JPS641174B2 - - Google Patents

Info

Publication number
JPS641174B2
JPS641174B2 JP55101630A JP10163080A JPS641174B2 JP S641174 B2 JPS641174 B2 JP S641174B2 JP 55101630 A JP55101630 A JP 55101630A JP 10163080 A JP10163080 A JP 10163080A JP S641174 B2 JPS641174 B2 JP S641174B2
Authority
JP
Japan
Prior art keywords
electrode
crown
semiconductor
potential
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55101630A
Other languages
Japanese (ja)
Other versions
JPS5727129A (en
Inventor
Kenichi Honda
Akira Fujishima
Seiichiro Nakabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10163080A priority Critical patent/JPS5727129A/en
Publication of JPS5727129A publication Critical patent/JPS5727129A/en
Publication of JPS641174B2 publication Critical patent/JPS641174B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は新芏な電解液である。 珟圚、食塩電解による塩玠やカセむ゜ヌダの補
造あるいは、アルミニりム粟錬などの電気分解工
業、たたマンガン也電池や鉛蓄電池で代衚される
各皮電池は、重甚な産業の䞀翌をにな぀おいる。 たたPH枬定など各皮電気化孊蚈枬はその重甚性
をたすたす増加させおいる。 最近では倪陜゚ネルギヌの有効利甚の方途が深
められその䞭での電気化孊的手法のすぐれおいる
こずが認識され始めおおり、たた新らしい有機化
合物の補造法ずしお有機電解法が怜蚎されおい
る。 しかし、埓来の電気化孊系においおは溶媒ずし
お氎あるいは極性の倧きな有機溶媒が甚いられお
おり、非極性又は䜎極性溶媒を䜿甚する電気化孊
系は党く知られおいない。 本発明者等は、このクラりン化合物の機胜を子
现に怜蚎した結果、この化合物を甚いお旧来の電
気化孊系ずは異る党く新しい電気化孊系を構成し
埗るこずを発芋するに臎぀た。 即ち、旧来の電気化孊系では、電解液の圹割は
むオン電導性を持぀た単なる電極掻物質の分散媒
であ぀たが本発明による「陜むオンを保持せしめ
たクラりン化合物ず䜎極性溶媒ずの溶液を含み、
実質的に極性溶媒を含たないこずを特城ずする電
解液」においおはクラりン化合物を含有する電解
液自䜓が陜むオンを包接しおむオン又は塩を遞択
的に可溶化するこずによりクラりン化合物固有の
機胜䞊びに旧来の電気化孊系では甚いるこずが䞍
可胜であ぀たような䜎極性又は無極性溶媒の特長
をも掻甚するこずを可胜ずした。 即ち、本発明においおは、極性溶媒を含たない
で、極性溶媒に基ずく欠点がなく旧来の電気化孊
系では溶媒自䜓の特性にしばられお実斜䞍可胜又
は実珟できなか぀た数々の党く新しい電気化孊的
方法を始めお実斜可胜ずするに至぀たものであ
る。 以䞋に斯る党く新芏の電解液の具䜓䟋を説明す
る。 (A) 安䟡か぀安定な陜極材料を甚いた新芏な電気
孊系。 旧来の電気化孊系においおは、電解液溶
媒ずしお氎あるいは極性の倧きな有機溶媒が
甚いられ、電極材料ずしお、その安定性などの
理由から癜金など高䟡な金属を甚いざるを埗な
か぀た。すなわち埓来は非極性あるいは䜎極性
溶媒を䜿甚するこずによりアノヌド安定性を高
め、倚くの安䟡な金属を電極ずしお䜿甚したい
ずいう願望があ぀たにかかわらず、これらの溶
媒䞭には支持塩が䞍溶であるため溶液のむオン
電導床を高めるこずができず、電解液には適さ
ないものずされおいた。本発明者らは、この非
極性あるいは䜎極性の溶媒も電気化孊甚溶媒ず
しお利甚できるよう鋭意怜蚎し、クラりン化合
物を非極性あるいは䜎極性溶媒ずずもに甚いる
こずによ぀お電解液ずするこずができるこずを
発芋し、本発明を達成した。 本発明による電解液においお新らたに䜿甚可
胜になる金属電極は構成金属の陜むオンず䜿甚
するクラりン化合物ずの間の錯䜓圢成が著しく
困難なものであればよい。 このずきには電極自身の溶解は抑制され、埓
来の溶媒䞭でのその金属の溶解電䜍で制限され
おいた電䜍域が支持塩やクラりン化合物などの
分解電䜍たで拡倧されるため広い電䜍域での電
解も可胜ずなる電極ずするこずができる。 䟋えば、15―クラりン――ベンれン混
合溶媒を䜿甚し、支持塩ずしおナトリりムテト
ラプニルボレヌトを䜿甚した堎合添加された
15―クラりン―ずの間に安定な錯䜓を䜜る事
が知られおいる(a)、(a)及び銀を陀いた金属
であり、奜たしくは第䞀遷移金属系䟋であり、
さらに奜たしくは銅、亜鉛、鉄およびこれらの
合金である。 (B) 金属の溶出電䜍を制埡した新芏の金属粟錬法 埓来の湿匏金属粟錬に甚いられおいた電解液
は、氎或いは極性の高い有機溶媒を溶媒に甚い
た電解液であり、金属の溶出順序は通垞のむオ
ン化傟向を盎接に反映したものである。 しかし䞀方本発明による電解液では、電解液
自䜓がクラりン化合物の陜むオン包接性を匷く
反映する堎合があり、結果ずしお金属の溶出順
序を通垞のむオン化傟向の順序ず逆転させるこ
ずができる。 埓぀お、埓来陜極泥䞭に富豊に認められた金
属を逆に電解液䞭に富豊に存圚させる事ができ
る。 かくしお埗られた電解液から盎接溶媒抜出に
より、又は陜極溶出の逆過皋陰極析出によ
り目的金属を高玔床にお採取するこずができ
る。 以䞊埓来の方法ずは党く異なる金属粟錬法を
発明するに臎぀た。 たた本発明によれば、金、銀等の第族金
属、癜金、パラゞりム、ロゞりム等の第族金
属及びりラン等クラりン化合物に包接し埗る党
おの金属を粟錬し埗るものである。 (C) 有機電解法ぞの応甚 旧来の電解液に斌おは、電解液ずしお氎、或
は、極性の倧きな有機溶媒が甚いられ、ポリア
セン等の電解に際しおはセロ゜ルブ等の特殊な
溶媒が甚いられ、正確な電䜍芏制も非垞にむず
かしい珟状にあ぀た。元来電気分解法に䟝る有
機合成手法は、電䜍芏制条件のもずで、特定の
酞化反応、還元反応を遞択的に行なわせるこず
ができ、か぀たた、埓来電䜍芏制条件䞋で電気
分解を行うこずができなか぀たポリアセン類は
医甚原料等ずしお倚くの可胜性を有する化孊皮
である。 埓぀お、これらの化孊皮を電䜍芏制䞋で電解
反応を遂行させる技術は、高付加䟡倀の電気分
解合成ずいう偎面から広く芁求されるものであ
぀た。 䞀方本発明による電解液では、クラりン化合
物のむオン遞択性から銀線参照が比范的安定に
機胜し、合わせお、䜎極性或は非極性溶媒の特
性も保持されるものであり、旧来の電解技術で
は電䜍芏制条件で電気分解し埗なか぀たポリア
セン等が電䜍芏制条件䞋で電気分解を行なうこ
ずができる。 たた有機電解合成を行う堎合においお溶媒の
遞択は生成物に圱響を䞎える。たずえば、
、、、―tetra―methylbanyeneの電
解酞化反応では䞋蚘のごずく生成物が異なる。
これは反応によ぀お生成するカチオンの安定性
等ず密接な関連をも぀おいる。 K.Nyberg、Chem.Commun.、7741969 本発明の堎合のごずく䜎極性溶媒䞭にカチオ
ンずクラりン化合物のコンプレツクス、裞のア
ニオンが存圚しおいる堎合は生成物は、アニオ
ンの皮類、䜿甚する溶媒等により遞択的に、ア
ニオンの眮換反応、もしくは量化反応等が起
きるこずが考えられる。 (D) 半導䜓湿匏光電池ぞの応甚 最近では、倪陜゚ネルギヌの有効利甚の方途
がさぐられ、その内で電気化孊的手法のすぐれ
おいるこずが認識されおきおいる。 半導䜓湿匏光電池による倪陜゚ネルギヌの利
甚が実珟するためには、少くずも次のような事
項が解決されなければならない。 (1)゚ネルギヌ倉換効率の向䞊、(2)半導䜓材料
の安䟡で簡単な補造法の確立、(3)半導䜓電極溶
解の抑制 䞀方、䞊蚘(1)、(2)の条件を満たす半導䜓電極
材料は、CdSなどのように今たでに数倚く知ら
れおいる。しかし埌述するように、半導䜓電極
の溶解が起぀おしたい、効率の高い光電池を組
み立おるためには、この半導䜓電極の溶解抑制
が必須の条件にな぀おいる。而しお、本発明に
よる電解液は、䞊述のように珟圚最も解決を目
されおいる(3)の半導䜓電極の抑制に察し著しい
効果を認めるに臎぀た。 たず、半導䜓湿匏光電池の動䜜原理ず、電極
溶解抑制に関する埓来の技術を瀺す。 半導䜓湿匏光電池の䞀䟋ずしお3.0eVず倧き
なバンドギダツプを持ち、光励起状態で自己溶
解反応に察しお安定な電極の䞀䟋であるTiO2
半導䜓光アノヌドが氎溶液系の電解液に接しお
いる堎合を䟋にずり説明する。 䟋えば、型半導䜓であるTiO2を電極ずし
お甚い電解液䞭に入れるず、半導䜓衚面に空間
電荷局ず呌ばれる電䜍募配のある堎所ができ
る。第図でわかるずおり、この空間電荷局郚
分が倪陜電池における―接合郚分ず䌌た構
造を瀺し、同様の働きをなすであろうこずがわ
かる。すなわち、この界面では光励起によ぀お
生成した電子や正孔の分離が起こり、぀たり光
起電力が生じ、回路を閉じれば光電流が流れ
る。 たた、同時に、電極反応ずしお、TiO2電極
偎では氎の酞化による芳察の発生が、たた癜金
偎ではプロトンの還元に察応する氎玠の発生が
起こり埗る。 以䞊のように、この半導䜓湿匏光電池では、
電池反応の結果ずしお電気゚ネルギヌ以倖に氎
玠などの生成物を埗るこずができる。 しかしTiO2はそのバンドギダツプが3.0eVで
あるため玫倖線に近い波長域の光にしか応答し
ない。倪陜゚ネルギヌを少しでも倚く捕えよう
ずすれば、バンドギダツプがTiO2よりもせた
い半導䜓を甚いる必芁がある。実際には倪陜光
のスペクトル分垃を考慮しお1.1〜1.4eVの半導
䜓が最適であるずいわれおいる。しかし䟋えば
Si1.1eVでは、溶液䞭で衚面に絶瞁性酞化
皮膜を䜜りやすく、光起電力の倀も小さいこず
などの問題がある。 珟圚衚に瀺すようにいろいろの半導䜓に぀
いお光電極反応に察する怜蚎がすすめられおい
る。この衚でも明らかなようにCdS、CdSe、
GaP、GaAsなどの化合物半導䜓は、感光域が
広いため倪陜゚ネルギヌをより有効に利甚でき
る可胜性を持぀おいる。しかしながら、これら
の型半導䜓は、通垞の電解液䞭においお、光
照射䞋で次のような半導䜓自身の溶解反応をお
こす。 CdS2p+→Cd2+ (1) CdSe2p+→Cd2+Se (2) GaP6p+3H2O→Ga3+H3PO33H+ (3) GaAs6p+3H2O→Ga3+H3AsO33H+
(4)
The present invention is a novel electrolyte. Currently, the production of chlorine and caustic soda through salt electrolysis, the electrolysis industry such as aluminum smelting, and various batteries such as manganese dry batteries and lead-acid batteries are becoming important industries. In addition, various electrochemical measurements such as PH measurement are becoming increasingly important. Recently, methods for effectively utilizing solar energy have been deepened, and the superiority of electrochemical methods has begun to be recognized, and organic electrolysis methods are being considered as a new method for producing organic compounds. However, conventional electrochemical systems use water or highly polar organic solvents as solvents, and there are no known electrochemical systems that use nonpolar or low polarity solvents. As a result of careful study of the function of this crown compound, the present inventors discovered that it is possible to construct a completely new electrochemical system different from conventional electrochemical systems using this compound. That is, in conventional electrochemical systems, the role of the electrolyte was simply a dispersion medium for the electrode active material that had ionic conductivity, but in the present invention, the role of the electrolyte was a solution of a crown compound holding cations and a low polar solvent. including;
In the electrolytic solution characterized by substantially not containing a polar solvent, the electrolytic solution containing the crown compound itself includes cations and selectively solubilizes ions or salts, thereby achieving the unique functions of the crown compound. It also makes it possible to utilize the features of low polarity or nonpolar solvents, which were impossible to use in conventional electrochemical systems. That is, the present invention does not contain polar solvents, does not have the disadvantages associated with polar solvents, and allows for a number of completely new electrochemistry systems that cannot be implemented or realized in conventional electrochemical systems due to the characteristics of the solvent itself. This is the first time that a practical method has become practicable. A specific example of such a completely new electrolytic solution will be explained below. (A) A novel electrical system using inexpensive and stable anode materials. In conventional electrochemical systems, water or highly polar organic solvents were used as the electrolyte (solvent), and expensive metals such as platinum had to be used as electrode materials for reasons such as stability. In other words, although there has traditionally been a desire to increase anode stability by using nonpolar or low polarity solvents and to use many inexpensive metals as electrodes, supporting salts are not soluble in these solvents. Because of this, it was not possible to increase the ionic conductivity of the solution, making it unsuitable for use as an electrolyte. The inventors of the present invention have made extensive studies to find out whether this non-polar or low-polar solvent can also be used as an electrochemical solvent, and have discovered that an electrolyte can be created by using a crown compound together with a non-polar or low-polar solvent. discovered and achieved the present invention. The metal electrode that can be newly used in the electrolytic solution according to the present invention may be any metal electrode as long as it is extremely difficult to form a complex between the cation of the constituent metal and the crown compound used. At this time, the dissolution of the electrode itself is suppressed, and the potential range, which was previously limited by the dissolution potential of the metal in the solvent, is expanded to the decomposition potential of supporting salts and crown compounds, making it possible to perform electrolysis in a wide potential range. It is possible to make the electrode possible. For example, when using a (15-crown-5)-benzene mixed solvent and sodium tetraphenylborate as a supporting salt, the added
Metals other than (a), (a) and silver that are known to form stable complexes with 15-crown-5, preferably first transition metals,
More preferred are copper, zinc, iron, and alloys thereof. (B) A new metal refining method that controls the metal elution potential The electrolyte used in conventional wet metal refining uses water or a highly polar organic solvent as a solvent, and the elution order of metals is controlled. is a direct reflection of the normal ionization tendency. However, in the electrolytic solution according to the present invention, the electrolytic solution itself may strongly reflect the cation inclusion property of the crown compound, and as a result, the elution order of metals can be reversed from the normal order of ionization tendency. Therefore, metals that were conventionally found in abundance in the anode mud can be made to exist in abundance in the electrolyte. The target metal can be extracted with high purity from the electrolyte thus obtained by direct solvent extraction or by the reverse process of anodic elution (cathode deposition). As described above, we have invented a metal refining method that is completely different from conventional methods. Further, according to the present invention, all metals that can be included in crown compounds such as Group 1 metals such as gold and silver, Group 8 metals such as platinum, palladium, and rhodium, and uranium can be refined. (C) Application to organic electrolysis In conventional electrolytes, water or highly polar organic solvents are used as the electrolyte, and special solvents such as cellosolve are used when electrolyzing polyacene, etc. The current situation was that it was extremely difficult to regulate the electric potential accurately. Organic synthesis methods that originally rely on electrolysis can selectively perform specific oxidation and reduction reactions under potential regulation conditions, and conventionally electrolysis is performed under potential regulation conditions. Polyacenes, which could not be produced, are chemical species that have many possibilities as medical raw materials. Therefore, a technique for carrying out electrolytic reactions of these chemical species under potential regulation has been widely required from the viewpoint of high value-added electrolytic synthesis. On the other hand, in the electrolytic solution according to the present invention, the silver wire reference functions relatively stably due to the ion selectivity of the crown compound, and at the same time, the characteristics of a low polarity or non-polar solvent are maintained, which makes it difficult to use conventional electrolytic technology. In this case, polyacene, etc., which could not be electrolyzed under potential regulation conditions, can be electrolyzed under potential regulation conditions. Furthermore, when performing organic electrosynthesis, the choice of solvent affects the product. For example, 1,
In the electrolytic oxidation reaction of 2, 3, 4, 5-tetra-methylbanyene, the products are different as shown below.
This is closely related to the stability of cations produced by the reaction. {K.Nyberg, Chem.Commun., 774 (1969)} When a complex of a cation and a crown compound or a naked anion is present in a low polar solvent as in the case of the present invention, the product can be selectively produced by an anion substitution reaction depending on the type of anion, the solvent used, etc. Alternatively, it is conceivable that a dimerization reaction or the like may occur. (D) Application to semiconductor wet photovoltaic cells Recently, ways to effectively utilize solar energy have been explored, and the superiority of electrochemical methods has been recognized. In order to realize the utilization of solar energy by semiconductor wet photovoltaic cells, at least the following matters must be solved. (1) Improving energy conversion efficiency, (2) Establishing a cheap and simple manufacturing method for semiconductor materials, (3) Suppressing semiconductor electrode melting.On the other hand, semiconductor electrode materials that meet the conditions (1) and (2) above are , CdS, and many others have been known so far. However, as will be described later, the semiconductor electrode tends to melt, and in order to assemble a highly efficient photovoltaic cell, suppressing the melting of the semiconductor electrode is an essential condition. Thus, the electrolytic solution according to the present invention has been found to have a remarkable effect on suppressing the formation of semiconductor electrodes, which is currently the most sought-after problem (3). First, the operating principle of a semiconductor wet photovoltaic cell and conventional techniques for suppressing electrode dissolution will be explained. TiO 2 is an example of a semiconductor wet photovoltaic cell that has a large band gap of 3.0 eV and is an example of an electrode that is stable against self-dissolution reactions in a photoexcited state.
An example will be explained in which a semiconductor photoanode is in contact with an aqueous electrolyte. For example, when TiO 2 , an n-type semiconductor, is used as an electrode and placed in an electrolytic solution, a region with a potential gradient called a space charge layer is created on the semiconductor surface. As can be seen in FIG. 1, this space charge layer portion exhibits a structure similar to the pn junction portion in a solar cell, and it is understood that it will perform a similar function. That is, at this interface, separation of electrons and holes generated by photoexcitation occurs, that is, a photovoltaic force is generated, and when the circuit is closed, a photocurrent flows. At the same time, as an electrode reaction, the observed occurrence of water oxidation may occur on the TiO 2 electrode side, and hydrogen generation corresponding to the reduction of protons may occur on the platinum side. As mentioned above, in this semiconductor wet photovoltaic cell,
In addition to electrical energy, products such as hydrogen can be obtained as a result of the battery reaction. However, TiO 2 has a band gap of 3.0 eV, so it only responds to light in the wavelength range close to ultraviolet. In order to capture as much solar energy as possible, it is necessary to use a semiconductor with a narrower bandgap than TiO 2 . In reality, it is said that a semiconductor with a voltage of 1.1 to 1.4 eV is optimal considering the spectral distribution of sunlight. But for example
Si (1.1eV) has problems such as the tendency to form an insulating oxide film on the surface in solution and the photovoltaic force value is low. As shown in Table 1, various semiconductors are currently being studied for photoelectrode reactions. As is clear from this table, CdS, CdSe,
Compound semiconductors such as GaP and GaAs have a wide photosensitive range and have the potential to utilize solar energy more effectively. However, these n-type semiconductors cause the following dissolution reaction of the semiconductor itself under light irradiation in a normal electrolytic solution. CdS+2p + →Cd 2+ +S (1) CdSe+2p + →Cd 2+ +Se (2) GaP+6p + +3H 2 O→Ga 3+ +H 3 PO 3 +3H + (3) GaAs+6p + +3H 2 O→Ga 3+ +H 3 AsO 3 +3H +
(Four)

【衚】 この半導䜓湿匏光電池に斌ける半導䜓アノヌ
ドの安定、䞍安定に関する理論は、1977幎西ド
むツのゲリツシダヌおよびアメリカのバヌド、
ラむトン等により半導䜓の分解電䜍ず酞化還元
剀、䟋えば氎の酞化電䜍の関係が重芁な圹割を
なしおいるこずを芋い出され、第図に瀺すよ
うな結果が提出された。 CdSなどを電気化孊光孊電池の電極ずしお䜿
甚するためには、その溶解反応を抑えるこずが
できなければならない。そのためにはいろいろ
の詊みがあるが、埓来最も良く研究されおいる
のは、光励起で生じた正孔を溶解反応に関䞎さ
せるのではなく、電解液䞭に添加した化孊皮ず
優先的に反応させおしたう方法である。CdSや
CdSeに察し、その化孊皮ずしおS2-、Se2-、
Te2-等のカルコゲナむド系の還元剀が
Wrightonらによ぀お粟力的に研究され、衚
に瀺すような結果が報告されおいる。J.Am.
Chem.SoC.99、2839、1977及び同99、2834、
1977この堎合、半導䜓衚面では、反応(1)〜(4)
ず次に瀺す反応(5)ずの競争反応が起こり、反応
(5)がほが完党に優先的に起こ぀おいる時には、
「安定」ずいい、溶解反応も䞀郚起こ぀おいる
時には「䞍安定」にな぀おいるず蚀う。 Rednp+→OXn+ (5)
[Table] The theory regarding the stability and instability of semiconductor anodes in semiconductor wet photovoltaic cells was developed in 1977 by West German Gerritscher and American Bird.
Wrighton et al. discovered that the relationship between the decomposition potential of a semiconductor and the oxidation potential of a redox agent, such as water, plays an important role, and the results shown in FIG. 2 were submitted. In order to use CdS as an electrode for electrochemical optical cells, it is necessary to be able to suppress its dissolution reaction. There have been various attempts to achieve this, but the most well-researched method has been to use holes generated by photoexcitation to preferentially react with chemical species added to the electrolyte, rather than involving them in the dissolution reaction. This is a way to avoid it. CdS and
For CdSe, its chemical species are S 2- , Se 2- ,
Chalcogenide reducing agents such as Te 2-
As extensively studied by Wrighton et al., Table 2
The results shown below have been reported. (J.Am.
Chem.SoC.99, 2839, 1977 and 99, 2834,
(1977) In this case, on the semiconductor surface, reactions (1) to (4)
A competitive reaction with reaction (5) shown below occurs, and the reaction
When (5) occurs almost completely preferentially,
It is said to be ``stable,'' but when some dissolution reactions are occurring, it is said to be ``unstable.'' Rednp + →OX n+ (5)

【衚】 本発明者等も以前この䞍安定電極の安定化に
぀いおの研究を行い有効な還元剀は、どのよう
な酞化還元電䜍をも぀ものであるかを決めるこ
ずができた。T.Inoue、T.Watanabe、A.
Fujishima、K.Honda、K.Kohayakawa、J.
Electrochem.Soc.、124、7191977 結果的には第図に瀺すように䟋えばCdS単
結晶電極を䟋にずれば、CdS単結晶電極䞊にお
ける反応(1)ず反応(5)ずの競争反応が、レドツク
ス電䜍ずずもに倉化し、匷い還元剀であるず、
CdSの溶解抑制効果が倧きいこずがわかる。こ
の結果から第図に瀺すように、CcS溶解を抑
制できるレドツクス剀の電䜍は、溶解電䜍より
䞊にあるこずが必芁である。 たた、同時に、この半導䜓湿匏光電池の光励
起状態での最倧理論回路電圧はECB−EDず
なる。 以䞊は、埓来行なわれおきた半導䜓湿匏電池
の安定化に関わる技術であるが、この方匏は、
衚に瀺すように著しく着色した還元剀を電解
液系に添加する事が必須ずなり光゚ネルギヌの
有効利甚ずいう芳点からは、避けられない損倱
を持぀おいる。たた、半導䜓湿匏光電池の光励
起状態での開路起電圧は、添加還元剀の酞化還
元電䜍をEredoXずしお、最倧理論倀は
EredoX−EDを越えるものではない。 䞀方本発明による電解液では、半導䜓湿匏光
電池の半導䜓光アノヌドの安定化に際しお埓来
のものずは党く異なる機構を甚いおいる。 即ち、埓来の半導䜓湿匏光電池の安定化の系
に斌おは、電解液の圹割は、むオン導電性を持
぀た単なる電極掻物質の分散媒であ぀た。䞀
方、本発明による電解液を利甚する半導䜓湿匏
光電池の安定化の系に斌おは、電解液自䜓が、
むオン又は塩を遞択的にクラりン化合物に陜む
オンを包接しお可溶化するなどのクラりン化合
固有の機胜を持぀おいるので、結果ずしお
MnXmを半導䜓組成ずした堎合、MnXm〓
nM〓+SolvmXn〓e-の△で芏定されるED
が、M〓+Solvの安定性即ち、クラりン化合
物ず半導䜓を構成する金属陜むオンずの錯䜓の
安定性を匷く反映しお結果的に著しく貎な方向
に移動する。結果ずしお埓来のものずは異な
り、着色した還元剀等の添加が党く無い堎合で
すら、著しい電極の安定化が認められ、完党に
電極の安定化即ち、EpEVBの条件が達成され
ない堎合に斌おもEDが著しく埓来の系に比べ
お貎に移動しおいるため、添加還元剀の酞化還
元電䜍の遞択の巟が拡倧するために、半導䜓湿
匏光電池の光励起状態での開路電圧は、埓来の
半導䜓湿匏光電池の安定化条件のものよりも向
䞊するこずができた。 以䞊芁玄するず、半導䜓湿匏光電池の䞭必課
題であ぀た半導䜓光アノヌドの安定化が本発明
による新芏電解液を採甚するこずによ぀お解決
を芋るに臎぀た。 (E) 非氎電池系ぞの利甚 最近の゚レクトロニクスの発展により高゚ネ
ルギヌ密床の電池の開発が望たれおいる。負極
にリチりムたたはナトリりムを甚いた電池は、
むオン化傟向が倧きいこずたた高゚ネルギヌ密
床であるこずによりすでに䞀郚は実甚化が行わ
れおいる。旧来甚いられおきた電解液ずしおは
非プロトン系高むオン導電性であるこず等のた
めプロピレンカヌボネむト、―ブチロラクト
ン、ゞメチルフオルムアミド、テトラヒドロフ
ラン等が甚いられた。しかし陜極掻物質に
CuF2、CuCl2等を甚いたリチりム電池は広く怜
蚎されおきたが、たずえばフツ化銅CuF2
―リチりム電池は攟電電流の増加に䌎う利甚率
の䜎䞋が倧きい。たたCuF2の有機電解質䞭ぞ
の溶解床が倧きく、氎などの䞍玔物にもきわめ
お敏感である。このため保存寿呜が短いのが欠
点で、LiClO4―PC電解質を甚いた電池が、35
℃の保存では数か月で完党に自己攟電しおした
うなどの報告がある。 たた塩化銅CuCl2―リチりム電池も、
CuCl2がCuF2以䞊に溶解床が倧きく自己攟電が
問題ずな぀た。過剰のAlCl3共存による共通む
オン効果、あるいはむオン亀換膜の䜿甚の研究
などがなされたが成功しなか぀た。かなり倧電
流の攟電が、広い枩床範囲で可胜であるが、攟
電曲線は䞍安定である。 ずころが、たずえば電解液をカチオン―クラ
りンコンプレツクス過剰の遊離のクラりン化
合物を含むず少量のテトラヒドロフランの混
合液に倉えるずフツ化銅、塩化銅の有機電解質
ぞの溶解が小さくなるため、利甚率を高く保持
でき、電池の保存寿呜を著しく延長させるこず
ができる。 以䞊本発明の電解液の具䜓䟋を䟋瀺したが、陜
むオンを保持せしめたクラりン化合物ず䜎極性溶
媒ずの溶液を電解液又はその䞀郚ずしお䜿甚する
こずによ぀お埓来困難又は䞍可胜であ぀た各皮電
気化孊反応を可胜にし、その結果倪陜゚ネルギヌ
の有効な倉換法、安䟡な電極材料の䜿甚法、貎金
属などの簡単な粟錬法あるいは高出力電池の補造
などに関し倚くの有効か぀新芏の方法を開発する
こずができた。 本発明においおクラりン化合物ずは、電子䟛本
性原子ずしお酞玠たたは酞玠ず窒玠及び又はむオ
りをも぀ヘテロ環状構造を有し、環の空孔内に陜
むオンを取り蟌んで錯䜓を圢成する胜力を有する
䞀矀の化合物をいい、このような胜力を有する非
還状のヘテロ化合物類瞁䜓も含たれる。これらク
ラりン化合物の兞型的な䟋ずしおは、C.J.
PedereenがJ.Amer.Chem.Soc.、89、70171967
に報告したクラりン゚ヌテルず呌称される䞀矀の
倧環状ポリ゚ヌテル及びその誘導䜓、J.M.Lehn
がStructure and Bonding、16、1973に報
告したクリプタンドず呌称される䞀矀の窒玠を橋
頭原子ずする双環匏ポリ゚ヌテル及びその類瞁䜓
があり、さらにこれらを含め、J.J.Christensen、
D.J.E―atough、R.M.IzattがChem.Revs.、74、
3511974にクラりン化合物ず総称しお玹介した
ヘテロ環状化合物がある。 これらクラりン化合物の構造の䟋を䞀般匏で瀺
せば䟋えば䞋蚘の()、()、()、()、()、
などがある。 ここで、
[Table] The present inventors have previously conducted research on stabilizing this unstable electrode and were able to determine what kind of redox potential an effective reducing agent has. (T.Inoue, T.Watanabe, A.
Fujishima, K. Honda, K. Kohayakawa, J.
Electrochem.Soc., 124, 719 (1977)) As a result, as shown in Figure 3, taking a CdS single crystal electrode as an example, reaction (1) and reaction (5) on the CdS single crystal electrode are The competitive reaction of changes with the redox potential and is a strong reducing agent.
It can be seen that the effect of suppressing the dissolution of CdS is large. From this result, as shown in FIG. 4, the potential of the redox agent capable of suppressing CcS dissolution needs to be above the dissolution potential. At the same time, the maximum theoretical circuit voltage of this semiconductor wet photovoltaic cell in a photoexcited state is |E CB −ED | . The above is the technology related to the stabilization of semiconductor wet batteries that has been used in the past, but this method is
As shown in Table 2, it is essential to add a significantly colored reducing agent to the electrolytic solution system, resulting in an unavoidable loss from the viewpoint of effective utilization of light energy. In addition, the maximum theoretical value of the open circuit electromotive voltage in the photoexcited state of a semiconductor wet photovoltaic cell is |
It does not exceed Ered/oX−E D |. On the other hand, the electrolytic solution according to the present invention uses a completely different mechanism from the conventional one when stabilizing the semiconductor photoanode of the semiconductor wet photovoltaic cell. That is, in the conventional stabilization system of a semiconductor wet photovoltaic cell, the role of the electrolytic solution was merely a dispersion medium for the electrode active material having ionic conductivity. On the other hand, in the system for stabilizing a semiconductor wet photovoltaic cell using the electrolyte according to the present invention, the electrolyte itself is
As a result, it has functions unique to crown compounds, such as selectively including cations or salts in crown compounds and solubilizing them.
When MnXm is used as a semiconductor composition, MnXm〓
nM〓 + (Solv) mXn〓 ED defined by △G of e-
However, it strongly reflects the stability of M〓 + (Solv), that is, the stability of the complex between the crown compound and the metal cation constituting the semiconductor, and as a result moves in a significantly noble direction. As a result, unlike conventional methods, significant electrode stabilization was observed even without the addition of colored reducing agents, etc., and the condition of complete electrode stabilization, that is, E p > E VB , was not achieved. Even in this case, the open circuit voltage in the photoexcited state of the semiconductor wet photovoltaic cell increases because the E D is significantly more noble than in the conventional system, and the range of selection of the redox potential of the additive reducing agent is expanded. could be improved over the stabilization conditions of conventional semiconductor wet photovoltaic cells. In summary, the stabilization of semiconductor photoanodes, which was an essential issue in semiconductor wet photovoltaic cells, has been solved by employing the novel electrolyte according to the present invention. (E) Application to non-aqueous battery systems With the recent development of electronics, it is desired to develop batteries with high energy density. Batteries using lithium or sodium as the negative electrode are
Due to their large ionization tendency and high energy density, some of them have already been put into practical use. Conventionally used electrolytes include propylene carbonate, r-butyrolactone, dimethylformamide, and tetrahydrofuran because of their aprotic high ionic conductivity. However, the anode active material
Lithium batteries using CuF 2 , CuCl 2 , etc. have been widely studied, but for example, copper fluoride (CuF 2 )
-The utilization rate of lithium batteries decreases significantly as the discharge current increases. Furthermore, CuF 2 has a high solubility in organic electrolytes and is extremely sensitive to impurities such as water. As a result, batteries using LiClO 4 -PC electrolyte have a short shelf life.
There are reports that when stored at ℃, the battery completely self-discharges after several months. Copper chloride (CuCl 2 )-lithium batteries also
CuCl 2 has a higher solubility than CuF 2 and self-discharge became a problem. Attempts have been made to investigate the common ion effect caused by the coexistence of excess AlCl 3 or the use of ion exchange membranes, but without success. Discharges of fairly high currents are possible over a wide temperature range, but the discharge curves are unstable. However, if the electrolyte is changed to a mixture of a cation-crown complex (containing an excess of free crown compounds) and a small amount of tetrahydrofuran, for example, the dissolution of copper fluoride and copper chloride in the organic electrolyte becomes smaller, resulting in a lower utilization rate. can be maintained at a high level, significantly extending the shelf life of the battery. Although specific examples of the electrolytic solution of the present invention have been illustrated above, by using a solution of a crown compound that retains cations and a low polar solvent as the electrolytic solution or a part thereof, it is possible to solve problems that were previously difficult or impossible. It has enabled a variety of electrochemical reactions, resulting in many effective and novel methods for the effective conversion of solar energy, the use of inexpensive electrode materials, the simple refining of precious metals, and the production of high-power batteries. I was able to develop it. In the present invention, crown compounds are a group of compounds that have a heterocyclic structure with oxygen or oxygen and nitrogen and/or sulfur as electronic atoms, and have the ability to incorporate cations into the vacancies of the ring to form a complex. It refers to a compound, and also includes non-reduced hetero compound analogs having such abilities. Typical examples of these crown compounds include CJ
Pedereen J.Amer.Chem.Soc., 89 , 7017 (1967)
A group of macrocyclic polyethers called crown ethers and their derivatives reported in J.M.Lehn
There is a group of bicyclic polyethers and their analogues with a nitrogen bridgehead atom called cryptands, which were reported by J. J. Christensen in Structure and Bonding, 16 , 1 (1973), and their analogs.
DJE―atough, RMIzatt Chem.Revs., 74 ,
351 (1974), there are heterocyclic compounds that are collectively referred to as crown compounds. Examples of the structures of these crown compounds are as follows (), (), (), (), (),
and so on. here,

【匏】、―CH3たた は―C2H5、〜、及び又は、
〜10である。 ここで、は()のず同じ、〜であ
り、〜10であり、、及び又はで
あり、
[Formula] (X=H, -CH 3 or -C 2 H 5 , m=2-4) D=O, N and or S,
n=4-10. Here, R is the same as R in (), m = 1 to 4, n = 4 to 10, D = O, N and or S,

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】又は[Formula] or

【匏】である。 ここで、R1、R2は()のず同じであり、R1
ずR2は同䞀であ぀おも異な぀おいおもよい。
、及び又はであり、、は()のず
同じであり、ずは同䞀であ぀おも異な぀おい
おもよい。たた〜であり、〜で
ある。 ここで、、、は〜の敎数である。 () R1――R2―――oR1 ここで、R1は―CH3、―C2H5、
[Formula]. Here, R 1 and R 2 are the same as R in (), and R 1
and R 2 may be the same or different. D
=O, N and/or S, A and B are the same as A in (), and A and B may be the same or different. Moreover, m=0-4, and n=1-4. Here, l, m, and n are integers of 0 to 2. () R 1 ―O(―R 2 ―O―)― o R 1Here , R 1 is ―CH 3 , ―C 2 H 5 ,

【匏】【formula】

【匏】 であり、R2は()のず同じ、〜であ
る。 このようなクラりン化合物がその環の空孔内に
陜むオンを取り蟌んで錯䜓を圢成する胜力は、環
䞭に存圚する電子䟛䞎性原子の皮類及び数、環の
倧きさすなわち環員数、陜むオンのむオン埄
などの因子によ぀お定たり、埓぀お䞊蚘䞀般匏に
おける、、、、、R1、R2、、に
察応する数倀や眮換基などはそれぞれの䞀般匏に
蚘した範囲内であるこずが奜たしく、本発明にお
いお䜿甚される支持塩の陜むオン皮によ぀お
遞択するこずが奜たしい。 クラりン化合物の具䜓的な䟋を瀺せば次のよう
なものが含たれる。以䞋の具䜓䟋においお()、
、()に属するものは䞻ずしおPedersenが前
蚘報文においお提案し、珟圚慣甚的に甚いられる
クラりン名によるものであり、〔ポリ゚ヌテル環
に぀いた眮換基の皮類ず数〕―〔環を構成しおい
る原子の数すなわち環員数〕―〔クラりン
電子䟛䞎性原子ずしお酞玠ず窒玠ずよりなるも
のはアザクラりン、酞玠ずむオりずよりなるもの
はチアクラりン、酞玠ず窒玠ずむオりずよりなる
ものはアザチアクラりン〕−〔環䞭に存圚する電
子䟛䞎性原子の数〕の順で衚わしたものである。
すなわち()に属するものずしおは、12―クラり
ン―14―クラりン―15―クラりン―
18―クラりン―18―ゞアザクラりン―18
―ゞチアクラりン―18―アザチアクラりン―
、酞化プロピレン環状四量䜓などが含たれ、
に属するものずしおは、ベンゟ―15―クラり
ン―、ベンゟ―18―クラりン―、メチルベン
ゟ―18―クラりン―、シクロヘキシル―18―ク
ラりン―、ベンゟ―18―アザクラりン―、
[Formula], and R 2 is the same as R in (), and n=3 to 9. The ability of such a crown compound to incorporate a cation into the vacancy of its ring to form a complex depends on the type and number of electron-donating atoms present in the ring, the size of the ring (i.e., the number of ring members), and the cation. It is determined by factors such as the ionic diameter of the ion, and therefore the numerical values and substituents corresponding to l, m, n, D, R, R 1 , R 2 , A, and B in the above general formula are determined by the respective general formula. It is preferably within the range described above, and is preferably selected depending on the cationic species (of the supporting salt) used in the present invention. Specific examples of crown compounds include the following: In the following specific example(),
Those belonging to () and () are mainly based on the crown names proposed by Pedersen in the above-mentioned paper and currently commonly used. number of atoms (i.e., number of ring members)] - [Crown (An azacrown is composed of oxygen and nitrogen as electron-donating atoms, a thiacrown is composed of oxygen and sulfur, and a thiacrown is composed of oxygen, nitrogen, and sulfur. (Azathia crown) - [Number of electron-donating atoms present in the ring].
In other words, those belonging to () are 12-crown-4, 14-crown-4, 15-crown-5,
18-Crown-6,18-Zia the Crown-6,18
―Jitia Crown―6,18―Azachia Crown―
6. Contains propylene oxide cyclic tetramer, etc.
Those belonging to () include benzo-15-crown-5, benzo-18-crown-6, methylbenzo-18-crown-6, cyclohexyl-18-crown-6, benzo-18-azacrown-6,

【匏】【formula】

【匏】 などが含たれ、()に属するものずしおはゞベン
ゟ―15―クラりン―、ゞシクロヘキシル―15―
クラりン―、ゞベンゟ―18―クラりン―、ゞ
ベンゟ―24―クラりン―、ゞメチルゞベンゟ―
30―クラりン―10、ゞシクロヘキシル―18―クラ
りン―、
[Formula] etc., and those belonging to () include dibenzo-15-crown-5, dicyclohexyl-15-
Crown-5, Dibenzo-18-Crown-6, Dibenzo-24-Crown-8, Dimethyldibenzo-
30-crown-10, dicyclohexyl-18-crown-6,

【匏】【formula】

【匏】【formula】

【匏】 などが含たれる。 ()に属するものの具䜓䟋をLehnが前蚘報文で
提案し珟圚慣甚的に甚いられおいるクリプタンド
名すなわち〔クリヌプタンド〕―〔個の鎖䞭に
それぞれ存圚する酞玠原子の数〕を甚いお瀺せ
ば、クリプタンド〔〕、クリプタンド
〔〕、クリプタンド〔〕など
が含たれる。()に属するものずしおは、テトラ
゚チレングリコヌルゞメトキシ゚ヌテル、ペンタ
゚チレングリコヌルゞメトキシ゚ヌテル、テトラ
プロピレングリコヌルゞメトキシ゚ヌテルなどが
含たれ、これらは非環状化合物ではあるが鎖䞭に
存圚する電子䟛䞎性の酞玠原子が陜むオンの呚囲
に配䜍し、実質的には、ヘテロ環状化合物ず同様
な挙動を瀺すものである。 本発明に䜿甚するクラりン化合物は前蚘
Pedersen、Lehn、Christensenらの文献に蚘茉さ
れた方法に埓぀お合成するこずができる。 本発明においお、クラりン化合物に保持せしめ
お䜿甚される陜むオン及びその察陰むオンは次の
通りである。 陜むオンずしおは、呚期埋衚の(a)族原子
Li、Na、、Rb、Cs、(a)族原子Mg、
Ca、Sr、Ba及びNH4 +が甚いられる。 察陰むオンずしおは本発明の電解液に溶解する
ものである必芁があり、ある皋床むオン解離し、
電導床を持぀ものが甚いられる。具䜓的にはI-、
SCN-、PF6 -、ClO4 -、RCOO-、ピクレヌト、
BF6 -、BR4 -は氎玠原子たたは炭玠数〜12
の脂肪族たたは芳銙族炭化氎玠残基、AlCl4 -等
が遞ばれる。 本発明で甚いられる䜎極性溶媒ずはいわゆる非
極性溶媒を含むものであり、飜和脂肪族炭化氎
玠、芳銙族炭化氎玠、䞍飜和炭化氎玠、ハロゲン
炭化氎玠、゚ヌテル化合物である。 飜和脂肪族炭化氎玠ずしおは、シクロペンタ
ン、ペンタン、―メチルブタン、―ゞメ
チルプロパン、メチルシクロペンタン、シクロヘ
キサン、ヘキサン、メチルペンタン、ゞメチルブ
タン、メチルシクロヘキサン、ヘプタン、メチル
ヘキサン、ゞメチルペンタン、゚チルシクロヘキ
サン、オクタン等である。 芳銙族炭化氎玠ずは、ベンれン、トル゚ン、
―キシレン、―キシレン、―キシレン、゚チ
ルベンれン、クメン、メシチレン等である。 䞍飜和炭化氎玠ずしおは、ペンテン、ヘキセ
ン、オクテン、シクロヘキセン、スチレン等であ
る。 ハロゲン化炭化氎玠ずしおは、塩化炭玠、ク
ロロホルム、クロロベンれン、フルオロベンれ
ン、フルオロトル゚ン、ブロモベンれン、ブロモ
ホルム等である。 ゚ヌテル化合物ずしおは、―ゞオキサ
ン、ゞプニル゚ヌテル、ゞ゚チル゚ヌテル、ゞ
メチル゚ヌテル、゚チルメチル゚ヌテル、テトラ
ヒドロフラン、アニ゜ヌル、ゞメトキシ゚タン等
である。 本発明においお陜むオンを保持せしめたクラり
ン化合物ず䜎極性溶媒ずの混合比は、期埅する電
解液の電導床、クラりン化合物の溶解床等により
異なるが䞀般的にモル比で99〜10〜90であ
る。 本発明の電解液の調敎方法ずしおは、クラりン
化合物ず䜎極性溶媒ずの溶液䞭に適圓な陜むオン
及び察陰むオンを有する支持塩を溶解せしめる方
法など通垞の陜むオン保持クラりン化合物の調敎
法が採甚される。 以䞋に実斜䟋を挙げお本発明を説明する。 実斜䟋  最初に、クラりン化合物ずしおその宀孔半埄が
ナトリりムのむオン半埄ずほが等しい15―クラり
ン―1013―ペンタオキサシク
ロペンタデカンを䜿甚し、たた䜎極性溶媒ずし
おベンれンを䜿甚しお䞡者の混合比を倉えた溶液
の誘電率を枬定した。枬定系は、ガヌド電極を含
む極構成の枬定容噚を甚い、1KHzの正匊波を
入力しLock―in Ampを怜出噚に甚いお、ブリツ
ゞをバランスさせるこずにより、電導床ず静電容
量を枬定した。溶液の比誘電率は枬定容噚の空容
量ず枬定した静電容量ずの比から求めた。枬定結
果を第図に瀺す。 次に、ベンれンのモル分率を0.8に固定した比
誘電率が5.7の溶液を甚い、この溶液に支持塩ず
しお゜デむりムテトラプニルボレヌトを序々に
添加し、その際の電気䌝導床の倉化を調べた。枬
定は癜金黒を電極に持぀電導床枬定容噚に、1K
Hzの正匊波を入力しブリツゞをバランスさせる事
によりおこな぀た。枬定結果を第図に瀺す。 添加塩濃床が0.1Mの時に電気䌝導床は2.8×
10-4ohm-1cm-1ずな぀た。 ベンれンのモル分率が0.8、比誘電率が5.7の溶
液に0.1Mの゜デむりムチトラプニルボレヌト
を添加した電気䌝導床が2.8×10-4ohm-1cm-1の溶
液に10-3Mのプロセンを酞化還元剀ずしお添加
し、銀線を参照極に甚いお、䜜甚極および察極を
癜金線にしおサむクリツクボルタモグラムを枬定
した。結果を第図に瀺す。 以䞊の結果をふたえ、䜜甚極を癜金線から銅線
に替え酞化還元剀を含たない条件でサむクリツク
ボルタモグラムを枬定した。結果を第図に瀺
す。ここで比范のためにアセトニトリル䞭゜デむ
りムテトラプニルボレヌトを支持塩ずしおサむ
クリツクボルタモグラムを枬定した結果を第図
に瀺す。 同様に、䜜甚極ずしお亜鉛線を甚い、䞊述の溶
液組成の䞭でサむクリツクボルタモグラムを枬定
した結果を第図に瀺す。たた、ここで比范の
ためにアセトニトリル䞭゜デむりムテトラプニ
ルボレヌトを支持塩ずしおサむクリツクボルタモ
グラムを枬定した結果を第図に瀺す。 同様に䜜甚極ずしお銀線を甚い䞊述の溶液組成
の䞭でサむクリツクボルタモグラムを枬定した結
果を第図に瀺す。 以䞊の枬定結果を䌚釈すれば、本発明による電
解液は埓来の電解液ずは著しく異なり、金属塩の
電解液䞭ぞの溶け蟌みがクラりン化合物ずの錯䜓
圢成の安定性を匷く反映しお制埡されおいる。埓
぀おこの理由により䞊蚘(A)から(E)にわたる数々の
本発明の具䜓的応甚が可胜になる。 即ち䞊蚘の実斜䟋から知れるように、埓来電気
化孊系を構成し埗なか぀たような非極性溶媒であ
るベンれンが電気化孊系の構成に関䞎し、かかる
新芏な電気化孊系では銅電極、亜鉛電極の安定な
電䜍領域がこの電解液の分解電䜍にたで拡倧され
る事が明らかにな぀た。 䞀方、銀電極は、銀むオンが15―クラりン―
ずの間に匷い錯䜓を圢成する事実を反映し、過電
圧零で電解液䞭に溶出した。 以䞊の結果から本発明による電解液では、通垞
のむオン化傟向ずは逆の溶出順䜍を持぀に臎るこ
ずが明らかであり、前蚘(B)に瀺すような新芏な金
属粟錬法が構成される。 たた䞊蚘から(A)、(C)のような新芏技術が構成し
埗るこずは蚀うたでもない。 実斜䟋  非極性溶媒であるベンれンずその空孔半埄がナ
トリりムのむオン半埄にほが等しい15―クラりン
―を、ベンれンのモル分率が0.8になる様に混
合し、そこに゜デむりムテトラプニルボレヌト
を0.1Mの濃床ずなるように添加し電解液を調補
した。 たず第番目に硫化カドミりムの単結晶に、む
ンゞりム―ガリりム合金を䞀面に塗り、次に銀ペ
ヌストを甚いお銅線を接続しオヌム接合を䜜り、
党䜓を結晶の䞀面のみが電解液に露出するように
残しお、他ぱポキシ暹脂で塗り蟌み電極をガラ
ス基板䞊に固定した。 䞊蚘電極を䜜甚極ずし、癜金電極を察極ずな
し、参照極を銀線ずし、これら぀の電極を䞊蚘
電解液䞭に挬けおポテンシペスタツトにより暗条
件および500wキセノン灯による光励起条件での
サむクリツクボルタモグラムを枬定した。 枬定結果は、暗条件では、銀線に察する電極電
䜍が−0.9Vより卑な堎合にのみカ゜ヌド電流が
芳枬され、−0.9Vより貎な堎合には䜕ら電流は芳
枬されなか぀た。 䞀方、キセノン灯による光励起条件では、−
0.9Vからカ゜ヌド電流が認められるものの、−
0.6Vより貎の電䜍で暗条件䞋では認められなか
぀たアノヌド電流が新らたに認められた。 たた、このアノヌド電流は、励起光を断぀ず速
やかに消倱し、再び励起光を入射させるず速やか
に回埩されるこずが認められた。 たた以䞊の結果をふたえ、電極電䜍を銀線に察
しお1.0Vに固定し励起光により生ずる光電流の
経時挙動を調べた。その結果、光増感電解初期に
は、1.6mAcm2の光電流が枬定され、これが時
間以䞊の連続的な光増感電解ののちにもほずんど
枛衰を瀺さずに流れ続けた。 CdS光アノヌドが安定化されるこずが刀明した
ので、この半導䜓電極ず癜金電極を甚いお光電池
を組んだ。この時の光電池の様子を第図に瀺
す。字管の䞡方にそれぞれの電極を挿入し、静
かに、䞊蚘硫化カドミりム単結晶電極偎からは、
最初に蚘した組成の電解液を泚入し、䞀方、反察
の癜金電極偎からは硫酞酞性の飜和塩化ナトリり
ム氎溶液を泚入した。䞡電解液は二盞に分離しお
接した。䞡電極を単絡したのち硫化カドミりム単
結晶電極を500WXe灯で光励起したずころ、光電
流が倖郚回路を流れ、癜金極からは氎玠気泡が発
生した。 第番目に、䞊蚘硫化カドミりム単結晶で述べ
たず同様の方法により酞化亜鉛粉末を加圧焌成し
お䜜぀た酞化亜鉛半導䜓電極を䜜り、癜金察極、
銀参照極の電極を、硫化カドミりム電極の堎合
ず党く同様な組成を持぀電解液䞭に挬け、ポテン
シペスタツトによる電䜍芏制条件䞋で暗条件およ
び500wXe灯による光励起条件でサむクリツクボ
ルタモグラムを枬定した。 結果は暗条件のもず、−0.3Vより卑な電䜍領域
でカ゜ヌド電流が認められ、−0.2Vより貎な電気
領域では暗条件䞋では芳枬されなか぀た光増感電
流がアノヌド電流ずしお流れた。 第番目に型シリコンを䞊蚘、第番目およ
び第番目に述べたず党く同様の方法で電極ずな
し、癜金察極、銀参照極の電極を、䞊蚘第番
目および第番目ず党く同じ電解液䞭に挬け、ポ
テンシペスタツトによる電䜍芏制条件䞋で、暗条
件および500wXe灯による光励起条件でサむクリ
ツクボルタモグラムを枬定した。 次に型シリコン電極の電䜍を1.7Vに固定
し500wXe灯の光をチペツプしながら、光電流の
経時倉化を調べた。時間の光増感電解を連続に
おこな぀たずころ通垞の電解液に比しお著しく安
定であるこずが確認された。
[Formula] etc. are included. A specific example of something belonging to () was proposed by Lehn in the above paper and is now commonly used using the name of cryptand, namely [creeptand] - [the number of oxygen atoms present in each of the three chains]. If shown, cryptand [2, 2, 1], cryptand [2, 2, 2], cryptand [3, 3, 3], etc. are included. Those belonging to () include tetraethylene glycol dimethoxy ether, pentaethylene glycol dimethoxy ether, tetrapropylene glycol dimethoxy ether, etc. Although these are acyclic compounds, electron-donating oxygen atoms present in the chain It coordinates around a cation and exhibits substantially the same behavior as a heterocyclic compound. The crown compound used in the present invention is as described above.
It can be synthesized according to the method described in Pedersen, Lehn, Christensen et al. In the present invention, the cations and their counter anions that are used and retained in the crown compound are as follows. As cations, group (a) atoms of the periodic table (Li, Na, K, Rb, Cs), group (a) atoms (Mg,
Ca, Sr, Ba) and NH4 + are used. The counter anion must be soluble in the electrolyte of the present invention, and must be ionically dissociated to some extent.
A material with electrical conductivity is used. Specifically, I - ,
SCN - , PF 6 - , ClO 4 - , RCOO - , Pirate,
BF 6 - , BR 4 - (R is a hydrogen atom or has 1 to 12 carbon atoms
aliphatic or aromatic hydrocarbon residues), AlCl 4 - , etc. The low polar solvent used in the present invention includes so-called non-polar solvents, and includes saturated aliphatic hydrocarbons, aromatic hydrocarbons, unsaturated hydrocarbons, halogen hydrocarbons, and ether compounds. Saturated aliphatic hydrocarbons include cyclopentane, pentane, 2-methylbutane, 2,2-dimethylpropane, methylcyclopentane, cyclohexane, hexane, methylpentane, dimethylbutane, methylcyclohexane, heptane, methylhexane, dimethylpentane, and ethyl. Cyclohexane, octane, etc. Aromatic hydrocarbons include benzene, toluene, O
-xylene, m-xylene, p-xylene, ethylbenzene, cumene, mesitylene, etc. Examples of unsaturated hydrocarbons include pentene, hexene, octene, cyclohexene, and styrene. Examples of halogenated hydrocarbons include carbon tetrachloride, chloroform, chlorobenzene, fluorobenzene, fluorotoluene, bromobenzene, and bromoform. Examples of the ether compound include 1,4-dioxane, diphenyl ether, diethyl ether, dimethyl ether, ethyl methyl ether, tetrahydrofuran, anisole, and dimethoxyethane. In the present invention, the mixing ratio of the crown compound that retains cations and the low polar solvent varies depending on the expected conductivity of the electrolyte, the solubility of the crown compound, etc., but is generally a molar ratio of 99 to 10:1 to 90. It is. The electrolytic solution of the present invention can be prepared using conventional methods for preparing a cation-retaining crown compound, such as dissolving a supporting salt having appropriate cations and counteranions in a solution of a crown compound and a low polar solvent. Adopted. The present invention will be explained below with reference to Examples. Example 1 First, 15-crown-5 (1,4,7,10,13-pentaoxacyclopentadecane), whose pore radius is approximately equal to the ionic radius of sodium, was used as a crown compound, and a low polar solvent was used. The dielectric constants of solutions with different mixing ratios of benzene and benzene were measured. The measurement system uses a three-pole measurement container including a guard electrode, inputs a 1KHz sine wave, uses a Lock-in Amp as a detector, and balances the bridge to measure conductivity and capacitance. did. The dielectric constant of the solution was determined from the ratio of the empty capacity of the measurement container to the measured capacitance. The measurement results are shown in Figure 5. Next, using a solution with a dielectric constant of 5.7 in which the molar fraction of benzene was fixed at 0.8, sodium tetraphenylborate was gradually added to this solution as a supporting salt, and the electrical conductivity changed at that time. I looked into it. The measurement is carried out using a 1K conductivity measuring container with platinum black electrodes.
This was done by inputting a Hz sine wave and balancing the bridge. The measurement results are shown in Figure 6. When the added salt concentration is 0.1M, the electrical conductivity is 2.8×
It became 10 -4 ohm -1 cm -1 . 10 -3 M is added to a solution with an electrical conductivity of 2.8 × 10 -4 ohm -1 cm -1, which is obtained by adding 0.1 M sodium titraphenylborate to a solution with a benzene molar fraction of 0.8 and a dielectric constant of 5.7. of ferrocene was added as a redox agent, a silver wire was used as a reference electrode, and a cyclic voltammogram was measured using a platinum wire as a working electrode and a counter electrode. The results are shown in FIG. Based on the above results, the cyclic voltammogram was measured under conditions in which the working electrode was changed from a platinum wire to a copper wire and no redox agent was included. The results are shown in Figure 8a. For comparison, a cyclic voltammogram was measured using sodium tetraphenylborate in acetonitrile as a supporting salt, and the results are shown in FIG. 8b. Similarly, using a zinc wire as the working electrode, the cyclic voltammogram was measured in the above solution composition, and the results are shown in FIG. 9a. For comparison, a cyclic voltammogram was measured using sodium tetraphenylborate in acetonitrile as a supporting salt, and the results are shown in FIG. 9b. Similarly, FIG. 10 shows the results of measuring the cyclic voltammogram in the above solution composition using a silver wire as the working electrode. Considering the above measurement results, the electrolytic solution according to the present invention is significantly different from conventional electrolytic solutions, and the dissolution of the metal salt into the electrolytic solution is controlled to strongly reflect the stability of complex formation with the crown compound. ing. Therefore, for this reason, a number of specific applications of the present invention from (A) to (E) above are possible. That is, as can be seen from the above examples, benzene, a non-polar solvent that could not be used in conventional electrochemical systems, is involved in the structure of the electrochemical system, and in this new electrochemical system, copper electrodes and zinc electrodes are used. It has become clear that the stable potential range of is extended to the decomposition potential of this electrolyte. On the other hand, in the silver electrode, silver ions are 15-crown-5
Reflecting the fact that a strong complex is formed between the two, it elutes into the electrolyte at zero overvoltage. From the above results, it is clear that the electrolytic solution according to the present invention has an elution order that is opposite to the normal ionization tendency, and a novel metal refining method as shown in (B) above is constructed. Furthermore, it goes without saying that new technologies such as (A) and (C) above can be constructed. Example 2 Benzene, a non-polar solvent, and 15-crown-5, whose pore radius is approximately equal to the ionic radius of sodium, were mixed so that the molar fraction of benzene was 0.8, and sodium tetraphrase was added to the mixture. An electrolytic solution was prepared by adding enylborate to a concentration of 0.1M. First, a single crystal of cadmium sulfide is coated with an indium-gallium alloy, and then a copper wire is connected using silver paste to create an ohmic junction.
Only one side of the crystal was left exposed to the electrolyte, and the other side was filled with epoxy resin to fix the electrode on a glass substrate. The above electrode was used as the working electrode, the platinum electrode was used as the counter electrode, and the silver wire was used as the reference electrode.These three electrodes were immersed in the above electrolyte solution and cyclically operated using a potentiometer under dark conditions and under light excitation conditions using a 500W xenon lamp. A voltammogram was measured. The measurement results showed that under dark conditions, cathode current was observed only when the electrode potential relative to the silver wire was less noble than -0.9V, and no current was observed when it was nobler than -0.9V. On the other hand, under optical excitation conditions using a xenon lamp, -
Although cathode current is observed from 0.9V, −
At a potential higher than 0.6 V, an anodic current that was not observed under dark conditions was newly observed. It was also found that this anode current quickly disappeared when the excitation light was cut off, and was quickly recovered when the excitation light was introduced again. Based on the above results, we fixed the electrode potential at 1.0 V with respect to the silver wire and investigated the temporal behavior of the photocurrent generated by excitation light. As a result, a photocurrent of 1.6 mA/cm 2 was measured at the initial stage of photosensitization electrolysis, and this continued to flow with almost no attenuation even after continuous photosensitization electrolysis for more than 6 hours. Since the CdS photoanode was found to be stable, a photovoltaic cell was assembled using this semiconductor electrode and a platinum electrode. FIG. 11 shows the state of the photovoltaic cell at this time. Insert each electrode into both sides of the U-shaped tube, and gently insert the cadmium sulfide single crystal electrode from above.
An electrolytic solution having the composition described above was injected, while a sulfuric acid acidic saturated sodium chloride aqueous solution was injected from the opposite platinum electrode side. Both electrolytes were separated into two phases and contacted each other. When both electrodes were single-circuited and the cadmium sulfide single crystal electrode was photoexcited with a 500WXe lamp, a photocurrent flowed through the external circuit and hydrogen bubbles were generated from the platinum electrode. Second, a zinc oxide semiconductor electrode was made by pressure firing zinc oxide powder using the same method as described for the cadmium sulfide single crystal above, and a platinum counter electrode,
The three silver reference electrodes were immersed in an electrolytic solution with the same composition as the cadmium sulfide electrode, and cyclic voltammograms were measured under potential regulation conditions using a potentiostat in the dark and under light excitation conditions using a 500w Xe lamp. . The results showed that under dark conditions, a cathodic current was observed in the potential range less noble than -0.3V, and in the electrical potential region more noble than -0.2V, a photosensitizing current that was not observed under dark conditions flowed as an anode current. . Third, use n-type silicon as an electrode in exactly the same manner as described in the first and second sections above, and use three electrodes, a platinum counter electrode and a silver reference electrode, in exactly the same manner as in the first and second sections. The samples were immersed in the same electrolyte solution, and cyclic voltammograms were measured under potential control conditions using a potentiostat, under dark conditions, and under photoexcitation conditions using a 500w Xe lamp. Next, the potential of the n-type silicon electrode was fixed at +1.7V, and the light from a 500w Xe lamp was picked up to examine the change in photocurrent over time. When photosensitized electrolysis was carried out continuously for 2 hours, it was confirmed that the electrolyte was significantly more stable than ordinary electrolytes.

【図面の簡単な説明】[Brief explanation of drawings]

第図は型半導䜓―電解液―金属察極の様子
を瀺す図である。第図は型半導䜓の分解電䜍
Edを氎の酞化電䜍Eoの高䜎による、半導䜓電極
の安定、䞍安定を瀺す図である。第図は、CdS
の溶解抑制割合還元剀のレドツクス電䜍に接する
䟝存性を瀺す図である。第図は、䞍安定な半導
䜓電極を安定化できるレドツクス剀ず安定化でき
ないレドツクス剀を瀺す図である。第図は、15
―クラりン―ずベンれンの組成を倉えた溶液の
比誘電率を瀺す図である。第図は支持塩の濃床
を倉えた堎合の溶液の電気䌝導床を瀺す図であ
る。第図乃至第図はサむクリツクボルタモ
グラムの枬定結果を瀺す図である。第図は実
斜䟋で䜿甚した装眮を瀺す図である。第図
においお数字は以䞋を瀺す。   硫化カドミりム単結晶電極、  癜金
電極、  本発明の電解液、  硫酞酞性の
飜和塩化ナトリりム氎溶液、  負荷、  
電圧蚈、  発生した氎玠、  励起光。
FIG. 1 is a diagram showing the state of an n-type semiconductor-electrolyte-metal counter electrode. Figure 2 shows the decomposition potential of an n-type semiconductor.
FIG. 3 is a diagram showing the stability and instability of a semiconductor electrode depending on the level of Ed and water oxidation potential Eo. Figure 3 shows CdS
FIG. 3 is a diagram showing the dependence of the dissolution inhibition rate on the redox potential of the reducing agent. FIG. 4 is a diagram showing redox agents that can stabilize an unstable semiconductor electrode and redox agents that cannot. Figure 5 shows 15
FIG. 3 is a diagram showing the dielectric constants of solutions with different compositions of Crown-5 and benzene. FIG. 6 is a diagram showing the electrical conductivity of the solution when the concentration of the supporting salt is changed. FIGS. 7 to 10 are diagrams showing the measurement results of cyclic voltammograms. FIG. 11 is a diagram showing the apparatus used in Example 2. In FIG. 11, the numbers indicate the following. DESCRIPTION OF SYMBOLS 1... Cadmium sulfide single crystal electrode, 2... Platinum electrode, 3... Electrolyte of the present invention, 4... Sulfuric acid acidic saturated sodium chloride aqueous solution, 5... Load, 6...
Voltmeter, 7... generated hydrogen, 8... excitation light.

Claims (1)

【特蚱請求の範囲】[Claims]  陜むオンを保持せしめたクラりン化合物ず䜎
極性溶媒ずの溶液を含み、実質的に極性溶媒を含
たないこずを特城ずする電解液。
1. An electrolytic solution comprising a solution of a crown compound holding cations and a low polar solvent, and containing substantially no polar solvent.
JP10163080A 1980-07-24 1980-07-24 Electrochemical system Granted JPS5727129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10163080A JPS5727129A (en) 1980-07-24 1980-07-24 Electrochemical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10163080A JPS5727129A (en) 1980-07-24 1980-07-24 Electrochemical system

Publications (2)

Publication Number Publication Date
JPS5727129A JPS5727129A (en) 1982-02-13
JPS641174B2 true JPS641174B2 (en) 1989-01-10

Family

ID=14305712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10163080A Granted JPS5727129A (en) 1980-07-24 1980-07-24 Electrochemical system

Country Status (1)

Country Link
JP (1) JPS5727129A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SA112330516B1 (en) * 2011-05-19 2016-02-22 كاليرا كورؚوري؎ن Electrochemical hydroxide systems and methods using metal oxidation
US9200375B2 (en) 2011-05-19 2015-12-01 Calera Corporation Systems and methods for preparation and separation of products
TWI633206B (en) 2013-07-31 2018-08-21 卡利拉股仜有限公叞 Electrochemical hydroxide systems and methods using metal oxidation
CN107109672B (en) 2014-09-15 2019-09-27 卡勒拉公叞 The electro-chemical systems and method of product are formed using metal halide
US10266954B2 (en) 2015-10-28 2019-04-23 Calera Corporation Electrochemical, halogenation, and oxyhalogenation systems and methods
US10619254B2 (en) 2016-10-28 2020-04-14 Calera Corporation Electrochemical, chlorination, and oxychlorination systems and methods to form propylene oxide or ethylene oxide
WO2019060345A1 (en) 2017-09-19 2019-03-28 Calera Corporation Systems and methods using lanthanide halide
US10590054B2 (en) 2018-05-30 2020-03-17 Calera Corporation Methods and systems to form propylene chlorohydrin from dichloropropane using Lewis acid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812992B2 (en) * 1976-12-17 1983-03-11 束䞋電噚産業株匏䌚瀟 battery

Also Published As

Publication number Publication date
JPS5727129A (en) 1982-02-13

Similar Documents

Publication Publication Date Title
Murase et al. Electrochemical behaviour of copper in trimethyl-n-hexylammonium bis ((trifluoromethyl) sulfonyl) amide, an ammonium imide-type room temperature molten salt
JP4875657B2 (en) Photoelectrochemical cell and electrolytic solution for this battery
US4020240A (en) Electrochemical cell with clovoborate salt in electrolyte and method of operation and composition of matter
Fuller et al. Rechargeable lithium and sodium anodes in chloroaluminate molten salts containing thionyl chloride
Xia et al. Ionic liquid electrolytes for aluminium secondary battery: Influence of organic solvents
CA1218110A (en) Non-aqueous electrochemical cell and electrolyte
US5552241A (en) Low temperature molten salt compositions containing fluoropyrazolium salts
US4889659A (en) Nitrogenized electronic conductive polymers, their preparation processes, electrochromic display cell and electrochemical generator using these polymers
Auborn et al. An ambient temperature secondary aluminum electrode: its cycling rates and its cycling efficiencies
US20030094379A1 (en) Low temperature alkali metal electrolysis
Leung et al. Progress in electrolytes for rechargeable aluminium batteries
EP2623643A1 (en) Aluminum electroplating solution
KR20020017927A (en) Ionic liquids
Watanabe et al. Solvents effects on electrochemical characteristics of graphite fluoride—lithium batteries
Licht et al. Speciation analysis of aqueous polyselenide solutions
KR20150065974A (en) Sodium Secondary
Gelman et al. Challenges and prospect of non–aqueous non-alkali (NANA) metal–air batteries
KR101918788B1 (en) Electrolyte and secondary battery
JPS641174B2 (en)
Picart et al. Electrochemical study of 2, 5-dimercapto-1, 3, 4-thiadiazole in acetonitrile
CN102154661A (en) Method for preparing aluminum ingot by low-temperature electrolysis of metal monocrystal surface electrodes
Mamantov et al. The use of tetravalent sulfur in molten chloroaluminate secondary batteries
Bogolowski et al. An electrically rechargeable Al-air battery with aprotic ionic liquid electrolyte
Gray et al. Plating and Stripping of Sodium from a Room Temperature 1‐Methyl‐3‐propylimidazolium Chloride Melt
EP0235444B1 (en) Metal halogen electrochemical cell