JPS6412056B2 - - Google Patents

Info

Publication number
JPS6412056B2
JPS6412056B2 JP7550379A JP7550379A JPS6412056B2 JP S6412056 B2 JPS6412056 B2 JP S6412056B2 JP 7550379 A JP7550379 A JP 7550379A JP 7550379 A JP7550379 A JP 7550379A JP S6412056 B2 JPS6412056 B2 JP S6412056B2
Authority
JP
Japan
Prior art keywords
relay
power supply
capacitor
switching element
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7550379A
Other languages
Japanese (ja)
Other versions
JPS55166828A (en
Inventor
Mikio Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP7550379A priority Critical patent/JPS55166828A/en
Publication of JPS55166828A publication Critical patent/JPS55166828A/en
Publication of JPS6412056B2 publication Critical patent/JPS6412056B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Relay Circuits (AREA)

Description

【発明の詳細な説明】 この発明は消費電力の少ないリレー駆動回路の
改良に関する。特に防犯警報器の出力リレーの駆
動回路の改良に関する。従来より低消費電力のリ
レー駆動回路として第1図に示す如きものが知ら
れている。即ち、磁気保持型リレーRyのコイル
とコンデンサーCの直列回路にスイツチS1を閉鎖
して電圧Eを印加したときに流れるコンデンサー
Cの充電々流i1で前記磁気保持型リレーRyを反
転動作させ、スイツチS2を閉鎖したとき流れるコ
ンデンサーCに充電されていた電荷の放電々流i2
により前記磁気保持型リレーRyを反転復旧させ
る回路である。このコンデンサCの充電々流i1
放電々流i2は第2図に示す如く最初に大きな電流
がながれ時間の経過とともに減少するが前記磁気
保持型リレーRyの感動電流i0以上の電流となる
ように設定しておけば、磁気保持型リレーである
ため一旦反転すればその後電流が零となつても保
持しつづけるのでリレーを反転させるに必要な電
力消費だけで充分であるため極めて低消費電力の
回路である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a relay drive circuit that consumes less power. In particular, the present invention relates to improvements in drive circuits for output relays in burglar alarms. 2. Description of the Related Art Conventionally, a relay drive circuit as shown in FIG. 1 has been known as a low power consumption relay drive circuit. That is, when the switch S1 is closed and the voltage E is applied to the series circuit of the coil of the magnetically holding type relay Ry and the capacitor C, the charging current i1 of the capacitor C flows, and the magnetically holding type relay Ry is reversely operated. , when the switch S 2 is closed, the discharge current of the electric charge stored in the capacitor C flows i 2
This is a circuit for inverting and restoring the magnetic holding type relay Ry. The charging current i 1 of this capacitor C,
As shown in Fig. 2, the discharge current i2 initially flows as a large current and decreases as time passes, but if it is set so that the current is greater than the magnetic current i0 of the magnetic retention type relay Ry, the magnetic Since it is a holding type relay, once it is reversed, it continues to be held even if the current becomes zero, so the power consumption required to reverse the relay is sufficient, making it an extremely low power consumption circuit.

ところが防犯警報器などは極めて低い電圧例え
ばDC5Vとか3Vで回路を駆動し、しかも多くの
複雑な回路が存在するので、電源接続時には第3
図に示す如きカーブで電源電圧が回路に印加され
ることとなり、このようにゆるやかに電源電圧が
印加される場合コンデンサーCの充電々流は第3
図i1′の如きカーブとなり、前記磁気保持型リレー
Ryの感動電流i0を越えない場合があり、磁気保
持型リレーRyが不動作だと防犯警報器の出力リ
レーとしては警報状態となり、防犯警報器の取付
セツト時出力リレーの状態が逆となり誤報状態と
なる。またバツテリー電源の場合長期間使用して
いてバツテリーが徐々に放電して電源電圧Eが低
下しコンデンサーCに蓄積されている電荷が減少
し、警報入力によつてスイツチS2が投入されても
放電々流i2が磁気保持型リレーRyを反転復旧さ
せるに足る値まで達しない恐れがあり警報状態に
もかかわらず正常な警戒状態を維持しつづけるな
どの問題があつた。また制御入力も徐々に変化す
る場合があり第1図のS1がトランジスターであつ
て制御入力をこのトランジスターのベースに接続
しているような場合、前述の場合と同様にコンデ
ンサーCの充電々流が第8図i1′に示す如きカーブ
になる場合がある。
However, security alarms and the like use extremely low voltages such as 5V or 3V DC to drive their circuits, and there are many complex circuits, so when connecting the power supply, the circuit is driven by a third voltage.
The power supply voltage will be applied to the circuit according to the curve shown in the figure, and when the power supply voltage is applied gradually in this way, the charging current of the capacitor C will be the third
The curve as shown in Figure i 1 ′ is obtained, and the above-mentioned magnetic retention type relay
Ry's emotional current i may not exceed 0 , and if the magnetic retention type relay Ry is not activated, the output relay of the burglar alarm will be in an alarm state, and when the burglar alarm is set to be installed, the state of the output relay will be reversed, causing a false alarm. state. In addition, in the case of a battery power supply, if the battery is used for a long period of time, the battery gradually discharges, the power supply voltage E decreases, and the charge accumulated in the capacitor C decreases, and even if switch S 2 is turned on by an alarm input, the battery will gradually discharge. There was a problem that there was a risk that the current i2 would not reach a value sufficient to reverse the magnetic retention type relay Ry, and that the normal alarm state would continue to be maintained despite the alarm state. In addition, the control input may also change gradually, and if S1 in Figure 1 is a transistor and the control input is connected to the base of this transistor, the charging current of the capacitor C will change as in the previous case. may form a curve as shown in FIG. 8 i 1 '.

この発明は上記する欠点を改善するためになさ
れたものであつて特定発明を、磁気保持型リレー
のコイルに直列にコンデンサーを接続し、この直
列回路に電圧を印加したときに流れるコンデンサ
ーの充電電流により前記磁気保持型リレーを反転
動作させ、前記コンデンサーの充電電荷を放電す
るとき流れる放電電流により前記磁気保持型リレ
ーを反転復旧させるリレー駆動回路において、電
源電圧が所定の値以上かどうかを検出する電圧検
出手段と、前記電源電圧が所定値以下であればリ
レー駆動用スイツチング素子を不導通状態とし、
前記電源電圧が所定値以上になれば前記リレー駆
動用スイツチング素子を導通状態とし、前記電源
電圧が所定値以上から所定値以下に変化したとき
前記リレー駆動用スイツチング素子を不導通状態
に反転するように前記電源電圧を前記磁気保持型
リレーのコイルとコンデンサーの直列回路に接続
するシユミツト回路の如き速入速断回路と、前記
リレー駆動用スイツチング素子が導通状態から不
導通状態に反転したとき前記コンデンサーに充電
された電荷を放電するスイツチング素子とを含む
ことを特徴とするリレー駆動回路とし、併合発明
を磁気保持型リレーのコイルに直列にコンデンサ
ーを接続し、この直列回路に電圧を印加したとき
に流れるコンデンサーの充電電流により前記磁気
保持型リレーを反転動作させ、前記コンデンサー
の充電電荷を放電するとき流れる放電電流により
前記磁気保持型リレーを反転復旧させるリレー駆
動回路において、電源電圧が所定の値以上かどう
かを検出する電圧検出手段と、他の制御入力によ
り前記電圧検出手段を電源に接続するスイツチン
グ素子と、前記電源電圧が所定値以下であればリ
レー駆動用スイツチング素子を不導通状態とし、
前記電源電圧が所定値以上になれば前記リレー駆
動用スイツチング素子を導通状態とし、前記電源
電圧が所定値以上から所定値以下に変化したとき
前記リレー駆動用スイツチング素子を不導通状態
に反転するように前記電源電圧を前記磁気保持型
リレーのコイルとコンデンサーの直列回路に接続
するシユミツト回路の如き速入速断回路と、前記
リレー駆動用スイツチング素子が導通状態から不
導通状態に反転したとき前記コンデンサーに充電
された電荷を放電するスイツチング素子とを含む
ことを特徴とするリレー駆動回路としたものであ
り、特定発明は電源電圧がゆるやかに変化する場
合の欠点を改善する回路を提供するものであり、
併合発明は制御入力のゆるやかな変化の場合の欠
点を改善する回路を提供するものである。
This invention has been made to improve the above-mentioned drawbacks, and the specific invention is based on a capacitor that is connected in series to the coil of a magnetically held relay, and a charging current of the capacitor that flows when a voltage is applied to this series circuit. In the relay drive circuit, the magnetic retention type relay is operated in a reverse operation, and the magnetic retention type relay is reversed and restored by a discharge current that flows when the charged charge of the capacitor is discharged. a voltage detection means, and a switching element for driving the relay is brought into a non-conducting state if the power supply voltage is below a predetermined value;
When the power supply voltage becomes a predetermined value or more, the relay driving switching element is brought into a conductive state, and when the power supply voltage changes from a predetermined value or more to a predetermined value or less, the relay driving switching element is reversed to a non-conductive state. A quick-on, quick-break circuit such as a Schmidt circuit connects the power supply voltage to a series circuit of a coil and a capacitor of the magnetically held relay, and a fast-on fast-break circuit such as a Schmidt circuit that connects the power supply voltage to a series circuit of a coil and a capacitor of the magnetically held relay, and a fast-on fast-break circuit such as a Schmidt circuit that connects the power supply voltage to the series circuit of the coil and capacitor of the magnetically held relay, and a A relay driving circuit is characterized in that it includes a switching element that discharges a charged electric charge, and the combined invention is a relay driving circuit characterized in that a capacitor is connected in series to the coil of a magnetic holding type relay, and a voltage flows when a voltage is applied to this series circuit. In the relay drive circuit, the magnetic retention type relay is reversed by a charging current of a capacitor, and the magnetic retention type relay is reversed and restored by a discharge current flowing when the charge charged in the capacitor is discharged, and the power supply voltage is equal to or higher than a predetermined value. a switching element that connects the voltage detecting means to a power source according to another control input; and a switching element for driving the relay that is rendered non-conductive if the power source voltage is below a predetermined value;
When the power supply voltage becomes a predetermined value or more, the relay driving switching element is brought into a conductive state, and when the power supply voltage changes from a predetermined value or more to a predetermined value or less, the relay driving switching element is reversed to a non-conductive state. A quick-on, quick-break circuit such as a Schmidt circuit connects the power supply voltage to a series circuit of a coil and a capacitor of the magnetically held relay, and a fast-on fast-break circuit such as a Schmidt circuit that connects the power supply voltage to a series circuit of a coil and a capacitor of the magnetically held relay, and a fast-on fast-break circuit such as a Schmidt circuit that connects the power supply voltage to the series circuit of the coil and capacitor of the magnetically held relay, and a A relay drive circuit is characterized in that it includes a switching element that discharges a charged electric charge, and the specific invention provides a circuit that improves the drawbacks when the power supply voltage changes slowly,
The combined invention provides a circuit that ameliorates the disadvantages of slow changes in control inputs.

以下本発明、リレー駆動回路の実施例にしたが
い詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below according to embodiments of a relay drive circuit.

第4図において1は抵抗R1とツエナーダイオ
ード2との直列回路で構成される電圧検出手段で
ある。このツエナーダイオード2のツエナー電圧
VZは電源電圧E1の値が所定の電圧、言い換えれ
ば磁気保持型リレー3の感動電流i0を与えるに充
分な値に設定する。トランジスターTr1は前記電
圧検出手段1を構成する抵抗R1とツエナーダイ
オード2の直列回路と直列に接続されベースに入
力される制御入力Siによつて前記抵抗R1とツエ
ナーダイオード2の直列回路を電源に接続するス
イツチング素子である。4はシユミツト回路であ
つてトランジスタTr2とTr3と抵抗R2,R3,R5
構成される。このシユミツト回路4はトランジス
タTr2のベースを前記抵抗R1とツエナーダイオー
ド2の接続点aに接続することにより入力が得ら
れ、出力はトランジスターTr3のコレクターから
リレー駆動用スイツチング素子であるトランジス
ターTr4のベースに接続することにより出され
る。リレー駆動用スイツチング素子であるトラン
ジスターTr4のエミツターは電源電圧の(正)側
に、コレクターはコンデンサーC2と磁気保持型
リレー3のコイル5の直列回路6に接続しこの直
列回路6の他端を電源電圧の(負)側に接続す
る。Tr5は前記直列回路6のコンデンサーC2に蓄
積された電荷を放電させるために前記直列回路6
と並列に接続されたスイツチング素子で前記リレ
ー駆動用スイツチング素子Tr4が不導通状態のと
き導通する。抵抗R6はトランジスターTr5のベー
ス電流のための回路を形成し、ダイオードDはト
ランジスターTr5のエミツターの電位をベース電
位よりダイオードDの電圧降下分だけ低くするこ
とによつてトランジスターTr4が導通状態のとき
トランジスターTr5を不導通状態にさせる役目を
もつ。
In FIG. 4, reference numeral 1 denotes a voltage detection means constituted by a series circuit of a resistor R1 and a Zener diode 2. Zener voltage of this Zener diode 2
V Z is set to a value sufficient to make the value of the power supply voltage E 1 a predetermined voltage, in other words, to give the impressed current i 0 of the magnetically held relay 3 . The transistor Tr 1 is connected in series with the series circuit of the resistor R 1 and the Zener diode 2 constituting the voltage detection means 1, and the series circuit of the resistor R 1 and the Zener diode 2 is connected by the control input Si input to the base. This is a switching element connected to a power source. Reference numeral 4 denotes a Schmitt circuit consisting of transistors Tr 2 and Tr 3 and resistors R 2 , R 3 and R 5 . The input of this Schmitt circuit 4 is obtained by connecting the base of the transistor Tr 2 to the connection point a between the resistor R 1 and the Zener diode 2, and the output is obtained from the collector of the transistor Tr 3 to the transistor Tr, which is a switching element for driving a relay. It is issued by connecting to the base of 4 . The emitter of the transistor Tr 4 , which is a switching element for driving the relay, is connected to the (positive) side of the power supply voltage, and the collector is connected to the series circuit 6 of the capacitor C 2 and the coil 5 of the magnetic retention type relay 3, and the other end of this series circuit 6 Connect to the (negative) side of the power supply voltage. Tr 5 connects the series circuit 6 to discharge the charge accumulated in the capacitor C 2 of the series circuit 6.
A switching element connected in parallel with the relay driving switching element Tr4 becomes conductive when the relay driving switching element Tr4 is in a non-conductive state. The resistor R 6 forms a circuit for the base current of the transistor Tr 5 , and the diode D makes the transistor Tr 4 conductive by lowering the emitter potential of the transistor Tr 5 below the base potential by the voltage drop of the diode D. It has the role of making the transistor Tr 5 non-conductive when it is in the state.

而して電源電圧E1がツエナーダイオード2の
ツエナー電圧VZより低いときはツエナーダイオ
ード2は不導通状態でトランジスターTr2のベー
ス電流i2が流れトランジスターTr2が導通状態と
なりトランジスターTr3,Tr4ともに不導通状態
となり磁気保持型リレー3のコイル5とコンデン
サーC2の直列回路に電圧は印加されない。電源
電圧E1がツエナー電圧VZを越えるとツエナーダ
イオード2が導通状態となり、シユミツト回路4
の入力電圧である抵抗R1とツエナーダイオード
2の接続点aの電位はVZでトランジスターTr2
導通状態となる。
Therefore, when the power supply voltage E 1 is lower than the Zener voltage V Z of the Zener diode 2, the Zener diode 2 is in a non-conducting state, and the base current i 2 of the transistor Tr 2 flows, and the transistor Tr 2 is in a conducting state, and the transistors Tr 3 and Tr are in a non-conducting state. 4 are in a non-conducting state, and no voltage is applied to the series circuit of the coil 5 of the magnetic retention type relay 3 and the capacitor C2 . When the power supply voltage E1 exceeds the Zener voltage VZ , the Zener diode 2 becomes conductive, and the Schmitt circuit 4
The potential at the connection point a between the resistor R 1 and the Zener diode 2, which is the input voltage, is VZ , and the transistor Tr 2 becomes conductive.

トランジスターTr2が導通状態になるとトラン
ジスターTr3のベース電位はますます低くなりト
ランジスターTr2の導通度は深くなる。
When the transistor Tr 2 becomes conductive, the base potential of the transistor Tr 3 becomes lower and lower, and the degree of conduction of the transistor Tr 2 becomes deeper.

さらに電源電圧E1が徐々に上昇するので電流i3
(i3=i2+i4)も増加し、VZ<VE+VBE1(VE=i3×
R5,VBE1:トランジスターTr2のベースエミツタ
ー間電圧)となりベース電流i2が流れなくなりト
ランジスターTr2が不導通状態となりトランジス
ターTr3のベース電流i9が流れはじめトランジス
ターTr3が導通し、したがつてリレー駆動用スイ
ツチング素子であるトランジスターTr4も導通状
態となり、磁気保持型リレー3のコイル5とコン
デンサーC2の直列回路6に電圧が印加されコン
デンサーC2の充電々流i5が流れる。この充電々流
i5は電源電圧E1が充分高いので、磁気保持型リレ
ー3の感動電流i0を越え、磁気保持型リレー3は
反転動作する。
Furthermore, as the power supply voltage E 1 gradually increases, the current i 3
(i 3 = i 2 + i 4 ) also increases, and V Z <V E +V BE1 (V E = i 3 ×
R 5 , V BE1 : Base-emitter voltage of transistor Tr 2 ), the base current i 2 stops flowing, transistor Tr 2 becomes non-conductive, and the base current i 9 of transistor Tr 3 starts flowing, transistor Tr 3 becomes conductive. Therefore, the transistor Tr 4 , which is a switching element for driving the relay, also becomes conductive, and a voltage is applied to the series circuit 6 of the coil 5 of the magnetic retention type relay 3 and the capacitor C 2 , and a charging current i 5 of the capacitor C 2 flows. . This charging flow
Since the power supply voltage E 1 of i 5 is sufficiently high, it exceeds the impressed current i 0 of the magnetically held relay 3, and the magnetically held relay 3 operates in reverse.

次いで電源電圧E1が徐々に減少して、ツエナ
ー電圧VZ以下になるとツエナーダイオード2が
不導通状態となり、トランジスターTr2のベース
電流i2が流れ、トランジスターTr2が導通状態と
なりトランジスターTr3は不導通状態となる。ツ
エナーダイオード2が不導通状態であるためa点
の電位は高く、トランジスターTr2がこの状態で
不導通になることはない。したがつてトランジス
ターTr4も不導通となり、トランジスターTr5
ベース電位が低くなり、トランジスターのベース
電流i6が流れ導通状態となりコンデンサーC2の電
荷は放電々流i7として放電される。したがつて磁
気保持型リレー3のコイル5には逆方向の電流が
流れることとなり反転復旧する。したがつて電源
電圧E1が異常に低下しツエナー電圧以下になろ
うとすると磁気保持型リレー3が復旧反転し異常
状態表示側となり、未然にトラブルを解消する。
Next, when the power supply voltage E 1 gradually decreases and becomes less than the Zener voltage V Z , the Zener diode 2 becomes non-conductive, the base current i 2 of the transistor Tr 2 flows, the transistor Tr 2 becomes conductive, and the transistor Tr 3 becomes non-conductive. It becomes a non-conducting state. Since the Zener diode 2 is in a non-conducting state, the potential at point a is high, and the transistor Tr 2 does not become non-conducting in this state. Therefore, the transistor Tr 4 also becomes non-conductive, the base potential of the transistor Tr 5 becomes low, the base current i 6 of the transistor flows, and the transistor becomes conductive, and the charge in the capacitor C 2 is discharged as a discharge current i 7 . Therefore, a current in the opposite direction flows through the coil 5 of the magnetic retention type relay 3, and the state is reversed and restored. Therefore, when the power supply voltage E1 abnormally decreases and becomes lower than the Zener voltage, the magnetic holding type relay 3 recovers and reverses to become the abnormal state display side, thereby eliminating the trouble before it occurs.

上記する内容を図示すると第5図に示す如くに
なる。
The above contents are illustrated in FIG. 5.

第6図は他の実施例を示す。第4図の実施例と
異なるところは、第4図におけるシユミツト回路
4をヒステリシス特性をもたせたコンパレーター
に置き代えたものである。この回路において、コ
ンパレーター7の(+)入力が(−)入力より高
いときはコンパレーター7の出力はハイレベルH
であつてトランジスタTr2′は不導通状態であり、
コンパレーターの(+)入力が(−)入力より低
くなると出力はローレベルLとなりトランジスタ
ーTr2′が導通し、C点の電位が上昇し、抵抗
R6′を介してコンパレーター7の(−)入力にフ
イードバツクされるため、(−)入力はますます
高い電圧となりコンパレーター7の反転はヒステ
リシス特性を有し速入速断特性を具備している。
FIG. 6 shows another embodiment. The difference from the embodiment shown in FIG. 4 is that the Schmitt circuit 4 in FIG. 4 is replaced with a comparator having hysteresis characteristics. In this circuit, when the (+) input of comparator 7 is higher than the (-) input, the output of comparator 7 is at a high level H.
and the transistor Tr 2 ' is in a non-conducting state,
When the (+) input of the comparator becomes lower than the (-) input, the output becomes low level L, transistor Tr 2 ' becomes conductive, the potential at point C rises, and the resistance
Since it is fed back to the (-) input of comparator 7 via R 6 ', the voltage at the (-) input becomes higher and higher, and the inversion of comparator 7 has hysteresis characteristics and has fast-on and fast-off characteristics. .

第4図および第5図の今までの説明においては
例えば防犯センサー或いは温度も照度検出用セン
サーの出力から導いた制御入力Siが存在し、電圧
検出手段を電源に接続するスイツチング素子Tr1
が導通状態である場合における説明であつたが、
制御入力Siが存在しないときは、当然ツエナーダ
イオード2が不導通状態であり、トランジスター
Tr2が導通状態を維持し、したがつてトランジス
ターTr4は不導通を維持する。
In the explanations of FIGS. 4 and 5 so far, there is a control input Si derived from the output of a security sensor or a sensor for detecting temperature and illumination, for example, and a switching element Tr 1 that connects the voltage detection means to the power source.
The explanation was for the case where is in a conductive state, but
Naturally, when the control input Si is not present, the Zener diode 2 is in a non-conducting state, and the transistor
Tr 2 remains conductive and therefore transistor Tr 4 remains non-conductive.

ここで制御入力Siがじよじよに増加した場合、
例えば温度検出用センサーの出力を制御入力Siと
するような場合には、温度がじよじよに変化する
ので制御入力Siがじよじよに変化する。このよう
に制御入力Siがじよじよに変化するような場合で
あつても、ツエナーダイオードおよびシユミツト
回路のごとき速入速断回路を具備しているため、
リレー駆動用スイツチング素子のオン、オフは極
めてすみやかに行なわれるので第3図に記載する
如き充電々流、放電々流となることはない。
If the control input Si gradually increases here,
For example, when the output of a temperature detection sensor is used as the control input Si, the temperature gradually changes, so the control input Si gradually changes. Even in cases where the control input Si gradually changes like this, it is equipped with quick-on, quick-break circuits such as Zener diodes and Schmitt circuits.
Since the switching element for driving the relay is turned on and off extremely quickly, there is no possibility of a constant charging current or a constant discharging current as shown in FIG.

上記するごとく本発明によれば特定発明として
磁気保持型リレーのコイルに直列にコンデンサー
を接続し、この直列回路に電圧を印加したときに
流れるコンデンサーの充電電流により前記磁気保
持型リレーを反転動作させ、前記コンデンサーの
充電電荷を放電するとき流れる放電電流により前
記磁気保持型リレーを反転復旧させるリレー駆動
回路において、電源電圧が所定の値以上かどうか
を検出する電圧検出手段と、前記電源電圧が所定
値以下であればリレー駆動用スイツチング素子を
不導通状態とし、前記電源電圧が所定値以上にな
れば前記リレー駆動用スイツチング素子を導通状
態とし、前記電源電圧が所定値以上から所定値以
下に変化したとき前記リレー駆動用スイツチング
素子を不導通状態に反転するように前記電源電圧
を前記磁気保持型リレーのコイルとコンデンサー
の直列回路に接続するシユミツト回路の如き速入
速断回路と、前記リレー駆動用スイツチング素子
が導通状態から不導通状態に反転したとき前記コ
ンデンサーに充電された電荷を放電するスイツチ
ング素子とを含むことを特徴とするリレー駆動回
路としたので、低消費電力のリレー駆動回路が得
られるとともに、電源電圧E1のゆるやかな変化
が存在しても磁気保持型リレーが反転するような
恐れがなくなり、特に防犯警報器の出力リレーの
駆動回路として使用するような場合、電源電圧の
接続時やバツテリー電圧の低下時に不都合を生じ
ないとともに、併合発明として、磁気保持型リレ
ーのコイルに直列にコンデンサーを接続し、この
直列回路に電圧を印加したときに流れるコンデン
サーの充電電流により前記磁気保持型リレーを反
転動作させ、前記コンデンサーの充電電荷を放電
するとき流れる放電電流により前記磁気保持型リ
レーを反転復旧させるリレー駆動回路において、
電源電圧が所定の値以上かどうかを検出する電圧
検出手段と、他の制御入力により前記電圧検出手
段を電源に接続するスイツチング素子と、前記電
源電圧が所定値以下であればリレー駆動用スイツ
チング素子を不導通状態とし、前記電源電圧が所
定値以上になれば前記リレー駆動用スイツチング
素子を導通状態とし、前記電源電圧が所定値以上
から所定値以下に変化したとき前記リレー駆動用
スイツチング素子を不導通状態に反転するように
前記電源電圧を前記磁気保持型リレーのコイルと
コンデンサーの直列回路に接続するシユミツト回
路の如き速入速断回路と、前記リレー駆動用スイ
ツチング素子が導通状態から不導通状態に反転し
たとき前記コンデンサーに充電された電荷を放電
するスイツチング素子とを含むことを特徴とする
リレー駆動回路としたので制御入力のゆるやかな
変化する場合にも磁気保持型リレーが反転しない
というような恐れがなくなり極めて有効である。
As described above, according to the present invention, as a specific invention, a capacitor is connected in series to the coil of a magnetic retention type relay, and the magnetic retention type relay is operated in reverse by the charging current of the capacitor that flows when a voltage is applied to this series circuit. , a relay drive circuit for inverting and restoring the magnetic retention type relay by a discharge current flowing when discharging the charge of the capacitor, comprising a voltage detection means for detecting whether the power supply voltage is equal to or higher than a predetermined value; If the power supply voltage is less than the predetermined value, the relay drive switching element is rendered non-conductive; if the power supply voltage is equal to or higher than a predetermined value, the relay drive switching element is rendered conductive, and the power supply voltage changes from a predetermined value or more to a predetermined value or less. a quick-on, quick-break circuit such as a Schmitt circuit that connects the power supply voltage to a series circuit of a coil and a capacitor of the magnetic retention type relay so as to reverse the switching element for driving the relay to a non-conducting state when the switching element for driving the relay is turned off; Since the relay drive circuit is characterized in that it includes a switching element that discharges the electric charge charged in the capacitor when the switching element is reversed from a conductive state to a non-conductive state, a relay drive circuit with low power consumption can be obtained. At the same time, there is no fear that the magnetic retention type relay will reverse even if there is a gradual change in the power supply voltage E1, and it will not be difficult to connect the power supply voltage or In addition to not causing any inconvenience when the battery voltage decreases, as a combined invention, a capacitor is connected in series to the coil of a magnetically holding type relay, and when a voltage is applied to this series circuit, a charging current of the capacitor flows to charge the magnetically holding type relay. In a relay drive circuit that reverses and restores the magnetic retention type relay by a discharge current that flows when discharging the charge in the capacitor,
A voltage detection means for detecting whether the power supply voltage is above a predetermined value, a switching element for connecting the voltage detection means to the power supply by another control input, and a switching element for driving the relay if the power supply voltage is below the predetermined value. is rendered non-conductive, the relay driving switching element is rendered conductive when the power supply voltage becomes a predetermined value or more, and the relay driving switching element is rendered conductive when the power supply voltage changes from a predetermined value or more to a predetermined value or less. A quick-on, quick-break circuit such as a Schmidt circuit that connects the power supply voltage to a series circuit of a coil and a capacitor of the magnetically held relay so as to reverse the state to a conductive state, and a switching element for driving the relay to change from a conductive state to a non-conductive state. Since the relay drive circuit is characterized by including a switching element that discharges the electric charge charged in the capacitor when reversed, there is no fear that the magnetically held relay will not reverse even if the control input changes slowly. It is extremely effective.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明リレーの駆動回路を説明する図で
あつて、第1図は従来のリレー駆動回路図、第2
図は第1図における充電々流i1の波型図、第3図
は電源電圧がゆるやかに変化した場合の充電々流
i1′の電流波型図を示す。第4図は本発明の第一実
施例を示す回路図、第5図は第4図の実施例の電
圧波型図、第6図は第二実施例図を示す。 1:電圧検出手段、2:ツエナーダイオード、
4:シユミツト回路、5:磁気保持型リレー3の
コイルを示す。
The drawings are diagrams for explaining the drive circuit of the relay of the present invention, and FIG. 1 is a conventional relay drive circuit diagram, and FIG.
The figure is a waveform diagram of the charging current i1 in Figure 1 , and Figure 3 is the charging current when the power supply voltage changes slowly.
The current waveform diagram of i 1 ′ is shown. FIG. 4 is a circuit diagram showing a first embodiment of the present invention, FIG. 5 is a voltage waveform diagram of the embodiment of FIG. 4, and FIG. 6 is a diagram of a second embodiment. 1: Voltage detection means, 2: Zener diode,
4: Schmitt circuit, 5: coil of magnetic holding type relay 3.

Claims (1)

【特許請求の範囲】 1 磁気保持型リレーのコイルに直列にコンデン
サーを接続し、この直列回路に電圧を印加したと
きに流れるコンデンサーの充電電流により前記磁
気保持型リレーを反転動作させ、前記コンデンサ
ーの充電電荷を放電するとき流れる放電電流によ
り前記磁気保持型リレーを反転復旧させるリレー
駆動回路において、電源電圧が所定の値以上かど
うかを検出する電圧検出手段と、前記電源電圧が
所定値以下であればリレー駆動用スイツチング素
子を不導通状態とし、前記電源電圧が所定値以上
になれば前記リレー駆動用スイツチング素子を導
通状態とし、前記電源電圧が所定値以上から所定
値以下に変化したとき前記リレー駆動用スイツチ
ング素子を不導通状態に反転するように前記電源
電圧を前記磁気保持型リレーのコイルとコンデン
サーの直列回路に接続するシユミツト回路の如き
速入速断回路と、前記リレー駆動用スイツチング
素子が導通状態から不導通状態に反転したとき前
記コンデンサーに充電された電荷を放電するスイ
ツチング素子とを含むことを特徴とするリレー駆
動回路。 2 磁気保持型リレーのコイルに直列にコンデン
サーを接続し、この直列回路に電圧を印加したと
きに流れるコンデンサーの充電電流により前記磁
気保持型リレーを反転動作させ、前記コンデンサ
ーの充電電荷を放電するとき流れる放電電流によ
り前記磁気保持型リレーを反転復旧させるリレー
駆動回路において、電源電圧が所定の値以上かど
うかを検出する電圧検出手段と、他の制御入力に
より前記電圧検出手段を電源に接続するスイツチ
ング素子と、前記電源電圧が所定値以下であれば
リレー駆動用スイツチング素子を不導通状態と
し、前記電源電圧が所定値以上になれば前記リレ
ー駆動用スイツチング素子を導通状態とし、前記
電源電圧が所定値以上から所定値以下に変化した
とき前記リレー駆動用スイツチング素子を不導通
状態に反転するように前記電源電圧を前記磁気保
持型リレーのコイルとコンデンサーの直列回路に
接続するシユミツト回路の如き速入速断回路と、
前記リレー駆動用スイツチング素子が導通状態か
ら不導通状態に反転したとき前記コンデンサーに
充電された電荷を放電するスイツチング素子とを
含むことを特徴とするリレー駆動回路。
[Claims] 1. A capacitor is connected in series to the coil of a magnetic retention type relay, and when a voltage is applied to this series circuit, the charging current of the capacitor causes the magnetic retention type relay to operate in reverse, and the capacitor is activated. A relay drive circuit that reverses and restores the magnetic retention type relay by a discharge current that flows when discharging a charged charge, comprising a voltage detection means for detecting whether a power supply voltage is above a predetermined value, and a voltage detection means for detecting whether the power supply voltage is below a predetermined value. For example, the switching element for driving the relay is made non-conductive, and when the power supply voltage reaches a predetermined value or more, the switching element for driving the relay is made conductive, and when the power supply voltage changes from a predetermined value or more to a predetermined value or less, the relay A quick-on, quick-break circuit such as a Schmitt circuit that connects the power supply voltage to a series circuit of a coil and a capacitor of the magnetically held relay so as to reverse the driving switching element to a non-conducting state, and the relay driving switching element are brought into conduction. A switching element that discharges the electric charge stored in the capacitor when the state is reversed from a non-conducting state to a non-conducting state. 2. When a capacitor is connected in series to the coil of a magnetic retention type relay, and the charging current of the capacitor that flows when a voltage is applied to this series circuit causes the magnetic retention type relay to operate in reverse, and the charge in the capacitor is discharged. In a relay drive circuit that reverses and restores the magnetic retention type relay by a flowing discharge current, the voltage detection means detects whether the power supply voltage is equal to or higher than a predetermined value, and the switching means connects the voltage detection means to the power supply by another control input. If the power supply voltage is below a predetermined value, the relay driving switching element is brought into a non-conducting state, and if the power supply voltage is above a predetermined value, the relay driving switching element is brought into a conductive state. A quick input circuit such as a Schmitt circuit connects the power supply voltage to a series circuit of a coil and a capacitor of the magnetic holding type relay so as to reverse the relay driving switching element to a non-conducting state when the voltage changes from above a value to below a predetermined value. a fast-acting circuit;
A relay drive circuit comprising: a switching element that discharges the charge stored in the capacitor when the relay drive switching element is reversed from a conductive state to a non-conductive state.
JP7550379A 1979-06-14 1979-06-14 Relay drive circuit Granted JPS55166828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7550379A JPS55166828A (en) 1979-06-14 1979-06-14 Relay drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7550379A JPS55166828A (en) 1979-06-14 1979-06-14 Relay drive circuit

Publications (2)

Publication Number Publication Date
JPS55166828A JPS55166828A (en) 1980-12-26
JPS6412056B2 true JPS6412056B2 (en) 1989-02-28

Family

ID=13578110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7550379A Granted JPS55166828A (en) 1979-06-14 1979-06-14 Relay drive circuit

Country Status (1)

Country Link
JP (1) JPS55166828A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5881847U (en) * 1981-11-27 1983-06-02 富士通株式会社 Single winding type latching relay drive circuit
JPS6049522A (en) * 1983-08-26 1985-03-18 松下電工株式会社 Relay drive circuit for detector
JPS60105128A (en) * 1983-11-09 1985-06-10 オムロン株式会社 Drive circuit of relay

Also Published As

Publication number Publication date
JPS55166828A (en) 1980-12-26

Similar Documents

Publication Publication Date Title
US3281816A (en) Polarity protected booster cable
KR960016052A (en) Control circuit to protect the battery from over discharge
JPS6412056B2 (en)
JPH05262B2 (en)
JPH0433220A (en) Input circuit for contact
JPH0613353U (en) Uninterruptible power system
JPH0729705Y2 (en) Abnormal voltage protection device
JPH0614384Y2 (en) Latching relay drive circuit
JP3019033B2 (en) Power supply circuit for liquid crystal display
JPH06197462A (en) Over-discharge preventive circuit for storage battery
JPH0215709Y2 (en)
KR940000308Y1 (en) Charging circuit of battery
JPS6217875Y2 (en)
KR930005473Y1 (en) Serge current limit circuit
JPH0359450B2 (en)
JP2530320Y2 (en) Clock constant voltage circuit
JPH0313784Y2 (en)
JPH0526539Y2 (en)
JPS607950Y2 (en) Vehicle lamp disconnection detection device
JPH054011Y2 (en)
JPH0533438B2 (en)
JPH0534026Y2 (en)
JPS643080Y2 (en)
JP3009797U (en) Relay driver circuit for speaker noise prevention at power ON / OFF
JPH05322939A (en) Voltage detecting circuit