JPS6411845B2 - - Google Patents

Info

Publication number
JPS6411845B2
JPS6411845B2 JP14127380A JP14127380A JPS6411845B2 JP S6411845 B2 JPS6411845 B2 JP S6411845B2 JP 14127380 A JP14127380 A JP 14127380A JP 14127380 A JP14127380 A JP 14127380A JP S6411845 B2 JPS6411845 B2 JP S6411845B2
Authority
JP
Japan
Prior art keywords
circuit
control
displacement
current
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14127380A
Other languages
Japanese (ja)
Other versions
JPS5765416A (en
Inventor
Hirotsugu Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIKO DENSHI KOGYO KK
Original Assignee
SEIKO DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIKO DENSHI KOGYO KK filed Critical SEIKO DENSHI KOGYO KK
Priority to JP14127380A priority Critical patent/JPS5765416A/en
Publication of JPS5765416A publication Critical patent/JPS5765416A/en
Publication of JPS6411845B2 publication Critical patent/JPS6411845B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Control Of Position Or Direction (AREA)

Description

【発明の詳細な説明】 本発明は、磁気軸受の制御回路に関するもので
ある。磁気軸受の中で、第1図に示すように2個
の永久磁石1,2と、2個の制御コイル3,4
で、回転軸5に固定された2個のヨーク6,7を
吸引して5および6,7を支承するものを考える
時、3,4を巻方向を考慮した上で直列に接続し
て制御する場合と、制御電力を大きくする為に
3,4を並列に駆動して制御する場合があるが、
本発明では、3,4を並列に駆動して制御する場
合である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control circuit for a magnetic bearing. In the magnetic bearing, two permanent magnets 1 and 2 and two control coils 3 and 4 are installed as shown in FIG.
When considering a system that supports two yokes 6 and 7 fixed to the rotating shaft 5 by suction, it is possible to connect yokes 3 and 4 in series and control them by considering the winding direction. In some cases, control is performed by driving 3 and 4 in parallel to increase the control power.
In the present invention, 3 and 4 are driven and controlled in parallel.

制御の方式として、永久磁石と制御コイルを併
用した場合に、被支承体(回転体)の負荷と永久
磁石の吸引力とが平衡した場合には2個の制御コ
イルの制御電流を零にするというVZP方式があ
る。一般的には、VZP方式を用いない方法では
第2図に示すように、変位センサ8の信号を変位
信号処理回路9、位相補償回路10、を経て、一
方は電力増幅回路11で電力増幅し、制御コイル
12に電流を流し、もう一方は位相反転回路13
を経て、電力増幅回路14で電力増幅し、制御コ
イル15に電流を流し、回転体の位置制御する。
As a control method, when permanent magnets and control coils are used together, the control current of the two control coils is reduced to zero when the load on the supported body (rotating body) and the attraction force of the permanent magnet are balanced. There is a VZP method called. Generally, in a method that does not use the VZP method, as shown in FIG. , the current is passed through the control coil 12, and the other side is the phase inversion circuit 13.
After that, the power is amplified by the power amplifier circuit 14, and a current is passed through the control coil 15 to control the position of the rotating body.

従来、VZP方式を用いた磁気軸受の制御回路
は、第3図に示すように、第2図の基本回路に、
加算回路16,17、積分回路18,19、電流
検出回路20,21を付加したものである。動作
を説明する。変位センサ22の変位信号は、変位
信号処理回路23、位相補償回路24を経て、位
相補償された信号の一方は直接16に入り、電力
増幅回路25を経て、制御コイル26に制御電流
を流す。24を経た信号のもう一方は、位相反転
回路27を通つて17、電力増幅回路28を通り
制御コイル29に26とは逆の方向の磁界が発生
するように制御電流を流す。この時回転体の位置
が、永久磁石の吸引力と負荷との平衡点でなけれ
ばさらに26,29に電流を流す。20,21で
電流を検出し、18,19で積分し、16,17
へ正帰還することにより、回転体を平衡点に移動
させ、26,29の電流を零にする。従来使用さ
れてきたVZP方式を用いた磁気軸受の制御回路
では、16,17等の加算回路が必要であり、さ
らに18,19の2個の積分回路が必要でありか
つ互いに定数の調整が必要であるという欠点があ
つた。
Conventionally, the control circuit of a magnetic bearing using the VZP method, as shown in Fig. 3, is based on the basic circuit shown in Fig. 2.
Addition circuits 16 and 17, integration circuits 18 and 19, and current detection circuits 20 and 21 are added. Explain the operation. The displacement signal from the displacement sensor 22 passes through a displacement signal processing circuit 23 and a phase compensation circuit 24, and one of the phase-compensated signals directly enters 16, passes through a power amplifier circuit 25, and causes a control current to flow through a control coil 26. The other signal that has passed through 24 passes through a phase inversion circuit 27 17 and a power amplification circuit 28 to cause a control current to flow in a control coil 29 so that a magnetic field in the direction opposite to that of 26 is generated. At this time, if the position of the rotating body is not at the equilibrium point between the attractive force of the permanent magnet and the load, current is further passed through 26 and 29. Detect the current at 20 and 21, integrate it at 18 and 19, and
By positive feedback to , the rotating body is moved to an equilibrium point, and the currents 26 and 29 are made zero. In the conventional magnetic bearing control circuit using the VZP method, adder circuits such as 16 and 17 are required, and two integration circuits, 18 and 19, are required, and constants must be adjusted for each other. It had the disadvantage of being.

本発明によるVZP方式を用いた磁気軸受の制
御回路を第4図に示す。変位センサ30からの変
位信号は、変位信号処理回路31、位相補償回路
32を経て位相補償され、一方は直接電力増幅回
路33を通り、電力増幅されて制御コイル34に
制御電流を流す。32を経たもう一方は、位相反
転回路35を通り、電力増幅回路36に入り制御
コイル37に34とは逆の磁界を発生させる制御
電流を流す。この時、回転体の位相が永久磁石の
吸引力と負荷との平衡点になければ、さらに3
4,37に制御電流を流し続ける。この制御電流
を検出する電流検出回路38,39によつて検出
された電流成分の信号を正負の方向を考慮して差
動増幅回路40の2つの入力とし、その出力を積
分回路41を通し31へ正帰還させ、回転体を負
荷と永久磁石の吸引力との平衡位置へ移動させ、
34,37の電流を零にする。
FIG. 4 shows a control circuit for a magnetic bearing using the VZP method according to the present invention. A displacement signal from the displacement sensor 30 is phase-compensated through a displacement signal processing circuit 31 and a phase compensation circuit 32, and one directly passes through a power amplification circuit 33 where the power is amplified and a control current flows through the control coil 34. The other one that has passed through 32 passes through a phase inversion circuit 35 and enters a power amplification circuit 36 , causing a control current to flow through a control coil 37 to generate a magnetic field opposite to that of 34 . At this time, if the phase of the rotating body is not at the equilibrium point between the attraction force of the permanent magnet and the load, an additional 3
Control current continues to flow through 4 and 37. The signals of the current components detected by the current detection circuits 38 and 39 that detect this control current are used as two inputs of the differential amplifier circuit 40 considering the positive and negative directions, and the output thereof is passed through the integrating circuit 41 to the 31 positive feedback to move the rotating body to a position where the load and the attraction force of the permanent magnet are balanced,
The currents at 34 and 37 are made zero.

以上述べたように本発明による制御回路によ
り、40を用いて41の出力を31に正帰還すれ
ば、従来の制御回路にあるような16,17が不
要になり、かつ18,19の定数を調整する必要
性がなくなり回路構成が簡単になり、かつ調整箇
所が少くなる。また、41の出力は、変位信号と
同等にみなすことができ、31に正帰還した後、
位相補償されるので、安定な制御を行なえる。な
お、第2図、第3図、第4図の13,27,35
は、15,29,37を流れる電流の向きを考慮
すれば不要になる場合もある。
As described above, by using the control circuit according to the present invention, if the output of 41 is positively fed back to 31 using 40, 16 and 17 as in the conventional control circuit are not needed, and the constants of 18 and 19 can be reduced. The need for adjustment is eliminated, the circuit configuration is simplified, and the number of adjustment points is reduced. In addition, the output of 41 can be regarded as equivalent to a displacement signal, and after positive feedback to 31,
Since the phase is compensated, stable control can be performed. In addition, 13, 27, 35 in Figures 2, 3, and 4
may become unnecessary if the direction of the current flowing through 15, 29, and 37 is considered.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁気軸受の構造の例を示す側断面図、
第2図は、VZP方式を用いない磁気軸受の基本
的な制御回路を示すブロツク図、第3図は従来の
VZP方式を用いた磁気軸受の制御回路を示すブ
ロツク図、第4図は本発明による磁気軸受の制御
回路の一実施例を示すブロツク図である。 1,2……永久磁石、3,4……制御コイル、
5……回転軸、6,7……ヨーク、8……変位セ
ンサ、9……変位信号処理回路、10……位相補
償回路、11……電力増幅回路、12……制御コ
イル、13……位相反転回路、14……電力増幅
回路、15……制御コイル、16,17……加算
回路、18,19……積分回路、20,21……
電流検出回路、22……変位センサ、23……変
位信号処理回路、24……位相補償回路、25…
…電力増幅回路、26……制御コイル、27……
位相反転回路、28……電力増幅回路、29……
制御コイル、30……変位センサ、31……変位
信号処理回路、32……位相補償回路、33……
電力増幅回路、34……制御コイル、35……位
相反転回路、36……電力増幅回路、37……制
御コイル、38,39……電流検出回路、40…
…差動増幅回路、41……積分回路である。
Figure 1 is a side sectional view showing an example of the structure of a magnetic bearing.
Figure 2 is a block diagram showing the basic control circuit of a magnetic bearing that does not use the VZP method, and Figure 3 is a block diagram showing the basic control circuit of a magnetic bearing that does not use the VZP method.
A block diagram showing a control circuit for a magnetic bearing using the VZP method. FIG. 4 is a block diagram showing an embodiment of a control circuit for a magnetic bearing according to the present invention. 1, 2...Permanent magnet, 3, 4...Control coil,
5... Rotating shaft, 6, 7... Yoke, 8... Displacement sensor, 9... Displacement signal processing circuit, 10... Phase compensation circuit, 11... Power amplifier circuit, 12... Control coil, 13... Phase inversion circuit, 14... Power amplifier circuit, 15... Control coil, 16, 17... Addition circuit, 18, 19... Integrating circuit, 20, 21...
Current detection circuit, 22... Displacement sensor, 23... Displacement signal processing circuit, 24... Phase compensation circuit, 25...
...Power amplifier circuit, 26...Control coil, 27...
Phase inversion circuit, 28... Power amplifier circuit, 29...
Control coil, 30... Displacement sensor, 31... Displacement signal processing circuit, 32... Phase compensation circuit, 33...
Power amplifier circuit, 34... Control coil, 35... Phase inversion circuit, 36... Power amplifier circuit, 37... Control coil, 38, 39... Current detection circuit, 40...
...differential amplifier circuit, 41...integrator circuit.

Claims (1)

【特許請求の範囲】 1 回転軸に対し、相対向する方向に作用するよ
う配置された2つの制御コイルと回転軸の変位を
検出する変位センサを備えた磁気軸受の制御回路
において、該制御回路は、 変位センサからの信号を処理する変位信号処理
回路と、その変位信号の位相を補償する位相補償
回路と、位相補償された変位信号の一方は位相反
転回路を通し、もう一方は、そのままでそれぞれ
電力増幅する為の2つの電力増幅回路と、 上記2つの制御コイルがこの各々の増幅回路に
接続され、この2つの制御コイルに流れる電流を
検出する2つの電流検出回路と、この2つの検出
回路で検出した電流成分を入力とする差動増幅回
路と、その差動増幅回路に接続された積分回路に
より成り、それぞれの制御コイルに流れる2つの
電流成分を差動増幅回路により1つの信号にし
て、積分回路を経て変位信号処理回路に帰還する
ことを特徴とする磁気軸受の制御回路。
[Scope of Claims] 1. A control circuit for a magnetic bearing comprising two control coils arranged to act in opposite directions with respect to a rotating shaft and a displacement sensor that detects displacement of the rotating shaft, the control circuit comprising: consists of a displacement signal processing circuit that processes the signal from the displacement sensor, a phase compensation circuit that compensates the phase of the displacement signal, one of the phase compensated displacement signals is passed through the phase inversion circuit, and the other is left as is. Two power amplification circuits for power amplification, the two control coils are connected to each of the amplification circuits, two current detection circuits for detecting the current flowing through these two control coils, and It consists of a differential amplifier circuit that inputs the current component detected by the circuit, and an integrating circuit connected to the differential amplifier circuit.The two current components flowing through each control coil are converted into one signal by the differential amplifier circuit. A control circuit for a magnetic bearing, characterized in that the signal is fed back to a displacement signal processing circuit via an integrating circuit.
JP14127380A 1980-10-09 1980-10-09 Control circuit system for magnetic bearing Granted JPS5765416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14127380A JPS5765416A (en) 1980-10-09 1980-10-09 Control circuit system for magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14127380A JPS5765416A (en) 1980-10-09 1980-10-09 Control circuit system for magnetic bearing

Publications (2)

Publication Number Publication Date
JPS5765416A JPS5765416A (en) 1982-04-21
JPS6411845B2 true JPS6411845B2 (en) 1989-02-27

Family

ID=15288049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14127380A Granted JPS5765416A (en) 1980-10-09 1980-10-09 Control circuit system for magnetic bearing

Country Status (1)

Country Link
JP (1) JPS5765416A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105573349A (en) * 2015-12-15 2016-05-11 华北电力科学研究院有限责任公司 Limiting sensor and limiting device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983829A (en) * 1982-11-02 1984-05-15 Seiko Instr & Electronics Ltd Low-power consumption radial electromagnet for magnetic bearing
FR2606690B1 (en) * 1986-11-13 1994-06-03 Europ Propulsion WORKPIECE SPINDLE WITH MAGNETIC BEARINGS AND IMPLEMENTING DEVICES THEREOF FOR VERY HIGH PRECISION MACHINE TOOLS
US4841184A (en) * 1987-06-23 1989-06-20 Mechanical Technology Incorporated Velocity and imbalance observer control circuit for active magnetic bearing or damper
JP2824459B2 (en) * 1989-04-28 1998-11-11 株式会社フェローテック Magnetic bearing device
US5013987A (en) * 1989-07-18 1991-05-07 Seiko Instruments Inc. Control system for magnetic bearing
JP3143986B2 (en) * 1991-10-14 2001-03-07 株式会社日立製作所 Single shaft multi-stage centrifugal compressor
JP2008256084A (en) * 2007-04-04 2008-10-23 Jtekt Corp Magnetic bearing device and magnetic bearing spindle device
CN106907393A (en) * 2017-03-02 2017-06-30 常州市翰琪电机有限公司 The control method and its device of a kind of intelligent motorized spindle supported with AMB

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105573349A (en) * 2015-12-15 2016-05-11 华北电力科学研究院有限责任公司 Limiting sensor and limiting device

Also Published As

Publication number Publication date
JPS5765416A (en) 1982-04-21

Similar Documents

Publication Publication Date Title
US10619669B2 (en) Magnetic bearing control device and vacuum pump
US4088379A (en) Variable permanent magnet suspension system
JPS6411845B2 (en)
JPH07506655A (en) magnetic bearing regulator
JPH07256503A (en) Spindle apparatus
US3679954A (en) Brushless d.c. motor with rate control of position sensor
US4417772A (en) Method and apparatus for controlling the energization of the electrical coils which control a magnetic bearing
US6437962B1 (en) Electromagnetic actuator with function detecting position of driven member
US5140209A (en) Method of controlling electromagnets in electromagentic bearings
US4658140A (en) Infrared scanner for forward loading infrared device (FLIR)
JPH0127284B2 (en)
JPH0340566B2 (en)
JPH05244790A (en) Control circuit for linear motor
US20070080594A1 (en) Power amplification device and magnetic bearing
JPH09257035A (en) Control device for magnetic bearing
JPH0536649B2 (en)
JPS58137618A (en) Magnetic bearing
JP3478876B2 (en) Excitation controller for magnetic bearing
JPH02201101A (en) Displacement sensor for magnetic bearing
JPS59144395A (en) Load balance control circuit for dc motor
JPS6325917Y2 (en)
JP3036101B2 (en) Magnetic bearing
JP2590578B2 (en) Magnetic detector
JPH07139545A (en) Magnetic bearing device
JP2539791B2 (en) Levitation distance control device for magnetic levitation