JPS6412257B2 - - Google Patents

Info

Publication number
JPS6412257B2
JPS6412257B2 JP8570581A JP8570581A JPS6412257B2 JP S6412257 B2 JPS6412257 B2 JP S6412257B2 JP 8570581 A JP8570581 A JP 8570581A JP 8570581 A JP8570581 A JP 8570581A JP S6412257 B2 JPS6412257 B2 JP S6412257B2
Authority
JP
Japan
Prior art keywords
naphthalene
dicyclohexylnaphthalene
dicarboxylic acid
solvent
naphthalene dicarboxylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8570581A
Other languages
Japanese (ja)
Other versions
JPS57203032A (en
Inventor
Kenji Nakaoka
Sakie Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP8570581A priority Critical patent/JPS57203032A/en
Publication of JPS57203032A publication Critical patent/JPS57203032A/en
Publication of JPS6412257B2 publication Critical patent/JPS6412257B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明はナフタリンジカルボン酸、特に2,6
−ナフタリンジカルボン酸を製造する方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to naphthalene dicarboxylic acids, particularly 2,6
- A method for producing naphthalene dicarboxylic acid.

ナフタリンジカルボン酸は、高分子原料、染料
中間体、工業薬品などとして有用な化合物であ
る。特に近年は2,6−ナフタリンジカルボン酸
とエチレングリコールから生成するポリエステル
が、ポリエチレンテレフタレートよりも耐熱性、
剛性などが優れているため、フイルムや繊維など
の製造原料として注目されている。
Naphthalene dicarboxylic acid is a compound useful as a polymer raw material, a dye intermediate, an industrial chemical, etc. Particularly in recent years, polyester produced from 2,6-naphthalene dicarboxylic acid and ethylene glycol has higher heat resistance and better heat resistance than polyethylene terephthalate.
Due to its excellent rigidity, it is attracting attention as a raw material for manufacturing films and fibers.

従来2,6−ナフタリンジカルボン酸の製造方
法としては、ナフタリン核にメチル基、エチル
基、イソプロピル基などの炭素数1〜3個を含む
鎖状のアルキル基をアルキル化反応により2個導
入したナフタリン化合物(以下単にジアルキルナ
フタリンと称する)から2,6−ジアルキルナフ
タリンを分離し、2,6−ナフタリンジカルボン
酸に酸化する方法が主として採られていた。
Conventional methods for producing 2,6-naphthalene dicarboxylic acid include naphthalene in which two chain alkyl groups containing 1 to 3 carbon atoms, such as methyl, ethyl, and isopropyl groups, are introduced into the naphthalene core through an alkylation reaction. The method mainly used is to separate 2,6-dialkylnaphthalene from a compound (hereinafter simply referred to as dialkylnaphthalene) and oxidize it to 2,6-naphthalene dicarboxylic acid.

しかしながらこのような公知の方法は中間体の
2,6−ジアルキルナフタリンの単離が著しく困
難であり、2,6−ナフタリンジカルボン酸の経
済的な製造法ではなかつた。
However, in such a known method, it is extremely difficult to isolate the intermediate 2,6-dialkylnaphthalene, and it is not an economical method for producing 2,6-naphthalene dicarboxylic acid.

すなわち、ナフタリンに前記した通常のアルキ
ル化反応を行なうと、鎖状のアルキル基はナフタ
リン核のα−位置にもβ−位置にも導入されるた
め、ジアルキルナフタリンは多数の異性体の混合
物となり、2,6−ジアルキルナフタリンの含有
率は低く、一般に20%以下に留まる。そしてこの
ようなジアルキルナフタリン類はたがいに沸点が
近接しているために蒸留分離は不可能であり、ま
た2,6−ジアルキルナフタリンは結晶性が他の
異性体と大幅には相違していないために結晶化分
離することも困難である。したがつて2,6−ジ
アルキルナフタリンを単離するためには、2,6
−ジアルキルナフタリンとニトロ安息香酸類など
との錯体を形成しこの錯体を単離して分解するな
どといつた繁雑な手段を採る必要があつた。
That is, when naphthalene is subjected to the above-mentioned normal alkylation reaction, chain alkyl groups are introduced into both the α-position and the β-position of the naphthalene nucleus, so dialkylnaphthalene becomes a mixture of many isomers, The content of 2,6-dialkylnaphthalene is low and generally remains below 20%. Since the boiling points of these dialkylnaphthalenes are close to each other, it is impossible to separate them by distillation, and the crystallinity of 2,6-dialkylnaphthalenes is not significantly different from other isomers. It is also difficult to crystallize and separate. Therefore, in order to isolate 2,6-dialkylnaphthalene, 2,6
- It was necessary to take complicated measures such as forming a complex between dialkylnaphthalene and nitrobenzoic acids, and then isolating and decomposing this complex.

本発明者らは、ナフタリンから安価に誘導でき
特に2,6−置換体の選択率が高く、副生する他
の異性体との分離が容易であつて、しかもナフタ
リンジカルボン酸に酸化可能なジ置換ナフタリン
誘導体を開発すべく鋭意研究を進めた結果ジシク
ロヘキシルナフタリン、特に2,6−ジシクロヘ
キシルナフタリンがこれらの条件をすべて満足す
ることを見い出し、本発明に到達した。
The present inventors have discovered a dicarboxylic acid which can be derived from naphthalene at low cost, has a particularly high selectivity for 2,6-substituted isomers, is easy to separate from other by-product isomers, and can be oxidized to naphthalene dicarboxylic acid. As a result of intensive research to develop substituted naphthalene derivatives, it was discovered that dicyclohexylnaphthalene, especially 2,6-dicyclohexylnaphthalene, satisfies all of these conditions, and the present invention was achieved.

従つて、本発明はナフタリンジカルボン酸製造
用出発原料として特定の化合物を選択したところ
にその特徴がある。即ち、本発明はジシクロヘキ
シルナフタリンを酸化することを特徴とするナフ
タリンジカルボン酸の製造法である。本発明にお
いて特に2,6−ジシクロヘキシルナフタリンを
酢酸溶媒中でコバルトおよび/もしくはマンガン
と臭素を含む触媒の存在下で分子状酸素含有ガス
と接触させたとき、本発明の特徴が最も効果的に
発揮される。
Therefore, the present invention is characterized by the selection of a specific compound as a starting material for the production of naphthalene dicarboxylic acid. That is, the present invention is a method for producing naphthalene dicarboxylic acid, which is characterized by oxidizing dicyclohexylnaphthalene. In particular, the features of the present invention are most effectively exhibited when 2,6-dicyclohexylnaphthalene is brought into contact with a molecular oxygen-containing gas in an acetic acid solvent in the presence of a catalyst containing cobalt and/or manganese and bromine. be done.

ちなみに本発明は以下の事実を見い出したこと
に基づいてなされたものである。
Incidentally, the present invention was made based on the discovery of the following fact.

(1) 塩化アルミニウムなどのフリーデルクラフツ
触媒の存在下でクロルシクロヘキサンなどのシ
クロヘキサン化剤とナフタリンを反応させる
と、シクロヘキシル基はナフタリン核のβ−位
置に選択的に置換し、α−位置には実質的に置
換しない。
(1) When naphthalene is reacted with a cyclohexanating agent such as chlorocyclohexane in the presence of a Friedel-Crafts catalyst such as aluminum chloride, the cyclohexyl group is selectively substituted at the β-position of the naphthalene nucleus, and the α-position is substituted with a cyclohexyl group. Not substantially replaced.

(2) β−シクロヘキシルナフタリンがさらにシク
ロヘキシル化されて生成するジシクロヘキシル
ナフタリンとしては、2,6体が主生成物であ
り、2,7体などの他の異性体の生成量は比較
的少ない。
(2) As dicyclohexylnaphthalene produced by further cyclohexylation of β-cyclohexylnaphthalene, 2,6 isomers are the main products, and the amount of other isomers such as 2,7 isomers produced is relatively small.

(3) 目的物質の2,6−ジシクロヘキシルナフタ
リンは融点151℃で結晶性が良好であるのに対
して、副生物の2,7−ジシクロヘキシルナフ
タリンは結晶性が格段に劣る。
(3) The target substance, 2,6-dicyclohexylnaphthalene, has a melting point of 151°C and good crystallinity, whereas the by-product, 2,7-dicyclohexylnaphthalene, has significantly poor crystallinity.

(4) ナフタリンのシクロヘキシル化生成物を蒸留
して得たジシクロヘキシルナフタリン留分
(2,6体と2,7体などの混合物)をヘキサ
ンなどを溶媒に用いて再結晶すると、純度のよ
い2,6−ジシクロヘキシルナフタリンの結晶
を得ることができる。
(4) When the dicyclohexylnaphthalene fraction (mixture of 2,6 and 2,7, etc.) obtained by distilling the cyclohexylation product of naphthalene is recrystallized using hexane or the like as a solvent, 2, Crystals of 6-dicyclohexylnaphthalene can be obtained.

(5) 2,6−ジシクロヘキシルナフタリンを、酢
酸溶媒中でコバルトおよび/もしくはマンガン
と臭素を含む触媒の存在下に分子状酸素含有ガ
スと接触させると、2,6−ナフタリンジカル
ボン酸に酸化される。
(5) When 2,6-dicyclohexylnaphthalene is brought into contact with a molecular oxygen-containing gas in the presence of a catalyst containing cobalt and/or manganese and bromine in an acetic acid solvent, it is oxidized to 2,6-naphthalene dicarboxylic acid. .

更に具体的に本発明法を詳述する。 The method of the present invention will be explained in more detail.

最初に本発明法の出発原料であるジシクロヘキ
シルナフタリンを用意する。ジシクロヘキシルナ
フタリンはナフタリンをシクロヘキシル化するこ
とによつて得られる。
First, dicyclohexylnaphthalene, which is a starting material for the method of the present invention, is prepared. Dicyclohexylnaphthalene is obtained by cyclohexylating naphthalene.

ナフタリンのシクロヘキシル化は、二硫化炭素
やニトロベンゼンなどを溶媒に用いて、塩化アル
ミニウムなどのいわゆるフリーデルクラフツ触媒
の存在下に、ナフタリンとハロゲン化シクロヘキ
サン、シクロヘキセン、シクロヘキサノールなど
のシクロヘキシル化剤とを反応させる方法によ
る。
Cyclohexylation of naphthalene involves reacting naphthalene with a cyclohexylating agent such as halogenated cyclohexane, cyclohexene, or cyclohexanol in the presence of a so-called Friedel-Crafts catalyst such as aluminum chloride using carbon disulfide or nitrobenzene as a solvent. Depends on how you do it.

シクロヘキシル化剤は、ナフタリンに対して2
倍モル程度使用するのが適当であり、またフリー
デルクラフツ触媒はナフタリンに対して0.02〜
0.4倍モル程度使用するのが適当である。反応温
度は使用する溶媒の沸点によつても制約を受ける
が、0〜100℃の範囲が好ましい。
The cyclohexylating agent is 2 for naphthalene.
It is appropriate to use about twice the molar amount, and Friedel-Crafts catalyst is 0.02 to 0.02 to naphthalene.
It is appropriate to use about 0.4 times the mole. The reaction temperature is also limited by the boiling point of the solvent used, but is preferably in the range of 0 to 100°C.

なおナフタリンの代りにβ−モノシクロヘキシ
ルナフタリンを原料に用いることもむろん可能で
ある。またシクロヘキシル化剤としてナフタリン
のシクロヘキシル化反応で副生するトリシクロヘ
キシルナフタリンなどを用い、これとナフタリン
あるいはモノシクロヘキシルナフタリンとの間で
トランスシクロヘキシル化反応を行なわせること
もできる。
Note that it is of course possible to use β-monocyclohexylnaphthalene as a raw material instead of naphthalene. It is also possible to use tricyclohexylnaphthalene, which is a by-product in the cyclohexylation reaction of naphthalene, as a cyclohexylating agent, and to carry out a transcyclohexylation reaction between this and naphthalene or monocyclohexylnaphthalene.

シクロヘキシル化反応が終つた反応混合物は、
冷水と混合して触媒を分解し、有機層を分離す
る。この際必要ならば水と混じらない有機溶媒を
反応混合物に加えて分液操作を容易にすることも
できる。有機層をアルカリ水溶液と水でよく洗浄
し、脱水して蒸留する。溶媒、未反応ナフタリ
ン、モノシクロヘキシルナフタリンを留去後ジシ
クロヘキシルナフタリンからなる留分を取得す
る。
The reaction mixture after the cyclohexylation reaction is
Mix with cold water to decompose the catalyst and separate the organic layer. At this time, if necessary, an organic solvent that is immiscible with water may be added to the reaction mixture to facilitate the liquid separation operation. The organic layer is thoroughly washed with aqueous alkaline solution and water, dehydrated and distilled. After distilling off the solvent, unreacted naphthalene, and monocyclohexylnaphthalene, a fraction consisting of dicyclohexylnaphthalene is obtained.

この留分をn−ヘキサンなどを溶媒に用いて再
結晶すると純度95%以上の2,6−ジシクロヘキ
シルナフタリンが得られる。母液側から回収され
る2,7ジシクロヘキシルナフタリンなどは、フ
リーデルクラフツ触媒で処理することにより2,
6−ジシクロヘキシルナフタリンに異性化するこ
とができる。
When this fraction is recrystallized using n-hexane or the like as a solvent, 2,6-dicyclohexylnaphthalene with a purity of 95% or more is obtained. 2,7 dicyclohexylnaphthalene etc. recovered from the mother liquor side are treated with a Friedel-Crafts catalyst to produce 2,7 dicyclohexylnaphthalene, etc.
It can be isomerized to 6-dicyclohexylnaphthalene.

本発明においては、かくして得たジシクロヘキ
シルナフタリン、特に2,6−ジシクロヘキシル
ナフタリンを次に好ましくは酢酸溶媒中で酸化触
媒の存在下に分子状酸素含有ガスと接触させて、
相当するナフタリンジカルボン酸に酸化する。
In the present invention, the dicyclohexylnaphthalene thus obtained, in particular 2,6-dicyclohexylnaphthalene, is then contacted with a molecular oxygen-containing gas in the presence of an oxidation catalyst, preferably in an acetic acid solvent.
Oxidizes to the corresponding naphthalene dicarboxylic acid.

溶媒の酢酸はジシクロヘキシルナフタリンの3
重量倍以上、好ましくは10重量倍以上使用する。
なお酢酸中に15重量%程度以下の水が存在しても
特に支障はない。
The solvent acetic acid is dicyclohexylnaphthalene 3
It is used at least twice its weight, preferably at least 10 times its weight.
Note that there is no particular problem even if water is present in the acetic acid in an amount of about 15% by weight or less.

酸化触媒としてはコバルトおよび/もしくはマ
ンガンと臭素から構成される触媒系を使用し、こ
れらの触媒構成成分を下記に示す化合物形で加え
る。
A catalyst system consisting of cobalt and/or manganese and bromine is used as the oxidation catalyst, and these catalyst components are added in the form of the compounds shown below.

すなわちコバルト化合物、マンガン化合物は酢
酸に可溶性のものであれば使用可能であるが、酢
酸塩、炭酸塩、水酸化物、臭化物などが特に好ま
しい。
That is, cobalt compounds and manganese compounds can be used as long as they are soluble in acetic acid, but acetates, carbonates, hydroxides, bromides, etc. are particularly preferred.

臭素化合物としては、臭素、臭化水素、臭化ア
ルミニウム、アルカリ金属臭化物、臭化コバル
ト、臭化マンガンなどの無機臭素化合物およびテ
トラブロモエタン、ブロモ酢酸などの有機臭素化
合物が使用可能であるが、臭化水素、臭化コバル
ト、臭化マンガンが特に好ましい。
As the bromine compound, inorganic bromine compounds such as bromine, hydrogen bromide, aluminum bromide, alkali metal bromides, cobalt bromide, and manganese bromide, and organic bromine compounds such as tetrabromoethane and bromoacetic acid can be used. Particularly preferred are hydrogen bromide, cobalt bromide, and manganese bromide.

コバルト化合物、マンガン化合物の使用量はコ
バルトとマンガンの金属としての合計濃度が溶媒
酢酸に対して200〜3000ppmの範囲になるように
することが好ましい。一方臭素化合物の使用量
は、コバルトとマンガンの合計使用グラム原子量
に対して、臭素原子としての使用グラム原子量が
0.5〜2倍程度になるようにすることが好ましい。
The amount of cobalt compound and manganese compound used is preferably such that the total concentration of cobalt and manganese as metals is in the range of 200 to 3000 ppm relative to the solvent acetic acid. On the other hand, the amount of bromine compounds used is that the gram atomic weight of bromine atoms is greater than the total gram atomic weight of cobalt and manganese.
It is preferable to adjust the amount to about 0.5 to 2 times.

分子状酸素含有ガスとしては、純酸素や工業排
ガスも使用可能であるが、工業的には通常の空気
が最適である。
As the molecular oxygen-containing gas, pure oxygen or industrial exhaust gas can also be used, but from an industrial perspective, normal air is most suitable.

反応温度は100〜250℃、特に110〜160℃が好ま
しい。反応圧力はこの温度において溶媒酢酸を液
相に保ち得るように設定するが10〜30気圧が適当
である。
The reaction temperature is preferably 100 to 250°C, particularly 110 to 160°C. The reaction pressure is set so as to maintain the solvent acetic acid in a liquid phase at this temperature, and is suitably 10 to 30 atmospheres.

反応方式としては、回分式、半連続式、連続式
のいずれをも採用しうるが、良好な品質の生成物
を安定して得るためには連続式が望ましい。
As the reaction method, any of a batch method, a semi-continuous method, and a continuous method may be employed, but a continuous method is preferable in order to stably obtain a product of good quality.

酸化反応によつて生成した2,6−ナフタリン
ジカルボン酸は熱酢酸にも難溶性であるので、反
応混合物を固液分離することにより、溶媒、触
媒、未反応物、副生物などと分離することができ
る。このようにして得た2,6−ナフタリンジカ
ルボン酸は必要に応じてさらに精製処理を加えて
高純度2,6−ナフタリンジカルボン酸とする。
Since 2,6-naphthalene dicarboxylic acid produced by the oxidation reaction is poorly soluble in hot acetic acid, it can be separated from the solvent, catalyst, unreacted materials, by-products, etc. by solid-liquid separation of the reaction mixture. I can do it. The 2,6-naphthalene dicarboxylic acid thus obtained is further purified, if necessary, to obtain highly purified 2,6-naphthalene dicarboxylic acid.

本発明法で得られたナフタリンジカルボン酸
は、ポリエステル、ポリアミド等の高分子原料、
染料中間体その他の工業薬品として広く有用でき
る。
The naphthalene dicarboxylic acid obtained by the method of the present invention can be used as a polymer raw material such as polyester or polyamide.
It can be widely used as a dye intermediate and other industrial chemicals.

以下、実施例を挙げて本発明を具体的に説明す
る。
The present invention will be specifically described below with reference to Examples.

実施例 還流冷却器と撹拌機を備えた反応器を用いて、
二硫化炭素80部、ナフタリン13.4部、塩化アルミ
ニウム28部の混合液に、クロルシクロヘキサン25
部を1時間かけて滴下した。この間塩化水素ガス
が発生し、反応熱で穏やかに二硫化炭素が還流し
た。滴下終了後、30分間還流加熱し、冷却してか
ら反応物を稀塩酸中に投じ、水層と有機層に分液
した。有機層を稀アルカリついで水で洗浄し、溶
媒を留去した。
Example Using a reactor equipped with a reflux condenser and a stirrer,
Add 25 parts of chlorocyclohexane to a mixture of 80 parts of carbon disulfide, 13.4 parts of naphthalene, and 28 parts of aluminum chloride.
part was added dropwise over 1 hour. During this time, hydrogen chloride gas was generated, and carbon disulfide was gently refluxed due to the heat of reaction. After completion of the dropwise addition, the mixture was heated under reflux for 30 minutes, cooled, and then poured into dilute hydrochloric acid to separate into an aqueous layer and an organic layer. The organic layer was washed with dilute alkali and then water, and the solvent was distilled off.

残留物を減圧蒸留し、未反応のナフタリン、モ
ノシクロヘキシルナフタリンに続いて、195〜205
℃/0.9mmHgで留出する主としてジシクロヘキシ
ルナフタリンからなる留分11.8部を得た。缶残の
主成分はトリシクロヘキシルナフタリンであつ
た。
The residue was distilled under reduced pressure, followed by unreacted naphthalene, monocyclohexylnaphthalene, 195-205
11.8 parts of a fraction consisting mainly of dicyclohexylnaphthalene was obtained, distilled at a temperature of 0.9 mmHg. The main component of the can residue was tricyclohexylnaphthalene.

ジシクロヘキシルナフタリンの留分は2,6−
体が主成分で、他に2,7体と1,3体と推定さ
れる異性体を含有していたが、n−ヘキサンで再
結晶することにより、純度95%以上の2,6−ジ
シクロヘキシルナフタリン3部が得られた。
Dicyclohexylnaphthalene fraction is 2,6-
The main component was 2,6-dicyclohexyl and other isomers estimated to be 2,7 and 1,3 isomers, but by recrystallizing with n-hexane, 2,6-dicyclohexyl with a purity of over 95% was obtained. 3 parts of naphthalene were obtained.

かくして得た2,6−ジシクロヘキシルナフタ
リン2.5部を臭化コバルト・六水塩0.27部、酢酸
コバルト・四水塩0.13部、酢酸マンガン・四水塩
0.33部、酢酸100部とともに、空気20気圧の加圧
下で130℃に5時間加熱した。
2.5 parts of 2,6-dicyclohexylnaphthalene thus obtained were mixed with 0.27 parts of cobalt bromide hexahydrate, 0.13 parts of cobalt acetate tetrahydrate, and manganese acetate tetrahydrate.
0.33 parts of acetic acid and 100 parts of acetic acid were heated at 130° C. for 5 hours under a pressure of 20 atmospheres of air.

反応液をロ過して得たケークを酢酸で洗浄し、
粉末状固体1部を得た。このIRスペクトルは2,
6−ナフタリンジカルボン酸に一致した。
The cake obtained by filtering the reaction solution was washed with acetic acid,
One part of powdered solid was obtained. This IR spectrum is 2,
It was consistent with 6-naphthalene dicarboxylic acid.

またメタノールでエステル化すると、IRスペ
クトル、NMRスペクトル、ガスクロ保持時間が
2,6−ナフタリンジカルボン酸ジメチルエステ
ルに一致する生成物が得られた。
Further, when esterified with methanol, a product was obtained whose IR spectrum, NMR spectrum, and gas chromatography retention time corresponded to 2,6-naphthalene dicarboxylic acid dimethyl ester.

Claims (1)

【特許請求の範囲】[Claims] 1 ジシクロヘキシルナフタリンを酸化すること
を特徴とするナフタリンジカルボン酸の製造法。
1. A method for producing naphthalene dicarboxylic acid, which comprises oxidizing dicyclohexylnaphthalene.
JP8570581A 1981-06-05 1981-06-05 Preparation of naphthalenedicarboxylic acid Granted JPS57203032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8570581A JPS57203032A (en) 1981-06-05 1981-06-05 Preparation of naphthalenedicarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8570581A JPS57203032A (en) 1981-06-05 1981-06-05 Preparation of naphthalenedicarboxylic acid

Publications (2)

Publication Number Publication Date
JPS57203032A JPS57203032A (en) 1982-12-13
JPS6412257B2 true JPS6412257B2 (en) 1989-02-28

Family

ID=13866232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8570581A Granted JPS57203032A (en) 1981-06-05 1981-06-05 Preparation of naphthalenedicarboxylic acid

Country Status (1)

Country Link
JP (1) JPS57203032A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668133A (en) * 1985-10-01 1987-05-26 Westinghouse Electric Corp. Boring bar assembly
JPS63122645A (en) * 1986-11-11 1988-05-26 Kureha Chem Ind Co Ltd Production of biphenyl-4,4'-dicarboxylic acid

Also Published As

Publication number Publication date
JPS57203032A (en) 1982-12-13

Similar Documents

Publication Publication Date Title
US5292934A (en) Method for preparing aromatic carboxylic acids
EP1091922A1 (en) Method of purifying aromatic dicarboxylic acids
US6642407B2 (en) Production, purification and polymerization of aromatic dicarboxylic acids
JP2808185B2 (en) Purification method of crude dimethylnaphthalene dicarboxylate
US4970338A (en) Preparation process of biphenyl-4,4'-dicarboxylic acid
CA2141789C (en) Process for preparing phenylterephthalic acid
US3038940A (en) Process for preparation of aromatic ketones
JP2008534577A (en) Method for producing p-toluic acid by liquid phase oxidation of p-xylene in water
JPS6412257B2 (en)
US5334754A (en) Process for preparing 2,5-diphenylterephthalic acid by oxidation
JPS6168444A (en) Production of 2,6-naphthalenedicarboxylic acid
US4214100A (en) Process for preventing blackening of phthalic acid
JP2738093B2 (en) Method for producing tertiary butylbenzaldehyde isomer mixture
GB2155921A (en) Process for producing 4-alkyl-4'-formylbiphenyl
JPS6137753A (en) Method of oxidizing cinnamic aldehyde
JPH043370B2 (en)
EP0041778B2 (en) Oxidation of meta- or para-xylene to iso- or tere-phthalic acid
JP2729294B2 (en) Method for producing 4'-isopropylbiphenyl-4-carboxylic acid
JP3264733B2 (en) Method for producing 4-biphenylcarboxylic acid
JPH082836B2 (en) Process for producing 2,6-naphthalenedicarboxylic acid
JPH0753457A (en) Continuous production of naphthalenedcarboxylic acid
JPH05163206A (en) Production of naphthalenedicarboxylic acid diester
JPH0232041A (en) Production of 4,4'-biphenyldicarboxylic acid
JPS623139B2 (en)
JPH04266846A (en) Production of 2,6-naphthalenedicarboxylic acid