JPS6412303B2 - - Google Patents

Info

Publication number
JPS6412303B2
JPS6412303B2 JP11587581A JP11587581A JPS6412303B2 JP S6412303 B2 JPS6412303 B2 JP S6412303B2 JP 11587581 A JP11587581 A JP 11587581A JP 11587581 A JP11587581 A JP 11587581A JP S6412303 B2 JPS6412303 B2 JP S6412303B2
Authority
JP
Japan
Prior art keywords
polyphenylene ether
flame
parts
ether resin
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11587581A
Other languages
Japanese (ja)
Other versions
JPS5819353A (en
Inventor
Kokichi Komatsuzaki
Ryohei Tanaka
Takao Fukuzawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP11587581A priority Critical patent/JPS5819353A/en
Publication of JPS5819353A publication Critical patent/JPS5819353A/en
Publication of JPS6412303B2 publication Critical patent/JPS6412303B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

〔〕 発明の背景 技術分野 本発明は難燃性暹脂組成物に関し、詳しくはポ
リプニレン゚ヌテル暹脂ず、ポリプニレン゚
ヌテル暹脂ず盞溶性のある他の高分子物質ずより
なるポリプニレン゚ヌテル暹脂組成物の難燃化
に関するものである。 ポリプニレン゚ヌテル暹脂は、電気的性質お
よび機械的性質がすぐれ、高い熱倉圢枩床および
自己消火性を有し、極めお有甚な゚ンゞニアリン
グプラスチツクス材料ずしお泚目されおいる。し
かしながら、この暹脂は溶融枩床が高く、たた溶
融粘床も高いので、成圢加工に際し、高い成圢枩
床ず圧力を芁し、溶融による成圢加工を困難にし
おいる。そのため、ポリプニレン゚ヌテル暹脂
は実甚䞊ではスチレン系暹脂をはじめ、ポリプ
ニレン゚ヌテル暹脂ず盞溶性のある他の高分子物
質をブレンドしお、成圢加工性を改良しお䜿甚さ
れおいる。 ずころが、このようにポリプニレン゚ヌテル
暹脂にブレンドされる高分子物質は、䟋えばポリ
スチレンのように、比范的燃え易い暹脂が甚いら
れるので、ポリプニレン゚ヌテル暹脂自䜓の有
する自己消火性がなくなり、著しく燃え易くなる
ずいう問題を生ずる。 先行技術 この問題を解決するため、難燃化剀ずしお芳銙
族ホスプヌト化合物、䟋えばトリプニルホス
プヌトが䜿甚されおいるが、この化合物は可塑
剀ずしおも䜜甚し、その添加によ぀お難燃性が付
䞎されるず同時に、ポリプニレン゚ヌテル暹脂
組成物の熱倉圢枩床を著しく䜎䞋せしめるずいう
問題を生ずる。 埓぀お、ポリプニレン゚ヌテル暹脂組成物に
぀いおは、満足すべき難燃化組成物が埗られおい
ないのが実状である。 〔〕 発明の抂芁 本発明は、ポリプニレン゚ヌテル暹脂組成物
に配合しお、その物性を䜎䞋させるこずのない新
芏な高分子量の難燃化剀を芋出したもので、ポリ
プニレン゚ヌテル暹脂ずポリプニレン゚ヌテ
ル暹脂の欠点である成圢性を改良するためにブレ
ンドされる高分子物質ずの任意の割合の組成物
に、リン酞゚ステルオリゎマヌを添加するこずに
より難燃化されたポリプニレン゚ヌテル暹脂組
成物を提䟛するものである。 即ち、本発明はポリプニレン゚ヌテル暹脂
ず、ポリプニレン゚ヌテル暹脂ず盞溶性のある
他の高分子物質ずよりなるポリプニレン゚ヌテ
ル暹脂組成物100重量郚に察し、基本構造
[] BACKGROUND OF THE INVENTION Technical Field The present invention relates to a flame-retardant resin composition, and more specifically, a polyphenylene ether resin comprising a polyphenylene ether resin and another polymeric substance that is compatible with the polyphenylene ether resin. This invention relates to flame retardant compositions. Polyphenylene ether resin has excellent electrical and mechanical properties, high heat distortion temperature, and self-extinguishing properties, and is attracting attention as an extremely useful engineering plastic material. However, since this resin has a high melting temperature and high melt viscosity, high molding temperature and pressure are required during molding, making molding by melting difficult. Therefore, in practical use, polyphenylene ether resins are used by blending styrene resins and other polymeric substances that are compatible with polyphenylene ether resins to improve moldability. However, since the polymer material blended with the polyphenylene ether resin in this way is a relatively easily flammable resin such as polystyrene, the self-extinguishing property of the polyphenylene ether resin itself is lost, and it becomes extremely flammable. This causes the problem that it becomes easily flammable. Prior Art To solve this problem, aromatic phosphate compounds, such as triphenyl phosphate, have been used as flame retardants, but these compounds also act as plasticizers and their addition improves flame retardancy. At the same time, a problem arises in that the heat distortion temperature of the polyphenylene ether resin composition is significantly lowered. Therefore, the reality is that no satisfactory flame retardant composition has been obtained for polyphenylene ether resin compositions. [] Summary of the Invention The present invention is based on the discovery of a new high molecular weight flame retardant that can be added to a polyphenylene ether resin composition without deteriorating its physical properties. Polyphenylene ether made flame retardant by adding phosphoric acid ester oligomer to the blended polymer material in any proportion to the composition to improve moldability, which is a disadvantage of polyphenylene ether resin. A resin composition is provided. That is, in the present invention, the basic structure is

【匏】 ここで、は炭玠原子数〜10の脂肪族炭化氎
玠残基たたは脂環匏炭化氎玠残基を瀺す。の燥
返し単䜍を有する、数平均分子量500〜5000のリ
ン酞゚ステルオリゎマヌ化合物が0.1〜20重量郹
添加されおいるこずを特城ずする難燃性暹脂組成
物である。 本発明のポリプニレン゚ヌテル暹脂組成物は
すぐれた難燃性が付䞎されおいるず共に、埓来の
公知の難燃化剀の添加により生ずる熱的性質の䜎
䞋が少い。 〔〕 発明の具䜓的説明 (1) ポリプニレン゚ヌテル暹脂 本発明で䜿甚されるポリプニレン゚ヌテル
暹脂は、䞀般匏 で衚わされる埪環構造単䜍を有し、匏䞭䞀぀の
単䜍の゚ヌテル酞玠原子は次の隣接単䜍のベン
れン栞に接続しおおり、は正の敎数で少くず
も50であり、はそれぞれが独立に氎玠、ハロ
ゲン、䞉玚α―炭玠原子を含有しない炭化氎玠
基、ハゲン原子ずプニル栞ずの間に少くずも
個の炭玠原子を有するハロ炭化氎玠基、炭化
氎玠オキシ基およびハロゲン原子ずプニル栞
ずの間に少くずも個の炭玠原子を有するハロ
炭化氎玠オキシ基からなる矀より遞択した䞀䟡
眮換基を瀺す。 ポリプニレン゚ヌテルの代衚的な䟋ずしお
は、ポリ―ゞラりリル――プ
ニレン゚ヌテル、ポリ―ゞプニル
――プニレン゚ヌテル、ポリ
―ゞメトキシ――プニレン゚ヌテ
ル、ポリ―ゞ゚トキシ――プ
ニレン゚ヌテル、ポリ―メトキシ――
゚トキシ――プニレン゚ヌテル、ポ
リ―゚チル――ステアリルオキシ―
―プニレン゚ヌテル、ポリ―ゞ
クロロ――プニレン゚ヌテル、ポリ
―メチル――プニル――プニ
レン゚ヌテル、ポリ―ゞベンゞル―
―プニレン゚ヌテル、ポリ―゚
トキシ――プニレン゚ヌテル、ポリ
―クロロ――プニレン゚ヌテル、
ポリ―ゞブロモ――プニレ
ン゚ヌテルおよび同等物がある。 これら䞊蚘䞀般匏に盞圓するポリプニレン
゚ヌテルの補造方法は公知であり、䟋えば米囜
特蚱第3306874号、第3306875号、第3257357号
および第3257358号各明现曞に蚘茉されおいる。 本発明の目的のため、特に奜たしいポリプ
ニレン゚ヌテルの矀は、゚ヌテル酞玠原子に察
する぀のオル゜䜍にアルキル眮換基を有する
もの、即ち、オル゜䜍の各がアルキル基、最
も奜たしくは炭玠原子数が〜のアルキル基
を有する䞊蚘䞀般匏のポリプニレン゚ヌテル
である。その代衚的な䟋にはポリ―ゞ
メチル――プニレン゚ヌテル、ポリ
―ゞ゚チル――プニレン゚
ヌテル、ポリ―メチル――゚チル―
―プニレン゚ヌテル、ポリ―メチル
――プロピル――プニレン゚ヌテ
ル、ポリ―ゞプロピル――プ
ニレン゚ヌテル、ポリ―゚チル――プ
ロピル――プニレン゚ヌテル等があ
り、そのうち最も奜たしいものはポリ
―ゞメチル――プニレン゚ヌテルで
ある。 (2) 高分子物質 本発明においおは、䞊蚘ポリプニレン゚ヌ
テル暹脂に、ポリプニレン゚ヌテル暹脂ず盞
溶性を有する高分子物質を混合したポリプニ
レン゚ヌテル暹脂組成物を甚いるこずができ
る。 ポリプニレン゚ヌテル暹脂ず盞溶性を有す
高分子物質ずしおは、ポリスチレン、耐衝撃性
ポリスチレン、スチレン・ブタゞ゚ン共重合
物、アクリロニトリル・スチレン共重合物、ア
クリロニトリル・ブタゞ゚ン・スチレン共重合
物、等があり、これらの高分子物質は、ポリフ
゚ニレン゚ヌテル暹脂99〜重量郚に察し〜
99重量郚、奜たしくはポリプニレン゚ヌテル
80〜20重量郚に察し20〜80重量郚の割合で混合
される。 (3) リン酞゚ステルオリゎマヌ化合物 本発明で難燃剀ずしお甚いられるリン酞゚ス
テルオリゎマヌ化合物は、基本構造
[Formula] (Here, R represents an aliphatic hydrocarbon residue or an alicyclic hydrocarbon residue having 2 to 10 carbon atoms.) Phosphoric acid with a number average molecular weight of 500 to 5000 This is a flame-retardant resin composition characterized in that 0.1 to 20 parts by weight of an ester oligomer compound is added. The polyphenylene ether resin composition of the present invention is endowed with excellent flame retardancy and exhibits little deterioration in thermal properties caused by the addition of conventionally known flame retardants. [] Specific description of the invention (1) Polyphenylene ether resin The polyphenylene ether resin used in the present invention has the general formula It has a cyclic structural unit represented by, in which the ether oxygen atom of one unit is connected to the benzene nucleus of the next adjacent unit, n is a positive integer of at least 50, and Q is an independent Hydrocarbon groups that do not contain hydrogen, halogen, or tertiary α-carbon atoms, halohydrocarbon groups that have at least two carbon atoms between the hagen atom and the phenyl nucleus, hydrocarbon oxy groups, and halogen atoms and phenyl Represents a monovalent substituent selected from the group consisting of halohydrocarbonoxy groups having at least two carbon atoms between them and the nucleus. Typical examples of polyphenylene ether include poly(2,6-dilauryl-1,4-phenylene) ether, poly(2,6-diphenyl-1,4-phenylene) ether, and poly(2,6-dilauryl-1,4-phenylene) ether.
6-dimethoxy-1,4-phenylene) ether, poly(2,6-diethoxy-1,4-phenylene) ether, poly(2-methoxy-6-
Ethoxy-1,4-phenylene)ether, poly(2-ethyl-6-stearyloxy-1,
4-phenylene) ether, poly(2,6-dichloro-1,4-phenylene) ether, poly(2-methyl-6-phenyl-1,4-phenylene) ether, poly(2,6-dibenzyl-
1,4-phenylene) ether, poly(2-ethoxy-1,4-phenylene) ether, poly(2-chloro-1,4-phenylene) ether,
Poly(2,5-dibromo-1,4-phenylene) ether and equivalents. Methods for producing polyphenylene ethers corresponding to these general formulas are known and are described, for example, in US Pat. No. 3,306,874, US Pat. No. 3,306,875, US Pat. For the purposes of the present invention, a particularly preferred group of polyphenylene ethers are those having alkyl substituents in the two ortho positions to the ether oxygen atom, i.e. each Q in the ortho position is an alkyl group, most preferably a number of carbon atoms. is a polyphenylene ether of the above general formula having 1 to 4 alkyl groups. Typical examples include poly(2,6-dimethyl-1,4-phenylene) ether, poly(2,6-diethyl-1,4-phenylene) ether, poly(2-methyl-6-ethyl-1 
4-phenylene) ether, poly(2-methyl-6-propyl-1,4-phenylene) ether, poly(2,6-dipropyl-1,4-phenylene) ether, poly(2-ethyl-6-propyl) 1,4-phenylene) ether, among which the most preferable is poly(2,6
-dimethyl-1,4-phenylene) ether. (2) Polymeric Substance In the present invention, a polyphenylene ether resin composition in which a polymeric substance having compatibility with the polyphenylene ether resin is mixed with the polyphenylene ether resin can be used. Examples of polymeric substances that are compatible with polyphenylene ether resin include polystyrene, impact-resistant polystyrene, styrene-butadiene copolymer, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, etc. , these polymeric substances are used in an amount of 1 to 1 part by weight per 99 to 1 part by weight of polyphenylene ether resin.
99 parts by weight, preferably polyphenylene ether
It is mixed at a ratio of 20 to 80 parts by weight to 80 to 20 parts by weight. (3) Phosphate ester oligomer compound The phosphate ester oligomer compound used as a flame retardant in the present invention has a basic structure of

【匏】 の燥返し単䜍を有するもので、は炭玠原子数
〜10の脂肪族炭化氎玠残基たたは脂環匏炭化
氎玠残基を瀺す。脂環匏炭化氎玠残基の堎合は
通垞炭玠原子数〜10のものが甚いられる。 䞊蚘構造のリン酞゚ステルオリゎマヌ化合物
は、その数平均分子量が500〜5000のものが奜
たしく、特に奜たしくは800〜3000の数平均分
子量を有するものである。数平均分子量が500
より小さいものは、本発明の組成物ずしお甚い
たずき熱倉圢枩床を䜎䞋させる床合が倧きく、
䞀方、数平均分子量が5000より倧きくなるず難
燃化効果が䜎䞋する。 本発明に甚いられる䞊蚘リン酞゚ステルオリ
ゎマヌ化合物は次のようにしお合成するこずが
できる。即ち、プニルホスホン酞ゞクロラむ
ドずC2〜C10の脂肪族ゞオヌルたたは脂環匏ゞ
オヌルずを、窒玠雰囲気䞋、20〜100℃の枩床
で〜10時間反応させるこずにより埗られる。
この際、必芁に応じおピリゞン、トリ゚チルア
ミン等のアミン類を觊媒ずしお甚いるこずがで
きる。埗られるオリゎマヌの重合床、即ち分子
量はゞプニルホスホン酞モノクロラむドを分
子量調節剀ずしお適圓量加えるか、たたは、フ
゚ニルホスホン酞ゞクロラむドずC2〜C10の脂
肪族ゞオヌルたたは脂環匏ゞオヌルずの仕蟌比
を調敎するこずにより制埡するこずができる。 たた、数平均分子量の枬定は、ゲルパヌミ゚
むシペンクロマトグラフむヌを甚い、埗られた
クロマトグラムから分子量既知の単分散ポリス
チレンの分子量―流出時間の関係を甚いお公知
の蚈算方法歊内次倫、森定雄著クロマトグ
ラフむヌ、講談瀟刊によ぀お求められる。 なお、本願発明組成物は必芁に応じお他の高
分子物質を添加するこずができる。それらの高
分子物質ずしおは、ポリ゚チレン、ポリプロピ
レン、ポリメチルメタクリレヌト、ポリカヌボ
ネヌト、ポリ゚チレンテレフタレヌト、ナむロ
ン、スチレングラフト・ポリ゚チレン、スチレ
ングラフト・ポリプロピレン、スチレングラフ
ト・アクリロニトリル・スチレン共重合物、ス
チレングラフト・アクリロニトリル・ブタゞ゚
ン・スチレン共重合物、スチレングラフト・ポ
リむ゜ブテン等を挙げるこずができる。 (4) ブレンド方法 本発明の難燃性のポリプニレン゚ヌテル暹
脂組成物を埗るためのブレンド方法ずしおは、
䞀般に可塑剀、安定剀、着色剀等をブレンドす
る際に甚いられる皮々の方法を適甚するこずが
でき、䟋えば抌出機、プラストミル等の混合機
を䜿甚し埗る。 具䜓的には、前蚘各成分を混合し、スクリナ
ヌ埄25mmの抌出機に仕蟌み、シリンダヌ枩床
240〜330℃、スクリナヌ回転数20〜40r.p.m.で
抌出すこずにより、目的ずする難燃性のポリフ
゚ニレン゚ヌテル暹脂組成物を埗るこずができ
る。たた、溶融郚セルの枩床を240〜330℃に保
぀たプラストミルを甚いお、スクリナヌ回転数
20〜40r.p.m.で〜15分間溶融混合するこずに
よ぀おも目的物を埗るこずができる。 以䞋の実斜䟋においお、埗られた暹脂組成物の
難燃性は、米囜UL芏栌、Subject94に準じお、次
の燃焌詊隓によ぀お刀定した。 燃焌詊隓 長さむンチ、巟むンチ、厚さ16ã‚€
ンチの詊隓片を、空気の動いおいない郚屋内で、
䞊端を固定しお垂盎に懞垂する。むンチの
ブルヌフレヌムを出すように調節したブンれンバ
ヌナヌの炎を詊隓片の䞋端より10秒間あおる。10
秒埌にバヌナヌを陀去し、陀去埌の詊隓片の燃焌
時間を蚘録し、これを第回着火燃焌時間ずす
る。詊隓片の消炎埌盎ちに詊隓片の䞋端に同様な
方法でバヌナヌの炎を10秒間あお、再床消炎する
たでの時間を蚘録し、第回着火燃焌時間ずす
る。 たた、詊隓片の䞋方フむヌトのずころに綿を
眮き、詊隓䞭火の぀いた暹脂の滎䞋により綿に着
火するかどうかを蚘録する。 以䞊の詊隓を本の詊隓片に぀き行ない、詊隓
結果により難燃性を以䞋のように刀定する。 94VE―最高燃焌時間10秒以内、本の詊隓
片の平均燃焌時間が秒以内で、本の詊
隓片のいずれもが綿を着火させない。 94VE―最高燃焌時間30秒以内、平均燃焌時
間25秒以内、綿の着火なし。 94VE―燃焌時間は94VE―ず同じ、䜆し、
詊隓片のうち少くずも本は綿の着火を生
ずる。 94HB平均燃焌時間が25秒以䞊かたたは最高燃
焌時間が30秒以䞊。 たた、熱倉圢枩床はASTM――648に準じお
次のように枬定した。 熱倉圢枩床 長さ126mm、巟12.6mm、厚さ6.3mmの詊隓片に、
18.6Kgcm2の曲げ応力を加えた状態で、詊隓片を
毎分℃の昇枩速床で加枩し、たわみ量が0.254
mmに達したずきの枩床を求め、熱倉圢枩床ずす
る。 数平均分子量 高速ゲルパヌミ゚むシペンクロマトグラフむ
日本りオヌタヌズ瀟補ALCGPC244を甚い
お次の条件で枬定した。 (ã‚€)カラム 昭和電工瀟補 Shodex A802A803 (ロ)溶 剀 テトラヒドロフラン (ハ)詊料濃床重量 (ニ)流 速 ml分 なお、以䞋の実斜䟋においお、䜿甚量を瀺す郚
はすべお重量郚を意味する。 実斜䟋  リン酞゚ステルオリゎマヌの補造 300mlの四口フラスコに゚チレングリコヌル62
郚を仕蟌んだ。窒玠ガスを液䞭に吹蟌んでバブル
させながら、プニルホスホン酞ゞクロラむド
156郚を宀枩でフラスコ内に滎䞋し、副生する塩
化氎玠を窒玠ガスのバブリングにより系倖ぞ攟出
しながら反応させた。滎䞋終了埌、反応液を80℃
に昇枩し、時間反応を継続せしめた。埗られた
反応生成物を氎掗し、也燥しお、基本構造が の化合物(A)を埗た。このものの数平均分子量は
950であ぀た。 組成物の補造 固有粘床0.50dl25℃クロロホルム䞭で枬
定のポリ―ゞメチル――プニ
レン゚ヌテル40郚ず高衝撃ポリスチレン旭ダ
り瀟補475D60郚および䞊蚘化合物(A)郚を、
70℃に保぀たプラストミルにお、スクリナヌ回転
速床40r.p.m.で10分間溶融混合し、目的ずするポ
リプニレン゚ヌテル暹脂組成物を埗た。 埗られた暹脂組成物の燃焌詊隓の結果および熱
倉圢枩床は第衚に瀺す。 実斜䟋  実斜䟋においお、ポリプニレン゚ヌテル暹
脂ず高衝撃ポリスチレンの重量比を5050にした
以倖は実斜䟋ず同様にした。埗られた組成物に
぀いおの結果は第衚に瀺す。 実斜䟋  実斜䟋のリン酞゚ステルオリゎマヌの補造に
おいお、゚チレングリコヌルの代りにプロレング
リコヌル76郚を甚いた以倖は党く同様にしお、基
本構造が の化合物(B)を埗た。このものの数平均分子量は
1350であ぀た。 この化合物(B)を甚い、実斜䟋ず同様にしお埗
た暹脂組成物に぀いおの結果を第衚に瀺す。 実斜䟋  実斜䟋のリン酞゚ステルオリゎマヌの補造に
おいお、゚チレングリコヌルの代りに―ブ
タンゞオヌル90郚を甚い、基本構造が である化合物(C)を埗た。このものの数平均分子量
は800であ぀た。 この化合物(C)を甚い、実斜䟋ず同様にしお埗
た暹脂組成物に぀いおの結果を第衚に瀺す。 実斜䟋  実斜䟋のリン酞゚ステルオリゎマヌの補造に
おいお、゚チレングリコヌルの代りに―ヘ
キサンゞオヌル222郚を甚い、基本構造が である化合物(D)を埗た。このものの数平均分子量
は1100であ぀た。 この化合物(D)を甚い実斜䟋の配合で埗た暹脂
組成物に぀いおの結果を第衚に瀺す。 実斜䟋  実斜䟋のリン酞゚ステルオリゎマヌの補造に
おいお、゚チレングリコヌルの代りにシクロヘキ
サンゞメタノヌル144郚を甚い、基本構造が の化合物(E)を埗た。このものの数平均分子量は
3000であ぀た。この化合物(D)を甚い実斜䟋ず同
じ配合で埗た暹脂組成物に぀いおの結果を第衚
に瀺す。 実斜䟋  実斜䟋においお甚いた高衝撃ポリスチレンの
代りに、アクリロニトリル・ブタゞ゚ン・スチレ
ン共重合䜓日本合成ゎム瀟補、JSR―15を甚
いた以倖は実斜䟋ず同様にしお暹脂組成物を埗
た。燃焌詊隓結果および熱倉圢枩床を第衚に瀺
す。 比范䟋  実斜䟋のポリプニレン゚ヌテル暹脂ず高衝
撃ポリスチレンの配合で、難燃剀を党く含たない
組成物に぀いお枬定した。第衚に瀺すずおり、
耐燃性が芋られなか぀た。 比范䟋  実斜䟋における化合物(A)の代りに、難燃化剀
ずしおトリプニルホスプヌトを甚いお、同様
の枬定を行な぀た。第衚に瀺すずおり、難燃性
は付䞎されたが、熱倉圢枩床が倧きく䜎䞋した。 比范䟋  実斜䟋ず同じポリプニレン゚ヌテル暹脂組
成物で、化合物(B)を含たないものに぀いお枬定し
た。第衚に瀺すごずく耐燃性は芋られなか぀
た。 比范䟋  実斜䟋においお、化合物(A)の代りに、難燃化
剀ずしおトリプニルホスプヌトを同量甚い、
埗られた暹脂組成物に぀いお枬定した。難燃効果
は埗られたが、比范䟋の堎合より熱倉圢枩床が
倧きく䜎䞋した。 比范䟋 および 実斜䟋ず同様に行぀たが、化合物(A)の配合量
をそれぞれ0.05郚および25郚ずした。第衚に瀺
すずおり、0.05郚の配合では難燃化効果は埗られ
ず、たた25郚配合した堎合は熱倉圢枩床の倧巟な
䜎䞋を生じた。 比范䟋  実斜䟋のリン酞゚ステルオリゎマヌの補造に
おいお、プニルホスホン酞ゞクロラむドの䜿甚
量を15.6郚に枛らした以倖は同様の方法で反応を
行぀た。埗られた化合物―の数平均分子
量は330であ぀た。 この䜎分子量の化合物―を甚いお実斜
䟋ず同様にしお埗られた組成物は、第衚に瀺
すずおり、難燃化効果は実斜䟋の堎合ず同様で
あ぀たが、熱倉圢枩床が䜎䞋しおいた。 比范䟋  実斜䟋のリン酞゚ステルオリゎマヌの補造に
おいお、プニルホスホン酞ゞクロラむドの䜿甚
量を195郚に増加させた以倖は同様の方法で反応
を行ない、数平均分子量が15000の高分子量の化
合物―を埗た。 この高分子量の化合物―を甚いお実斜
䟋ず同様にしお埗られた組成物は、第衚に瀺
すずおり難燃効果が埗られなか぀た。
It has a drying unit of the formula: where R represents an aliphatic hydrocarbon residue or an alicyclic hydrocarbon residue having 2 to 10 carbon atoms. In the case of alicyclic hydrocarbon residues, those having 5 to 10 carbon atoms are usually used. The phosphate ester oligomer compound having the above structure preferably has a number average molecular weight of 500 to 5,000, particularly preferably 800 to 3,000. Number average molecular weight is 500
The smaller the size, the greater the degree to which the heat distortion temperature is lowered when used as the composition of the present invention;
On the other hand, when the number average molecular weight is greater than 5000, the flame retardant effect decreases. The phosphate ester oligomer compound used in the present invention can be synthesized as follows. That is, it is obtained by reacting phenylphosphonic acid dichloride and a C2 - C10 aliphatic diol or alicyclic diol at a temperature of 20-100° C. for 1-10 hours in a nitrogen atmosphere.
At this time, amines such as pyridine and triethylamine can be used as a catalyst if necessary. The degree of polymerization, i.e., the molecular weight, of the resulting oligomer can be determined by adding an appropriate amount of diphenylphosphonic acid monochloride as a molecular weight regulator, or by adjusting the charging ratio of phenylphosphonic acid dichloride and a C 2 to C 10 aliphatic diol or alicyclic diol. It can be controlled by adjusting. In addition, the number average molecular weight was measured using gel permeation chromatography, and from the obtained chromatogram, using the relationship between the molecular weight and runoff time of monodisperse polystyrene with a known molecular weight, using a known calculation method (Tsugio Takeuchi, Obtained by Sadao Mori: Chromatography, published by Kodansha). Note that other polymeric substances may be added to the composition of the present invention as necessary. These polymeric substances include polyethylene, polypropylene, polymethyl methacrylate, polycarbonate, polyethylene terephthalate, nylon, styrene-grafted polyethylene, styrene-grafted polypropylene, styrene-grafted acrylonitrile-styrene copolymer, styrene-grafted acrylonitrile-butadiene, Examples include styrene copolymers, styrene graft polyisobutene, and the like. (4) Blending method The blending method for obtaining the flame-retardant polyphenylene ether resin composition of the present invention is as follows:
Various methods generally used for blending plasticizers, stabilizers, colorants, etc. can be applied, and for example, a mixer such as an extruder or a plastomill can be used. Specifically, each of the above components is mixed and charged into an extruder with a screw diameter of 25 mm, and the cylinder temperature is
The desired flame-retardant polyphenylene ether resin composition can be obtained by extruding at 240-330°C and a screw rotation speed of 20-40 rpm. In addition, using a plastomill that maintains the temperature of the melting part cell at 240 to 330℃, the screw rotation speed is
The desired product can also be obtained by melt-mixing at 20-40 rpm for 5-15 minutes. In the following examples, the flame retardancy of the obtained resin compositions was determined by the following combustion test in accordance with the US UL standard, Subject 94. Combustion Test A test piece 6 inches long, 1/2 inch wide, and 1/16 inch thick was tested in a room with no moving air.
Fix the top end and hang vertically. Apply the flame of a Bunsen burner adjusted to produce a 3/4 inch blue flame for 10 seconds from the bottom of the specimen. Ten
After a few seconds, the burner is removed, and the burning time of the test piece after removal is recorded, and this is taken as the first ignition burning time. Immediately after the flame of the test piece is extinguished, apply the burner flame to the lower end of the test piece for 10 seconds in the same manner, and record the time until the flame extinguishes again, and use this as the second ignition combustion time. Also, place a piece of cotton one foot below the specimen and record whether the cotton ignites during the test with a drop of flaming resin. The above test is performed on five test pieces, and flame retardancy is determined as follows based on the test results. 94VE-O: The maximum burning time is within 10 seconds, the average burning time of the 5 test pieces is within 5 seconds, and none of the 5 test pieces ignites the cotton. 94VE: Maximum burning time within 30 seconds, average burning time within 25 seconds, no cotton ignition. 94VE-: Burning time is the same as 94VE-, however,
At least one of the specimens causes cotton to ignite. 94HB: Average burning time is 25 seconds or more or maximum burning time is 30 seconds or more. Further, the heat distortion temperature was measured in accordance with ASTM-D-648 as follows. Heat distortion temperature: A test piece with a length of 126 mm, a width of 12.6 mm, and a thickness of 6.3 mm.
With a bending stress of 18.6Kg/ cm2 applied, the test piece was heated at a heating rate of 2℃ per minute, and the amount of deflection was 0.254.
Find the temperature when it reaches mm and use it as the heat distortion temperature. Number average molecular weight Measured using high speed gel permeation chromatography (ALC/GPC244 manufactured by Nippon Waters) under the following conditions. (a) Column: Shodex A802 + A803 manufactured by Showa Denko (b) Solvent: tetrahydrofuran (c) Sample concentration: 1% by weight (d) Flow rate: 1 ml/min In addition, in the following examples, the part showing the amount used All parts are by weight. Example 1 Production of phosphate ester oligomer Ethylene glycol 62 in a 300ml four-necked flask
I prepared a section. phenylphosphonic acid dichloride while blowing nitrogen gas into the liquid and making it bubble.
156 parts were dropped into the flask at room temperature, and the reaction was allowed to occur while hydrogen chloride produced as a by-product was released from the system by bubbling nitrogen gas. After completing the dropwise addition, heat the reaction solution to 80℃.
The reaction was continued for 4 hours. The resulting reaction product is washed with water and dried to reveal the basic structure. Compound (A) was obtained. The number average molecular weight of this substance is
It was 950. Production of the composition: 40 parts of poly(2,6-dimethyl-1,4-phenylene) ether with an intrinsic viscosity of 0.50 dl/g (measured in chloroform at 25°C), 60 parts of high-impact polystyrene (475D manufactured by Asahi Dow), and 7 parts of the above compound (A),
Melt mixing was performed for 10 minutes at a screw rotation speed of 40 rpm in a plastomill maintained at 70°C to obtain the desired polyphenylene ether resin composition. The results of the combustion test and heat distortion temperature of the obtained resin composition are shown in Table 1. Example 2 The same procedure as Example 1 was carried out except that the weight ratio of polyphenylene ether resin and high impact polystyrene was 50:50. The results for the compositions obtained are shown in Table 1. Example 3 In the production of phosphate ester oligomer in Example 1, the basic structure was changed in exactly the same manner except that 76 parts of prolene glycol was used instead of ethylene glycol. Compound (B) was obtained. The number average molecular weight of this substance is
It was 1350. Table 1 shows the results for a resin composition obtained using this compound (B) in the same manner as in Example 1. Example 4 In the production of the phosphate ester oligomer of Example 1, 90 parts of 1,4-butanediol was used instead of ethylene glycol, and the basic structure was changed. Compound (C) was obtained. The number average molecular weight of this product was 800. Table 1 shows the results for a resin composition obtained using this compound (C) in the same manner as in Example 1. Example 5 In the production of the phosphate ester oligomer of Example 1, 222 parts of 1,6-hexanediol was used instead of ethylene glycol, and the basic structure was changed. Compound (D) was obtained. The number average molecular weight of this product was 1100. Table 1 shows the results for a resin composition obtained using this compound (D) according to the formulation of Example 1. Example 6 In the production of the phosphate ester oligomer of Example 1, 144 parts of cyclohexanedimethanol was used instead of ethylene glycol, and the basic structure was changed. Compound (E) was obtained. The number average molecular weight of this substance is
It was 3000. Table 1 shows the results for a resin composition obtained using this compound (D) in the same formulation as in Example 1. Example 7 A resin composition was prepared in the same manner as in Example 1, except that an acrylonitrile-butadiene-styrene copolymer (manufactured by Japan Synthetic Rubber Co., Ltd., JSR-15) was used instead of the high-impact polystyrene used in Example 1. I got it. The combustion test results and heat distortion temperatures are shown in Table 1. Comparative Example 1 A composition containing the polyphenylene ether resin of Example 1 and high-impact polystyrene and containing no flame retardant was measured. As shown in Table 1,
No flame resistance was observed. Comparative Example 2 Similar measurements were carried out using triphenyl phosphate as a flame retardant instead of compound (A) in Example 1. As shown in Table 1, although flame retardancy was imparted, the heat distortion temperature was significantly lowered. Comparative Example 3 The same polyphenylene ether resin composition as in Example 2 but not containing compound (B) was measured. As shown in Table 1, no flame resistance was observed. Comparative Example 4 In Example 2, the same amount of triphenyl phosphate was used as a flame retardant instead of compound (A),
The obtained resin composition was measured. Although a flame retardant effect was obtained, the heat distortion temperature was significantly lower than in Comparative Example 3. Comparative Examples 5 and 6 Comparative Examples 5 and 6 were carried out in the same manner as in Example 1, but the amounts of compound (A) were changed to 0.05 parts and 25 parts, respectively. As shown in Table 1, no flame retardant effect was obtained when blending 0.05 parts, and a large decrease in heat distortion temperature occurred when blending 25 parts. Comparative Example 7 The reaction was carried out in the same manner as in Example 1, except that the amount of phenylphosphonic acid dichloride used was reduced to 15.6 parts. The number average molecular weight of the obtained compound (A-2) was 330. As shown in Table 1, the composition obtained using this low molecular weight compound (A-2) in the same manner as in Example 1 had the same flame retardant effect as in Example 1. , the heat distortion temperature had decreased. Comparative Example 8 A reaction was carried out in the same manner as in Example 1 except that the amount of phenylphosphonic acid dichloride used was increased to 195 parts, and a high molecular weight compound (A -3) was obtained. As shown in Table 1, the composition obtained using this high molecular weight compound (A-3) in the same manner as in Example 1 did not have a flame retardant effect.

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】  ポリプニレン゚ヌテル暹脂ず、ポリプニ
レン゚ヌテル暹脂ず盞溶性のある他の高分子物質
ずよりなるポリプニレン゚ヌテル暹脂組成物
100重量郚に察し、基本構造 【匏】 ここで、は炭玠原子数〜10の脂肪族炭化氎
玠残基たたは脂環匏炭化氎玠残基を瀺す。の燥
返し単䜍を有する、数平均分子量500〜5000のリ
ン酞゚ステルオリゎマヌ化合物が0.1〜20重量郹
添加されおいるこずを特城ずする難燃性暹脂組成
物。
[Claims] 1. A polyphenylene ether resin composition comprising a polyphenylene ether resin and another polymeric substance that is compatible with the polyphenylene ether resin.
Per 100 parts by weight, a number of dried units having the basic structure [Formula] (where R represents an aliphatic hydrocarbon residue or an alicyclic hydrocarbon residue having 2 to 10 carbon atoms) A flame-retardant resin composition characterized in that 0.1-20 parts by weight of a phosphate ester oligomer compound having an average molecular weight of 500-5000 is added.
JP11587581A 1981-07-25 1981-07-25 Flame-retardant resin composition Granted JPS5819353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11587581A JPS5819353A (en) 1981-07-25 1981-07-25 Flame-retardant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11587581A JPS5819353A (en) 1981-07-25 1981-07-25 Flame-retardant resin composition

Publications (2)

Publication Number Publication Date
JPS5819353A JPS5819353A (en) 1983-02-04
JPS6412303B2 true JPS6412303B2 (en) 1989-02-28

Family

ID=14673319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11587581A Granted JPS5819353A (en) 1981-07-25 1981-07-25 Flame-retardant resin composition

Country Status (1)

Country Link
JP (1) JPS5819353A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2082694A1 (en) * 1991-12-31 1993-07-01 Richard C. Bopp Polyphenylene ether resin-containing compositions containing high molecular weight polyethylene resin
KR100906715B1 (en) 2007-12-27 2009-07-07 (죌)디플아읎 홀딩슀 Flame Retarding oligomer Containing Phosphate And method of preparing the Same

Also Published As

Publication number Publication date
JPS5819353A (en) 1983-02-04

Similar Documents

Publication Publication Date Title
US5206276A (en) Flame retardant flexibilized polyphenylene ether compositions
JP2003531235A (en) Highly flowable polyphenylene ether compositions containing dendritic polymers
US4526917A (en) Flame retardant mixture of triaryl phosphates and resinous compositions thereof
JPH0244335B2 (en)
JPS6129983B2 (en)
EP0305764B1 (en) High molecular weight polystyrene blends with PPE and HIPS
US4405739A (en) Polyphenylene ether resins and compositions heat stabilized with phosphite compounds
US4684682A (en) Flame retardant flexibilized polyphenylene ether compositions
US4584331A (en) Polyphenylene ether resin composition
JPS6412303B2 (en)
US5143955A (en) Polyphenylene ether-high impact polystyrene blends having improved flammability performance
US5594054A (en) Flame retardant flexibilized polyphenylene ether compositions
JP3142885B2 (en) Polyphenylene ether resin composition
JPH0218341B2 (en)
US4390477A (en) Diphenyl pentaerythritol diphosphonate
US6797754B2 (en) Flame retardant styrenic compositions containing oxaphospholane compound as flame retardant
JP3043694B2 (en) Phosphate ester flame retardants
US4423176A (en) Molding compositions comprising polyphenylene ether, polysulfone and vinyl aromatic-diene block copolymer
JP3687476B2 (en) Polyphenylene ether resin composition for flame retardant insulating sheet and flame retardant insulating sheet
JPS6356899B2 (en)
JPH0336062B2 (en)
JPH02212551A (en) Polyphenylene ether/impact-resistant polystyrene blend
US4624979A (en) Flame retardant polyphenylene ether-polystyrene blends of increased heat resistance and method of achievement
JPS6187743A (en) Fire retardant polyphenylene oxide thermoplastic substance
JPH10168273A (en) Flame-retardant resin composition