JPH07139545A - Magnetic bearing device - Google Patents

Magnetic bearing device

Info

Publication number
JPH07139545A
JPH07139545A JP28492093A JP28492093A JPH07139545A JP H07139545 A JPH07139545 A JP H07139545A JP 28492093 A JP28492093 A JP 28492093A JP 28492093 A JP28492093 A JP 28492093A JP H07139545 A JPH07139545 A JP H07139545A
Authority
JP
Japan
Prior art keywords
magnetic
thrust
diameter side
magnetic bearing
rotary shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28492093A
Other languages
Japanese (ja)
Inventor
Yutaka Hashiba
豊 橋場
Yukihiko Kazao
幸彦 風尾
Norio Takahashi
則雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28492093A priority Critical patent/JPH07139545A/en
Publication of JPH07139545A publication Critical patent/JPH07139545A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably support a rotary shaft without using non-magnetic material for a frame casing and the like by specifying the direction of polarity of the magnetic flux formed by coils on the outer diameter side and the inner diameter side opposed to each other putting a thrust disc between. CONSTITUTION:Displacement of a rotary shaft in the axial direction is with a thrust displacement sensor 27, displacement in the radial direction is with a radial displacement sensor 28 respectively detected, and sent to a control device. In coils 31a on the outer diameter side and coils 31b on the inner diameter side opposed to each other putting a thrust disc 22 between, polarities of the magnetic flux are set mutually in opposite directions, and set in the same direction on the same side. Hence, the magnetic flux formed in the coils 31a, 31b of a magnetic bearing 25 by current from the control device are mutually canceled in the rotary shaft 21, the electromagnet 32 of a radial magnetic bearing 26, a frame casing, and the like, do not flow except magnetic poles 30a, 30b, 30c, and hence even if external force is acted on the rotary shaft 21 to generate large displacement of the shaft, control of the thrust magnetic bearing 25 is not dissipated and the rotary shaft 21 can be stably supported.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回転軸をスラスト磁気
軸受とラジアル磁気軸受とで非接触支持する能動型の磁
気軸受装置に係り、特に、回転軸にスラスト方向の外力
が作用した場合の支持の安定化を図った磁気軸受装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active magnetic bearing device for supporting a rotary shaft in a non-contact manner by a thrust magnetic bearing and a radial magnetic bearing, and particularly, when an external force in the thrust direction acts on the rotary shaft. The present invention relates to a magnetic bearing device that stabilizes the support.

【0002】[0002]

【従来の技術】スラスト磁気軸受と1つのラジアル磁気
軸受の組み合せによる従来の磁気軸受装置の構成例を図
5〜図8によって説明する。図5は磁気軸受装置の軸方
向断面図、図6は図5のA−A線断面図、図7および図
8は各状態でのスラスト電磁石の磁束の流れを説明する
軸方向部分断面図である。
2. Description of the Related Art An example of the construction of a conventional magnetic bearing device which is a combination of a thrust magnetic bearing and one radial magnetic bearing will be described with reference to FIGS. 5 is an axial sectional view of the magnetic bearing device, FIG. 6 is a sectional view taken along the line AA of FIG. 5, and FIGS. 7 and 8 are axial partial sectional views for explaining the flow of the magnetic flux of the thrust electromagnet in each state. is there.

【0003】図5〜図8に示すように、回転軸1に磁性
材料からなるスラスト円盤2と電磁鋼板からなるラジア
ル磁気軸受の回転子鉄心3とが強固に固定されている。
回転軸はフレームケーシング4で囲まれ、このフレーム
ケーシング4にはスラスト磁気軸受5,ラジアル磁気軸
受6および変位センサ7,8等が設けられている。
As shown in FIGS. 5 to 8, a thrust disk 2 made of a magnetic material and a rotor core 3 of a radial magnetic bearing made of an electromagnetic steel plate are firmly fixed to a rotary shaft 1.
The rotating shaft is surrounded by a frame casing 4, and the frame casing 4 is provided with a thrust magnetic bearing 5, a radial magnetic bearing 6, displacement sensors 7, 8 and the like.

【0004】スラスト磁気軸受5は、スラスト円盤2の
軸方向両側にスラストギャップを挟んで配置された一対
の電磁石9により構成され、これらの電磁石9はそれぞ
れ外径側磁極10a,内径側磁極10bおよびコイル1
1からなっている。変位センサの一方であるスラスト変
位センサ7は回転軸1の軸端部に取付けられ、回転軸1
の軸方向変位を検出する。
The thrust magnetic bearing 5 is composed of a pair of electromagnets 9 arranged on both axial sides of the thrust disk 2 with a thrust gap interposed therebetween, and these electromagnets 9 respectively have an outer diameter side magnetic pole 10a, an inner diameter side magnetic pole 10b and an inner diameter side magnetic pole 10b. Coil 1
It consists of 1. The thrust displacement sensor 7, which is one of the displacement sensors, is attached to the shaft end of the rotary shaft 1 and
Detects the axial displacement of.

【0005】ラジアル磁気軸受6は電磁石12により構
成され、この電磁石12は回転軸1の回転子鉄心3の周
囲でラジアルギャップを介し、上下左右に4つ配置され
ている。変位センサの他方であるラジアル変位センサ8
は、回転軸1のラジアル方向変位を検出するもので、回
転軸1の上下方向および水平方向に少なくとも各1つず
つ配置されている。
The radial magnetic bearing 6 is composed of an electromagnet 12, and four electromagnets 12 are arranged vertically and horizontally around the rotor core 3 of the rotary shaft 1 with a radial gap therebetween. Radial displacement sensor 8 which is the other of the displacement sensors
Is for detecting the radial displacement of the rotary shaft 1, and at least one is arranged in each of the vertical and horizontal directions of the rotary shaft 1.

【0006】なお、回転軸1の軸端部には磁気軸受の制
御が不能となった時に磁気軸受に代って回転軸1を支持
する機械式の補助軸受13がフレームケーシング4に軸
受ブラケット14を介して固定されている。
At the shaft end of the rotary shaft 1, a mechanical auxiliary bearing 13 that supports the rotary shaft 1 instead of the magnetic bearing when the magnetic bearing cannot be controlled is provided on the frame casing 4 with a bearing bracket 14. Is fixed through.

【0007】次に従来技術の作用について説明する。回
転軸1の軸方向変位は、スラスト変位センサ7により、
径方向変位はラジアル変位センサ8によりそれぞれ検出
され、電気信号に変換される。変換された電気信号は、
図示しない制御装置によって、回転軸1を安定に支持す
る信号に変換され、さらに電力増幅され、電流信号とし
てスラスト磁気軸受5の電磁石9およびラジアル磁気軸
受6の電磁石12に供給される。スラスト磁気軸受5の
電磁石9およびラジアル磁気軸受6の電磁石12はそれ
ぞれのコイルに流れる電流に相当する磁気吸引力で回転
軸1を吸引し、非接触で安定支持する。
Next, the operation of the prior art will be described. The axial displacement of the rotary shaft 1 is detected by the thrust displacement sensor 7.
The radial displacement is detected by the radial displacement sensor 8 and converted into an electric signal. The converted electrical signal is
A control device (not shown) converts the signal into a signal that stably supports the rotary shaft 1, further amplifies the power, and supplies the current signal to the electromagnet 9 of the thrust magnetic bearing 5 and the electromagnet 12 of the radial magnetic bearing 6. The electromagnet 9 of the thrust magnetic bearing 5 and the electromagnet 12 of the radial magnetic bearing 6 attract the rotating shaft 1 by the magnetic attraction force corresponding to the current flowing in each coil, and stably support it without contact.

【0008】この時、スラスト磁気軸受5の電磁石9に
よって生ずる磁束は図7にa,bで示すように、各コイ
ル11を中心としてこれを取り巻くように流れる。そし
て、本来磁束を流そうとする外径側磁極10a,スラス
ト円盤2,内径側磁極10bの経路以外に、回転軸1,
ラジアル磁気軸受6の回転子鉄心3,電磁石12,フレ
ームケーシング4の経路も磁束が流れることになる。こ
の場合、回転軸1に軸方向外力が加わらず、対向するス
ラスト磁気軸受5の各電磁石9の磁気吸引力が等しくバ
ランスしているときは、各電磁石9で発生する磁束も等
しく、回転軸1,ラジアル磁気軸受6の回転子鉄心3,
電磁石12およびフレームケーシング4の経路の磁束
c,dは互いに打ち消し合って、スラスト磁気軸受5の
電磁石9のそれぞれが生ずる磁束は本来流れるべき外径
側磁極10a,スラスト円盤2,内径側磁極10bの経
路のみを流れ、制御に特に悪影響を及ぼすことはない。
At this time, the magnetic flux generated by the electromagnet 9 of the thrust magnetic bearing 5 flows so as to surround each coil 11 as shown by a and b in FIG. Then, in addition to the path of the outer diameter side magnetic pole 10a, the thrust disk 2, and the inner diameter side magnetic pole 10b, which are supposed to flow the magnetic flux, the rotary shaft 1,
Magnetic flux also flows through the paths of the rotor core 3, the electromagnet 12, and the frame casing 4 of the radial magnetic bearing 6. In this case, when the external force in the axial direction is not applied to the rotating shaft 1 and the magnetic attraction forces of the electromagnets 9 of the thrust magnetic bearings 5 facing each other are equally balanced, the magnetic fluxes generated by the electromagnets 9 are also equal and the rotating shaft 1 , Rotor core of radial magnetic bearing 6,
The magnetic fluxes c and d in the paths of the electromagnet 12 and the frame casing 4 cancel each other out, and the magnetic fluxes generated by the electromagnets 9 of the thrust magnetic bearing 5 are generated in the outer diameter side magnetic pole 10a, the thrust disk 2, and the inner diameter side magnetic pole 10b. It flows only through the route and has no particular adverse effect on control.

【0009】しかし、回転軸1の軸方向に大きな外力が
働き、スラスト円盤2を挟んで対向するスラスト磁気軸
受5の電磁石9の磁気吸引力にアンバランスが生じた場
合に、制御系に悪影響を及ぼすことが考えられる。
However, when a large external force acts in the axial direction of the rotary shaft 1 and the magnetic attraction force of the electromagnets 9 of the thrust magnetic bearings 5 facing each other with the thrust disk 2 in between is unbalanced, the control system is adversely affected. It is possible to affect.

【0010】即ち、一般に、補助軸受13と回転軸1と
の軸方向間の隙間はスラスト磁気軸受5とスラスト円盤
2の間の隙間の半分に設定される。そこで、回転軸1に
対して図5に矢印で示す軸方向の外力Fが働き、回転軸
1が補助軸受13に接触する直前まで変位した場合につ
いて考える。この場合、外力Fが加わる前のスラスト円
盤2とスラスト磁気軸受5の電磁石9との間のギャップ
をGとすると、回転軸1に外力Fが働いた場合には、図
8の左側の電磁石9(9a)とスラスト円盤2とのギャ
ップは例えば(1/2)G,右側の電磁石9(9b)と
スラスト円盤2とのギャップは(2/3)Gのように変
化する。この場合、磁束の流れる経路内の磁性材部分の
磁気抵抗を無視すると、磁気経路中のギャップの長さに
反比例する磁束が流れることになるので、回転軸1に加
わった外力Fを支えようとする右側の電磁石9(9b)
によって生ずる磁束のうち、一方の経路の磁束dは他方
の経路cの2倍となり、左側の電磁石9(9a)のギャ
ップの磁束密度を増加させることになり、スラスト磁気
軸受5によって生じる磁気吸引力fは、回転軸1に加わ
る外力Fと同方向となり、制御系が発散し、外力Fに打
ち勝って回転軸1を軸方向に安定支持することができな
くなる。
That is, in general, the axial gap between the auxiliary bearing 13 and the rotary shaft 1 is set to half the gap between the thrust magnetic bearing 5 and the thrust disk 2. Therefore, consider a case where an external force F in the axial direction indicated by an arrow in FIG. 5 acts on the rotating shaft 1 and the rotating shaft 1 is displaced until just before it comes into contact with the auxiliary bearing 13. In this case, when the gap between the thrust disk 2 and the electromagnet 9 of the thrust magnetic bearing 5 before the external force F is applied is G, when the external force F acts on the rotating shaft 1, the electromagnet 9 on the left side of FIG. The gap between (9a) and the thrust disk 2 changes to (1/2) G, for example, and the gap between the right electromagnet 9 (9b) and the thrust disk 2 changes to (2/3) G. In this case, if the magnetic resistance of the magnetic material portion in the path through which the magnetic flux flows is ignored, the magnetic flux that is inversely proportional to the length of the gap in the magnetic path will flow, so that the external force F applied to the rotating shaft 1 will be supported. Right side electromagnet 9 (9b)
Of the magnetic flux generated by the magnetic flux d in one path is twice that in the other path c, which increases the magnetic flux density in the gap of the left electromagnet 9 (9a), and the magnetic attraction force generated by the thrust magnetic bearing 5 is generated. f becomes in the same direction as the external force F applied to the rotary shaft 1, the control system diverges, and overcomes the external force F to make it impossible to stably support the rotary shaft 1 in the axial direction.

【0011】そこで、この問題を回避するためには、悪
影響を及ぼす磁気経路の一部または全部を非磁性材料で
構成することが考えられる。例えばフレームケーシング
4をSUS材にすること、または回転軸1とラジアル磁
気軸受6の回転子鉄心3との間にSUS材のスリーブを
挿入する等である。しかし、前者の場合、一般鋼材に比
べてSUS材が高価であり、加工困難等の問題がある。
また、後者では軸径が細くなり、軸の固有振動数が低下
する等の問題がある。また、制御に悪影響を及ぼす磁気
経路は単一のものではなく複数あるので、全ての磁気を
遮断することは不可能に近い。
Therefore, in order to avoid this problem, it is conceivable that a part or all of the magnetic path having a bad influence is made of a non-magnetic material. For example, the frame casing 4 is made of SUS material, or a sleeve of SUS material is inserted between the rotary shaft 1 and the rotor core 3 of the radial magnetic bearing 6. However, in the former case, the SUS material is more expensive than the general steel material, and there are problems such as difficulty in processing.
Further, in the latter case, there is a problem that the shaft diameter becomes thin and the natural frequency of the shaft decreases. Further, since there are a plurality of magnetic paths that adversely affect control, not a single magnetic path, it is almost impossible to block all magnetism.

【0012】[0012]

【発明が解決しようとする課題】このように、従来の磁
気軸受装置では回転軸,ラジアル磁気軸受,フレームケ
ーシングを通る磁気経路が形成されて、回転軸の軸方向
に大きな外力が加わり、回転軸が軸方向に大きく変位し
た場合に制御系が発散して軸方向の安定支持ができなく
なるという問題がある。この問題を回避するためには装
置のコストアップ,加工困難性,軸の固有振動数低下等
の問題があり、従来では完全に回避することができなか
った。
As described above, in the conventional magnetic bearing device, the magnetic path passing through the rotary shaft, the radial magnetic bearing, and the frame casing is formed, and a large external force is applied in the axial direction of the rotary shaft. However, there is a problem that the control system diverges when it is largely displaced in the axial direction and stable support in the axial direction becomes impossible. In order to avoid this problem, there are problems such as an increase in the cost of the device, difficulty in processing, and a decrease in the natural frequency of the shaft, and it has not been possible to completely avoid it in the past.

【0013】本発明はこのような事情に鑑みてなされた
もので、回転軸やフレームケーシングを非磁性材料で構
成する必要なく、回転軸に大きな外力が働き大きな軸方
向変位を生じても、回転軸を安定に支持することができ
る磁気軸受装置を提供することを目的とする。
The present invention has been made in view of such circumstances, and it is not necessary to form the rotating shaft and the frame casing with a non-magnetic material, and even if a large external force acts on the rotating shaft and a large axial displacement occurs, the rotating shaft does not rotate. An object of the present invention is to provide a magnetic bearing device that can stably support a shaft.

【0014】[0014]

【課題を解決するための手段】本発明は、前記の目的を
達成するために、回転軸を、フレームケーシングに設け
たスラスト磁気軸受とラジアル磁気軸受とにより非接触
で支持し、前記各磁気軸受の電磁石に流れる電流を変位
センサの出力信号によって制御するようにした磁気軸受
装置において、前記スラスト磁気軸受は、前記回転軸の
径方向に突出するスラスト円盤の両側面に対向する一対
の電磁石を有し、この各電磁石は、それぞれ前記スラス
ト円盤の外径側に配置する外径側コイルの内径側に配置
する内径側コイルおよびこれら両コイルを囲む磁極を備
え、前記各電磁石の外径側コイルと内径側コイルとによ
り形成される磁束の極性を同一方向に設定するととも
に、前記スラスト円盤を挟んで対向する外径側コイル同
士および内径側コイル同士により形成される磁束の極性
を互いに逆方向に設定したことを特徴とする。
In order to achieve the above object, the present invention supports a rotating shaft in a non-contact manner by a thrust magnetic bearing and a radial magnetic bearing provided in a frame casing, and each of the magnetic bearings is supported. In the magnetic bearing device in which the current flowing through the electromagnet is controlled by the output signal of the displacement sensor, the thrust magnetic bearing has a pair of electromagnets facing each other on both sides of the thrust disk protruding in the radial direction of the rotating shaft. However, each of the electromagnets includes an inner diameter side coil arranged on the inner diameter side of the outer diameter side coil arranged on the outer diameter side of the thrust disk and a magnetic pole surrounding these both coils, and an outer diameter side coil of each electromagnet. The polarities of the magnetic fluxes formed by the inner diameter side coil and the inner diameter side coil are set in the same direction, and the outer diameter side coils and the inner diameter side coil which are opposed to each other with the thrust disk sandwiched therebetween. Wherein the polarity of the magnetic flux formed by each other set in opposite directions.

【0015】[0015]

【作用】上述した本発明の構成によれば、各スラスト磁
気軸受の電磁石の各コイルで作られる磁束は、回転軸,
ラジアル磁気軸受の電磁石,フレームケーシング等では
互いに打ち消し合い、各スラスト磁気軸受の電磁石の磁
極以外には流れないので、回転軸に外力が働いて大きな
軸変位を生じても、スラスト磁気軸受の制御が発散する
ことがなく、回転軸を安定に支持することができる。
According to the above-described structure of the present invention, the magnetic flux produced by each coil of the electromagnet of each thrust magnetic bearing is
Since the electromagnets of the radial magnetic bearings, frame casings, etc. cancel each other out and flow only to the magnetic poles of the electromagnets of each thrust magnetic bearing, the thrust magnetic bearings can be controlled even if external force acts on the rotating shaft to cause large axial displacement. The rotating shaft can be stably supported without diverging.

【0016】[0016]

【実施例】以下、本発明の一実施例を図1〜図4を参照
して説明する。図1はスラスト磁気軸受と1つのラジア
ル磁気軸受の組み合せによる磁気軸受装置の軸方向断面
図、図2は図1のB−B線断面図、図4および図4は各
状態でのスラスト電磁石の磁束の流れを説明する軸方向
部分断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is an axial sectional view of a magnetic bearing device including a combination of a thrust magnetic bearing and one radial magnetic bearing, FIG. 2 is a sectional view taken along line BB of FIG. 1, and FIGS. 4 and 4 show thrust electromagnets in various states. It is an axial direction partial sectional view explaining the flow of a magnetic flux.

【0017】図1〜図4に示すように、回転軸21に磁
性材料からなるスラスト円盤22と電磁鋼板からなるラ
ジアル磁気軸受の回転子鉄心23とが強固に固定されて
いる。回転軸21はフレームケーシング24で囲まれ、
このフレームケーシング24にはスラスト磁気軸受2
5,ラジアル磁気軸受26および変位センサ27,28
等が設けられている。
As shown in FIGS. 1 to 4, a thrust disk 22 made of a magnetic material and a rotor core 23 of a radial magnetic bearing made of an electromagnetic steel plate are firmly fixed to a rotary shaft 21. The rotating shaft 21 is surrounded by a frame casing 24,
This frame casing 24 has a thrust magnetic bearing 2
5, radial magnetic bearing 26 and displacement sensors 27, 28
Etc. are provided.

【0018】スラスト磁気軸受25は、スラスト円盤2
2の軸方向両側にスラストギャップを挟んで配置された
一対の電磁石29により構成され、これらの電磁石29
はそれぞれ外径側磁極30a,内径側磁極30b,中間
磁極30cおよびコイル31a,31bからなってい
る。変位センサの一方であるスラスト変位センサ27は
回転軸21の軸端部に取付けられ、回転軸21の軸方向
変位を検出する。
The thrust magnetic bearing 25 is the thrust disk 2
2 is formed by a pair of electromagnets 29 arranged on both sides in the axial direction with a thrust gap interposed therebetween.
Is composed of an outer diameter side magnetic pole 30a, an inner diameter side magnetic pole 30b, an intermediate magnetic pole 30c and coils 31a and 31b. The thrust displacement sensor 27, which is one of the displacement sensors, is attached to the shaft end of the rotary shaft 21 and detects the axial displacement of the rotary shaft 21.

【0019】ラジアル磁気軸受26は電磁石32により
構成され、この電磁石32は回転軸21の回転子鉄心2
3の周囲でラジアルギャップを介し、上下左右に4つ配
置されている。変位センサの他方であるラジアル変位セ
ンサ28は、回転軸21のラジアル方向変位を検出する
もので、回転軸21の上下方向および水平方向に少なく
とも各1つずつ配置されている。
The radial magnetic bearing 26 is composed of an electromagnet 32, which is the rotor core 2 of the rotary shaft 21.
Four of them are arranged on the upper, lower, left, and right sides of the circumference of 3 through the radial gap. The radial displacement sensor 28, which is the other of the displacement sensors, detects the radial displacement of the rotary shaft 21, and is arranged at least one in each of the vertical and horizontal directions of the rotary shaft 21.

【0020】なお、回転軸21の軸端部には磁気軸受の
制御が不能となった時に磁気軸受に代って回転軸21を
支持する機械式の補助軸受33がフレームケーシング2
4に軸受ブラケット34を介して固定されている。
At the shaft end of the rotary shaft 21, there is provided a mechanical auxiliary bearing 33 for supporting the rotary shaft 21 instead of the magnetic bearing when the magnetic bearing cannot be controlled.
It is being fixed to 4 through the bearing bracket 34.

【0021】詳述すると、本実施例では、スラスト磁気
軸受25が回転軸21の径方向に突出するスラスト円盤
22の両側面に対向する一対の電磁石29し、その各電
磁石29は、それぞれスラスト円盤22の外径側に配置
する外径側コイル31a、内径側に配置する内径側コイ
ル31bおよびこれら両コイル31a,31bを囲む外
径側,内径側および中間の三つの磁極30a,30b,
30cを備えている。
More specifically, in the present embodiment, the thrust magnetic bearing 25 has a pair of electromagnets 29 opposed to both side surfaces of the thrust disk 22 protruding in the radial direction of the rotary shaft 21, and each electromagnet 29 is a thrust disk. An outer diameter side coil 31a arranged on the outer diameter side of 22, an inner diameter side coil 31b arranged on the inner diameter side, and three magnetic poles 30a, 30b on the outer diameter side, the inner diameter side, and the middle that surround these coils 31a, 31b,
It is equipped with 30c.

【0022】そして、各電磁石29の外径側コイル31
aと内径側コイル31bとにより形成される磁束の極性
が同一方向に設定されるとともに、スラスト円盤22を
挟んで対向する外径側コイル31a同士および内径側コ
イル31b同士により形成される磁束の極性が互いに逆
方向に設定されている。
The outer diameter side coil 31 of each electromagnet 29
The polarities of the magnetic fluxes formed by a and the inner diameter side coil 31b are set in the same direction, and the polarities of the magnetic flux formed by the outer diameter side coils 31a and the inner diameter side coils 31b that face each other with the thrust disk 22 in between. Are set in opposite directions.

【0023】次に作用について説明する。回転軸21の
軸方向変位は、スラスト変位センサ27により、径方向
変位はラジアル変位センサ28によりそれぞれ検出さ
れ、電気信号に変換される。変換された電気信号は、図
示しない制御装置によって、回転軸21を安定に支持す
る信号に変換され、さらに電力増幅され、電流信号とし
てスラスト磁気軸受25の電磁石29およびラジアル磁
気軸受26の電磁石32に供給される。スラスト磁気軸
受25の電磁石29およびラジアル磁気軸受26の電磁
石32はそれぞれのコイルに流れる電流に相当する磁気
吸引力で回転軸21を吸引し、非接触で安定支持する。
Next, the operation will be described. The axial displacement of the rotary shaft 21 is detected by the thrust displacement sensor 27, and the radial displacement is detected by the radial displacement sensor 28, and converted into an electric signal. The converted electric signal is converted into a signal that stably supports the rotating shaft 21 by a control device (not shown), further power-amplified, and supplied to the electromagnet 29 of the thrust magnetic bearing 25 and the electromagnet 32 of the radial magnetic bearing 26 as a current signal. Supplied. The electromagnet 29 of the thrust magnetic bearing 25 and the electromagnet 32 of the radial magnetic bearing 26 attract the rotating shaft 21 with a magnetic attraction force corresponding to the current flowing in each coil, and stably support it without contact.

【0024】この時、回転軸21に外力が働いていない
状態では、図3に示すように、スラスト軸受5の各電磁
石29a,29bの各コイル31a,31bによって形
成される磁束e,f,g,hは、その電磁石29a,2
9b以外の箇所、例えば回転軸21,ラジアル軸受26
の電磁石32,フレームケーシング24等では互いに打
ち消し合い、これらに流れることはない。
At this time, when no external force acts on the rotary shaft 21, as shown in FIG. 3, the magnetic fluxes e, f, g formed by the coils 31a, 31b of the electromagnets 29a, 29b of the thrust bearing 5 respectively. , H are their electromagnets 29a, 2
9b, for example, the rotary shaft 21 and the radial bearing 26
The electromagnet 32, the frame casing 24, and the like cancel each other out and do not flow into them.

【0025】即ち、図3の左側の電磁石29aの各コイ
ル31a,31bに流れる電流によって形成される磁束
e,fは、全てスラスト円盤22と左側の電磁石29a
の3つの磁極30a,30b,30cのみに流れ、また
右側の電磁石29bの各コイル31a,31bによって
形成される磁束g,hは、スラスト円盤2と右側の電磁
石29bの3つの磁極30a,30b,30cのみに流
れる。
That is, the magnetic fluxes e and f formed by the currents flowing through the coils 31a and 31b of the electromagnet 29a on the left side in FIG. 3 are all thrust disks 22 and the electromagnet 29a on the left side.
Of the three magnetic poles 30a, 30b, 30c, and the magnetic fluxes g, h formed by the coils 31a, 31b of the right electromagnet 29b are the three magnetic poles 30a, 30b of the thrust disk 2 and the right electromagnet 29b. It flows only to 30c.

【0026】このことは、回転軸21に大きな軸方向外
力Fが働いている時(図4)も同様で、変りはない。各
電磁石29a,29bの磁極30a,30b,30c以
外を流れる磁束は、各スラスト磁気軸受25の電磁石2
9a,29bに設けた同じ巻き数の2つのコイル31
a,31bに、同一電流を流すことにより打ち消される
ので、軸方向外力の大きさや変位量には関係がない。
This is the same when a large axial force F acts on the rotary shaft 21 (FIG. 4), and there is no change. The magnetic flux flowing through the electromagnets 29a, 29b other than the magnetic poles 30a, 30b, 30c is the electromagnet 2 of each thrust magnetic bearing 25.
Two coils 31 having the same number of turns provided on 9a and 29b
Since it is canceled by applying the same current to a and 31b, it is not related to the magnitude of the external force in the axial direction or the displacement amount.

【0027】したがって、本実施例によれば、各スラス
ト磁気軸受25の電磁石29a,29bのコイル31
a,31bによって形成される磁束が回転軸21,ラジ
アル磁気軸受26の電磁石32,フレームケーシング2
4等で互いに打ち消し合い、各スラスト磁気軸受25の
電磁石29a,29bの磁極30a,30b,30c以
外には流れないので、回転軸21に外力が働いて大きな
軸変位を生じても、スラスト磁気軸受25の制御が発散
することがなく、回転軸21を安定に支持することがで
きる。
Therefore, according to the present embodiment, the coils 31 of the electromagnets 29a and 29b of the thrust magnetic bearings 25 are arranged.
The magnetic flux formed by a and 31b is the rotary shaft 21, the electromagnet 32 of the radial magnetic bearing 26, and the frame casing 2.
4 and the like cancel each other out and flow only to the magnetic poles 30a, 30b, 30c of the electromagnets 29a, 29b of the thrust magnetic bearings 25. Therefore, even if external force acts on the rotary shaft 21 to cause a large axial displacement, the thrust magnetic bearings The control of 25 does not diverge, and the rotating shaft 21 can be stably supported.

【0028】[0028]

【発明の効果】以上のように、本発明の磁気軸受によれ
ば、回転軸やラジアル磁気軸受,フレームケーシング等
に流れる磁束をほぼゼロにすることができるので、大き
な外力による吸気吸引力のアンバランス,大きな軸方向
変位が生じても、スラスト磁気軸受系が発散することな
く、安定に支持することができるという効果が奏され
る。
As described above, according to the magnetic bearing of the present invention, since the magnetic flux flowing in the rotating shaft, the radial magnetic bearing, the frame casing, etc. can be made almost zero, the suction force of the intake air due to a large external force is reduced. Even if the balance and the large axial displacement occur, the thrust magnetic bearing system does not diverge, and it is possible to stably support the magnetic bearing system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による磁気軸受装置の軸方向
断面図。
FIG. 1 is an axial sectional view of a magnetic bearing device according to an embodiment of the present invention.

【図2】図1のB−B線断面図。FIG. 2 is a sectional view taken along line BB of FIG.

【図3】同実施例による磁気軸受装置の安定状態でのス
ラスト電磁石の磁束の流れを説明する軸方向部分断面
図。
FIG. 3 is a partial axial cross-sectional view illustrating the flow of magnetic flux of the thrust electromagnet in a stable state of the magnetic bearing device according to the embodiment.

【図4】同実施例による磁気軸受装置の軸方向に外力が
加わった状態でのスラスト電磁石の磁束の流れを説明す
る軸方向部分断面図。
FIG. 4 is a partial axial cross-sectional view illustrating the flow of magnetic flux of the thrust electromagnet when an external force is applied in the axial direction of the magnetic bearing device according to the embodiment.

【図5】従来例による磁気軸受装置の軸方向断面図。FIG. 5 is an axial sectional view of a conventional magnetic bearing device.

【図6】図5のA−A線断面図。6 is a cross-sectional view taken along the line AA of FIG.

【図7】従来技術による磁気軸受装置の安定状態でのス
ラスト電磁石の磁束の流れを説明する軸方向部分断面
図。
FIG. 7 is a partial axial cross-sectional view illustrating the flow of magnetic flux of a thrust electromagnet in a stable state of a magnetic bearing device according to a conventional technique.

【図8】従来技術による磁気軸受装置の軸方向に外力が
加わった状態でのスラスト電磁石の磁束の流れを説明す
る軸方向部分断面図。
FIG. 8 is a partial axial cross-sectional view for explaining the flow of magnetic flux of the thrust electromagnet when an external force is applied in the axial direction of the magnetic bearing device according to the related art.

【符号の説明】[Explanation of symbols]

21 回転軸 22 スラスト円盤 24 フレームケーシング 25 スラスト磁気軸受 26 ラジアル磁気軸受 27 スラスト変位センサ 28 ラジアル変位センサ 29(29a,29b) 電磁石 30a 外径側磁極 30b 内径側磁極 30c 中間磁極 31a 外径側コイル 31b 内径側コイル 21 rotary shaft 22 thrust disk 24 frame casing 25 thrust magnetic bearing 26 radial magnetic bearing 27 thrust displacement sensor 28 radial displacement sensor 29 (29a, 29b) electromagnet 30a outer diameter side magnetic pole 30b inner diameter side magnetic pole 30c middle magnetic pole 31a outer diameter side coil 31b Inner diameter coil

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 回転軸を、フレームケーシングに設けた
スラスト磁気軸受とラジアル磁気軸受とにより非接触で
支持し、前記各磁気軸受の電磁石に流れる電流を変位セ
ンサの出力信号によって制御するようにした磁気軸受装
置において、前記スラスト磁気軸受は、前記回転軸の径
方向に突出するスラスト円盤の両側面に対向する一対の
電磁石を有し、この各電磁石は、それぞれ前記スラスト
円盤の外径側に配置する外径側コイルの内径側に配置す
る内径側コイルおよびこれら両コイルを囲む磁極を備
え、前記各電磁石の外径側コイルと内径側コイルとによ
り形成される磁束の極性を同一方向に設定するととも
に、前記スラスト円盤を挟んで対向する外径側コイル同
士および内径側コイル同士により形成される磁束の極性
を互いに逆方向に設定したことを特徴とする磁気軸受装
置。
1. A rotary shaft is supported in a non-contact manner by a thrust magnetic bearing and a radial magnetic bearing provided in a frame casing, and a current flowing through an electromagnet of each magnetic bearing is controlled by an output signal of a displacement sensor. In the magnetic bearing device, the thrust magnetic bearing has a pair of electromagnets opposed to both side surfaces of a thrust disk projecting in the radial direction of the rotating shaft, and each electromagnet is disposed on the outer diameter side of the thrust disk. The inner diameter side coil disposed on the inner diameter side of the outer diameter side coil and the magnetic poles surrounding these coils are provided, and the polarities of the magnetic fluxes formed by the outer diameter side coil and the inner diameter side coil of each electromagnet are set in the same direction. At the same time, the polarities of the magnetic fluxes formed by the outer diameter side coils and the inner diameter side coils that face each other across the thrust disk are set in mutually opposite directions. A magnetic bearing device characterized in that
JP28492093A 1993-11-15 1993-11-15 Magnetic bearing device Pending JPH07139545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28492093A JPH07139545A (en) 1993-11-15 1993-11-15 Magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28492093A JPH07139545A (en) 1993-11-15 1993-11-15 Magnetic bearing device

Publications (1)

Publication Number Publication Date
JPH07139545A true JPH07139545A (en) 1995-05-30

Family

ID=17684773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28492093A Pending JPH07139545A (en) 1993-11-15 1993-11-15 Magnetic bearing device

Country Status (1)

Country Link
JP (1) JPH07139545A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187317A (en) * 2006-01-13 2007-07-26 Soc De Mecanique Magnetique Device for magnetically levitating rotor
EP2955398A1 (en) * 2014-06-10 2015-12-16 Skf Magnetic Mechatronics Active magnetic bearing coils rolled in series
CN109690903A (en) * 2016-08-08 2019-04-26 韦特里西提公司 Inductor system with the common material eliminated for flux

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187317A (en) * 2006-01-13 2007-07-26 Soc De Mecanique Magnetique Device for magnetically levitating rotor
EP2955398A1 (en) * 2014-06-10 2015-12-16 Skf Magnetic Mechatronics Active magnetic bearing coils rolled in series
US9638246B2 (en) 2014-06-10 2017-05-02 Skf Magnetic Mechatronics Active magnetic bearing coils rolled in series
CN109690903A (en) * 2016-08-08 2019-04-26 韦特里西提公司 Inductor system with the common material eliminated for flux
CN109690903B (en) * 2016-08-08 2020-06-09 韦特里西提公司 Inductor system with shared material for flux cancellation and method for flux cancellation

Similar Documents

Publication Publication Date Title
US6359357B1 (en) Combination radial and thrust magnetic bearing
US8378543B2 (en) Generating electromagnetic forces in large air gaps
EP0364993B1 (en) Magnetic bearing system
JP3121819B2 (en) Magnetic bearing device with permanent magnet that receives radial force applied to the shaft
US4036565A (en) Pump construction
US4473259A (en) Linear magnetic bearings
US4983869A (en) Magnetic bearing
JPH0573925B2 (en)
WO2011007544A1 (en) Magnetic levitation control device and hybrid type magnetic bearing
JPH01187424A (en) Torque sensor
JPH03504997A (en) Radial and axial bearings for rotors with large radii
JPH07256503A (en) Spindle apparatus
JPS58184319A (en) Magnetic bearing
JP4768712B2 (en) Active magnetic bearing for automatic position detection
JP5192271B2 (en) Magnetic bearing device
JP2520199B2 (en) Large amplitude low frequency vibration device
US6914361B2 (en) Magnetic bearing
JPH07139545A (en) Magnetic bearing device
JP7080318B2 (en) Compensation for magnetic flux in magnetic bearing equipment
JPS6146683B2 (en)
JPH07238928A (en) Magnetic bearing device
JPH06249286A (en) Vibration restraining device for rotor
JPS62270824A (en) Radial control type magnetic bearing with high rigidity in axial direction
JPH06261498A (en) Vibration suppressor for rotating machine
JPS58137618A (en) Magnetic bearing