplifier is 1. can.

考案の効果 以上説明してきたように、本考案の復調回路は
位相補償回路の付加により、乗算回路に印加され
る入力信号と搬送波信号の位相を一致させ、復調
出力の特性劣化を排除したものであり、極めて実
用価値の大なるものである。
Effects of the invention As explained above, the demodulation circuit of the invention uses a phase compensation circuit to match the phase of the input signal applied to the multiplication circuit and the carrier signal, thereby eliminating characteristic deterioration of the demodulated output. It is of great practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の乗算形復調回路の構成を示すブ
ロツク図、第2図は本考案の乗算形復調回路の構
成を示すブロツク図、第3図は第2図で示す乗算
形復調回路の具体的な構成を示す回路図である。 1,7,8……入力信号印加端子、2……搬送
波に相当する信号を発生する回路部、3……乗算
回路部、4……ローパスフイルタ、5,61,6
2……出力端子、6……位相補償回路部、9,1
0,19,20,36〜39……エミツタフオロ
ワトランジスタ、11,12……搬送波信号を得
るための差動増幅器構成用のトランジスタ、13
……選択回路形成用コイル、14……選択回路形
成用コンデンサ、15,16……直流バイアス供
給用抵抗、17,18……振幅制限用ダイオー
ド、21〜25、47〜50……エミツタ電流供
給用抵抗、26,27……入力信号電圧を電流に
変換する差動増幅器構成用のトランジスタ、2
8,29……エミツタ抵抗、30〜33……乗算
回路部を形成する差動増幅器構成用のトランジス
タ、34,35……位相補償回路部を形成する差
動増幅器構成用のトランジスタ、40,41……
エミツタ帰還抵抗、42,43……位相補償効果
決定用のコレクタ負荷抵抗、44……電源用トラ
ンジスタ、45,46……ベースバイアス決定用
抵抗、51〜53……電流源用トランジスタ、5
4〜56……エミツタ抵抗、57……ベースバイ
アス供給用ダイオード、58……ベースバイアス
供給用抵抗、59,60……出力負荷抵抗、63
……電源端子。
FIG. 1 is a block diagram showing the configuration of a conventional multiplicative demodulation circuit, FIG. 2 is a block diagram showing the configuration of the multiplicative demodulation circuit of the present invention, and FIG. 3 is a specific example of the multiplication demodulation circuit shown in FIG. FIG. 2 is a circuit diagram showing a typical configuration. 1, 7, 8...Input signal application terminal, 2...Circuit section that generates a signal corresponding to a carrier wave, 3...Multiplication circuit section, 4...Low pass filter, 5, 61, 6
2...Output terminal, 6...Phase compensation circuit section, 9,1
0, 19, 20, 36-39... Emitter follower transistor, 11, 12... Transistor for differential amplifier configuration for obtaining a carrier signal, 13
... Coil for forming selection circuit, 14 ... Capacitor for forming selection circuit, 15, 16 ... Resistor for DC bias supply, 17, 18 ... Diode for amplitude limiting, 21-25, 47-50 ... Emitter current supply Resistors 26, 27...Transistors for configuring a differential amplifier that converts input signal voltage into current, 2
8, 29... Emitter resistor, 30-33... Transistor for differential amplifier configuration forming the multiplier circuit section, 34, 35... Transistor for differential amplifier configuration forming the phase compensation circuit section, 40, 41 ……
Emitter feedback resistor, 42, 43... Collector load resistance for determining phase compensation effect, 44... Transistor for power supply, 45, 46... Resistor for determining base bias, 51-53... Transistor for current source, 5
4 to 56... Emitter resistance, 57... Base bias supply diode, 58... Base bias supply resistance, 59, 60... Output load resistance, 63
...Power terminal.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 入力端子に入力される被変調信号が差動形式で
印加される差動増幅器を構成主体として含み、前
記被変調信号の搬送波信号を発生する回路部と、
同回路部で発生させた搬送波信号と前記被変調信
号が入力され、これらを乗算して復調信号を発生
する乗算回路部とを備えるとともに、前記入力端
子と前記乗算回路部との間に、コレクタ負荷抵抗
とエミツタ帰還抵抗を有する2個のトランジスタ
で構成した差動増幅器からなる前記被変調信号の
位相を前記搬送波信号の位相に一致させる対称形
増幅器構成の位相補償回路部を配置したことを特
徴とする復調回路。
a circuit section that mainly includes a differential amplifier to which a modulated signal inputted to an input terminal is applied in a differential format, and generates a carrier wave signal of the modulated signal;
A multiplication circuit section receives a carrier wave signal generated in the circuit section and the modulated signal and multiplies them to generate a demodulated signal, and a collector circuit section is provided between the input terminal and the multiplication circuit section. A phase compensation circuit section having a symmetrical amplifier configuration that matches the phase of the modulated signal with the phase of the carrier signal, which is composed of a differential amplifier configured with two transistors having a load resistor and an emitter feedback resistor, is disposed. demodulation circuit.
JP1986089842U 1986-06-12 1986-06-12 Expired JPS641777Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986089842U JPS641777Y2 (en) 1986-06-12 1986-06-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986089842U JPS641777Y2 (en) 1986-06-12 1986-06-12

Publications (2)

Publication Number Publication Date
JPS61206312U JPS61206312U (en) 1986-12-26
JPS641777Y2 true JPS641777Y2 (en) 1989-01-17

Family

ID=30644303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986089842U Expired JPS641777Y2 (en) 1986-06-12 1986-06-12

Country Status (1)

Country Link
JP (1) JPS641777Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353216A (en) * 1976-10-25 1978-05-15 Mitsubishi Electric Corp Synchronous detector circuit of video intermediate frequency signal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353216A (en) * 1976-10-25 1978-05-15 Mitsubishi Electric Corp Synchronous detector circuit of video intermediate frequency signal

Also Published As

Publication number Publication date
JPS61206312U (en) 1986-12-26

Similar Documents

Publication Publication Date Title
US5584066A (en) Correcting circuit for mixing circuit receiver using same and frequency spectrum inverting circuit using same
US3974460A (en) High frequency modulator, such as an amplitude modulator, including a frequency multiplier
US3506776A (en) Balanced product mixer or demodulator and matrixing system for wave signal receivers
JPS641777Y2 (en)
JPH0927734A (en) Tuner of satellite receiving system, and method for selecting required channel carrier frequency from among input signal frequency group of satellite receiving system
US4660088A (en) Quasi-parallel television if suitable for stereo sound reception
US4349842A (en) Television receiver for receiving a picture carrier whose amplitude is modulated with a video signal, and a sound carrier whose frequency is modulated with an audio signal
US5323242A (en) Carrier signal generating circuit in video signal recording/reproducing apparatus
US4567441A (en) Circuit and method for linearizing the output signal of an FM detector
US6738433B1 (en) Quadricorrelator for a demodulator for frequency-modulated signals
US4215316A (en) AM stereo signal demodulation circuit
US4449230A (en) Apparatus for demodulating an AM stereophonic signal
EP0421369B1 (en) Color signal processing apparatus
JPH077741A (en) Method and circuit for color signal demodulation
KR850001845B1 (en) Synchronous detector circuits
Lunn A Monolithic Wideband Synchronous Video Detector for Color TV
JP2998773B2 (en) High frequency doubler circuit
JPH08288747A (en) Demodulator circuit
JPS6221090Y2 (en)
JP4251787B2 (en) Hue adjustment circuit
JP3019493U (en) High frequency multiplier
US4459552A (en) Low-noise video preamplifier
KR850000272Y1 (en) Television receiver
JPS6123849Y2 (en)
JP3230702B2 (en) Multiplication circuit