JPS641174B2 - - Google Patents
Info
- Publication number
- JPS641174B2 JPS641174B2 JP55101630A JP10163080A JPS641174B2 JP S641174 B2 JPS641174 B2 JP S641174B2 JP 55101630 A JP55101630 A JP 55101630A JP 10163080 A JP10163080 A JP 10163080A JP S641174 B2 JPS641174 B2 JP S641174B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- crown
- semiconductor
- potential
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002633 crown compound Substances 0.000 claims description 31
- 239000008151 electrolyte solution Substances 0.000 claims description 26
- 150000001768 cations Chemical class 0.000 claims description 18
- 239000000243 solution Substances 0.000 claims description 16
- 239000002798 polar solvent Substances 0.000 claims description 14
- 239000004065 semiconductor Substances 0.000 description 42
- UHOVQNZJYSORNB-UHFFFAOYSA-N benzene Substances C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 28
- 239000003792 electrolyte Substances 0.000 description 28
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 23
- 229910052751 metal Inorganic materials 0.000 description 22
- 239000002184 metal Substances 0.000 description 22
- 238000006243 chemical reaction Methods 0.000 description 18
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 16
- 238000004090 dissolution Methods 0.000 description 14
- 150000003839 salts Chemical class 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 12
- -1 sodium tetraphenylborate Chemical compound 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- 238000005868 electrolysis reaction Methods 0.000 description 10
- 229910052697 platinum Inorganic materials 0.000 description 10
- 238000002484 cyclic voltammetry Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 150000002739 metals Chemical class 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 125000004429 atom Chemical group 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000003638 chemical reducing agent Substances 0.000 description 7
- 230000005284 excitation Effects 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 229910052709 silver Inorganic materials 0.000 description 7
- 239000004332 silver Substances 0.000 description 7
- VFTFKUDGYRBSAL-UHFFFAOYSA-N 15-crown-5 Chemical compound C1COCCOCCOCCOCCO1 VFTFKUDGYRBSAL-UHFFFAOYSA-N 0.000 description 6
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 230000033228 biological regulation Effects 0.000 description 6
- 239000002265 redox agent Substances 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 230000006641 stabilisation Effects 0.000 description 6
- 238000011105 stabilization Methods 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 5
- 150000001450 anions Chemical class 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000002739 cryptand Substances 0.000 description 5
- 239000007772 electrode material Substances 0.000 description 5
- 238000010828 elution Methods 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 239000012454 non-polar solvent Substances 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 238000007670 refining Methods 0.000 description 5
- NLMDJJTUQPXZFG-UHFFFAOYSA-N 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane Chemical compound C1COCCOCCNCCOCCOCCN1 NLMDJJTUQPXZFG-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000013626 chemical specie Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 239000003495 polar organic solvent Substances 0.000 description 4
- 229920003026 Acene Polymers 0.000 description 3
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 3
- 229910016509 CuF 2 Inorganic materials 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- 150000001338 aliphatic hydrocarbons Chemical group 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical group 0.000 description 3
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 3
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002848 electrochemical method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000001443 photoexcitation Effects 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- AFABGHUZZDYHJO-UHFFFAOYSA-N 2-Methylpentane Chemical compound CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- QARVLSVVCXYDNA-UHFFFAOYSA-N bromobenzene Chemical compound BrC1=CC=CC=C1 QARVLSVVCXYDNA-UHFFFAOYSA-N 0.000 description 2
- DIKBFYAXUHHXCS-UHFFFAOYSA-N bromoform Chemical compound BrC(Br)Br DIKBFYAXUHHXCS-UHFFFAOYSA-N 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- GWFAVIIMQDUCRA-UHFFFAOYSA-L copper(ii) fluoride Chemical compound [F-].[F-].[Cu+2] GWFAVIIMQDUCRA-UHFFFAOYSA-L 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 150000002391 heterocyclic compounds Chemical class 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methylcyclopentane Chemical compound CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- CRSOQBOWXPBRES-UHFFFAOYSA-N neopentane Chemical compound CC(C)(C)C CRSOQBOWXPBRES-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000005486 organic electrolyte Substances 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 208000017983 photosensitivity disease Diseases 0.000 description 2
- 231100000434 photosensitization Toxicity 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- PVDDBYSFGBWICV-UHFFFAOYSA-N 1,4,8,11-tetraoxacyclotetradecane Chemical compound C1COCCOCCCOCCOC1 PVDDBYSFGBWICV-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- GLPYOYKFYVRSHY-UHFFFAOYSA-N 1-(2-methylperoxyethoxy)-2-[2-(2-methylperoxyethoxy)ethoxy]ethane Chemical compound COOCCOCCOCCOCCOOC GLPYOYKFYVRSHY-UHFFFAOYSA-N 0.000 description 1
- MMZYCBHLNZVROM-UHFFFAOYSA-N 1-fluoro-2-methylbenzene Chemical compound CC1=CC=CC=C1F MMZYCBHLNZVROM-UHFFFAOYSA-N 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- XQQZRZQVBFHBHL-UHFFFAOYSA-N 12-crown-4 Chemical compound C1COCCOCCOCCO1 XQQZRZQVBFHBHL-UHFFFAOYSA-N 0.000 description 1
- ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 2,3-dimethylbutane Chemical compound CC(C)C(C)C ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 0.000 description 1
- DSFHXKRFDFROER-UHFFFAOYSA-N 2,5,8,11,14,17-hexaoxabicyclo[16.4.0]docosa-1(22),18,20-triene Chemical compound O1CCOCCOCCOCCOCCOC2=CC=CC=C21 DSFHXKRFDFROER-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- GXDHCNNESPLIKD-UHFFFAOYSA-N 2-methylhexane Natural products CCCCC(C)C GXDHCNNESPLIKD-UHFFFAOYSA-N 0.000 description 1
- ZHXFYTFNTXNQAV-UHFFFAOYSA-N 20-methyl-2,5,8,11,14,17-hexaoxabicyclo[16.4.0]docosa-1(18),19,21-triene Chemical compound O1CCOCCOCCOCCOCCOC2=CC(C)=CC=C21 ZHXFYTFNTXNQAV-UHFFFAOYSA-N 0.000 description 1
- AEXMKKGTQYQZCS-UHFFFAOYSA-N 3,3-dimethylpentane Chemical compound CCC(C)(C)CC AEXMKKGTQYQZCS-UHFFFAOYSA-N 0.000 description 1
- 229910016467 AlCl 4 Inorganic materials 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910020366 ClO 4 Inorganic materials 0.000 description 1
- 229910021594 Copper(II) fluoride Inorganic materials 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- 229910000807 Ga alloy Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- XOBKSJJDNFUZPF-UHFFFAOYSA-N Methoxyethane Chemical compound CCOC XOBKSJJDNFUZPF-UHFFFAOYSA-N 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001260 acyclic compounds Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000006183 anode active material Substances 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- FNEPSTUXZLEUCK-UHFFFAOYSA-N benzo-15-crown-5 Chemical compound O1CCOCCOCCOCCOC2=CC=CC=C21 FNEPSTUXZLEUCK-UHFFFAOYSA-N 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 229950005228 bromoform Drugs 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 150000003983 crown ethers Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- QSBFECWPKSRWNM-UHFFFAOYSA-N dibenzo-15-crown-5 Chemical compound O1CCOCCOC2=CC=CC=C2OCCOC2=CC=CC=C21 QSBFECWPKSRWNM-UHFFFAOYSA-N 0.000 description 1
- YSSSPARMOAYJTE-UHFFFAOYSA-N dibenzo-18-crown-6 Chemical compound O1CCOCCOC2=CC=CC=C2OCCOCCOC2=CC=CC=C21 YSSSPARMOAYJTE-UHFFFAOYSA-N 0.000 description 1
- UNTITLLXXOKDTB-UHFFFAOYSA-N dibenzo-24-crown-8 Chemical compound O1CCOCCOCCOC2=CC=CC=C2OCCOCCOCCOC2=CC=CC=C21 UNTITLLXXOKDTB-UHFFFAOYSA-N 0.000 description 1
- BBGKDYHZQOSNMU-UHFFFAOYSA-N dicyclohexano-18-crown-6 Chemical compound O1CCOCCOC2CCCCC2OCCOCCOC2CCCCC21 BBGKDYHZQOSNMU-UHFFFAOYSA-N 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- PYLWMHQQBFSUBP-UHFFFAOYSA-N monofluorobenzene Chemical compound FC1=CC=CC=C1 PYLWMHQQBFSUBP-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000001139 pH measurement Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002165 photosensitisation Effects 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- DNYWZCXLKNTFFI-UHFFFAOYSA-N uranium Chemical compound [U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U] DNYWZCXLKNTFFI-UHFFFAOYSA-N 0.000 description 1
- 238000001075 voltammogram Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electrolytic Production Of Metals (AREA)
Description
本発明は新規な電解液である。
現在、食塩電解による塩素やカセイソーダの製
造あるいは、アルミニウム精錬などの電気分解工
業、またマンガン乾電池や鉛蓄電池で代表される
各種電池は、重用な産業の一翼をになつている。
またPH測定など各種電気化学計測はその重用性
をますます増加させている。
最近では太陽エネルギーの有効利用の方途が深
められその中での電気化学的手法のすぐれている
ことが認識され始めており、また新らしい有機化
合物の製造法として有機電解法が検討されてい
る。
しかし、従来の電気化学系においては溶媒とし
て水あるいは極性の大きな有機溶媒が用いられて
おり、非極性又は低極性溶媒を使用する電気化学
系は全く知られていない。
本発明者等は、このクラウン化合物の機能を子
細に検討した結果、この化合物を用いて旧来の電
気化学系とは異る全く新しい電気化学系を構成し
得ることを発見するに致つた。
即ち、旧来の電気化学系では、電解液の役割は
イオン電導性を持つた単なる電極活物質の分散媒
であつたが本発明による「陽イオンを保持せしめ
たクラウン化合物と低極性溶媒との溶液を含み、
実質的に極性溶媒を含まないことを特徴とする電
解液」においてはクラウン化合物を含有する電解
液自体が陽イオンを包接してイオン又は塩を選択
的に可溶化することによりクラウン化合物固有の
機能並びに旧来の電気化学系では用いることが不
可能であつたような低極性又は無極性溶媒の特長
をも活用することを可能とした。
即ち、本発明においては、極性溶媒を含まない
で、極性溶媒に基ずく欠点がなく旧来の電気化学
系では溶媒自体の特性にしばられて実施不可能又
は実現できなかつた数々の全く新しい電気化学的
方法を始めて実施可能とするに至つたものであ
る。
以下に斯る全く新規の電解液の具体例を説明す
る。
(A) 安価かつ安定な陽極材料を用いた新規な電気
学系。
旧来の電気化学系においては、電解液(溶
媒)として水あるいは極性の大きな有機溶媒が
用いられ、電極材料として、その安定性などの
理由から白金など高価な金属を用いざるを得な
かつた。すなわち従来は非極性あるいは低極性
溶媒を使用することによりアノード安定性を高
め、多くの安価な金属を電極として使用したい
という願望があつたにかかわらず、これらの溶
媒中には支持塩が不溶であるため溶液のイオン
電導度を高めることができず、電解液には適さ
ないものとされていた。本発明者らは、この非
極性あるいは低極性の溶媒も電気化学用溶媒と
して利用できるよう鋭意検討し、クラウン化合
物を非極性あるいは低極性溶媒とともに用いる
ことによつて電解液とすることができることを
発見し、本発明を達成した。
本発明による電解液において新らたに使用可
能になる金属電極は構成金属の陽イオンと使用
するクラウン化合物との間の錯体形成が著しく
困難なものであればよい。
このときには電極自身の溶解は抑制され、従
来の溶媒中でのその金属の溶解電位で制限され
ていた電位域が支持塩やクラウン化合物などの
分解電位まで拡大されるため広い電位域での電
解も可能となる電極とすることができる。
例えば、(15―クラウン―5)―ベンゼン混
合溶媒を使用し、支持塩としてナトリウムテト
ラフエニルボレートを使用した場合添加された
15―クラウン―5との間に安定な錯体を作る事
が知られている(a)、(a)及び銀を除いた金属
であり、好ましくは第一遷移金属系例であり、
さらに好ましくは銅、亜鉛、鉄およびこれらの
合金である。
(B) 金属の溶出電位を制御した新規の金属精錬法
従来の湿式金属精錬に用いられていた電解液
は、水或いは極性の高い有機溶媒を溶媒に用い
た電解液であり、金属の溶出順序は通常のイオ
ン化傾向を直接に反映したものである。
しかし一方本発明による電解液では、電解液
自体がクラウン化合物の陽イオン包接性を強く
反映する場合があり、結果として金属の溶出順
序を通常のイオン化傾向の順序と逆転させるこ
とができる。
従つて、従来陽極泥中に富豊に認められた金
属を逆に電解液中に富豊に存在させる事ができ
る。
かくして得られた電解液から直接溶媒抽出に
より、又は陽極溶出の逆過程(陰極析出)によ
り目的金属を高純度にて採取することができ
る。
以上従来の方法とは全く異なる金属精錬法を
発明するに致つた。
また本発明によれば、金、銀等の第1族金
属、白金、パラジウム、ロジウム等の第8族金
属及びウラン等クラウン化合物に包接し得る全
ての金属を精錬し得るものである。
(C) 有機電解法への応用
旧来の電解液に於ては、電解液として水、或
は、極性の大きな有機溶媒が用いられ、ポリア
セン等の電解に際してはセロソルブ等の特殊な
溶媒が用いられ、正確な電位規制も非常にむず
かしい現状にあつた。元来電気分解法に依る有
機合成手法は、電位規制条件のもとで、特定の
酸化反応、還元反応を選択的に行なわせること
ができ、かつまた、従来電位規制条件下で電気
分解を行うことができなかつたポリアセン類は
医用原料等として多くの可能性を有する化学種
である。
従つて、これらの化学種を電位規制下で電解
反応を遂行させる技術は、高付加価値の電気分
解合成という側面から広く要求されるものであ
つた。
一方本発明による電解液では、クラウン化合
物のイオン選択性から銀線参照が比較的安定に
機能し、合わせて、低極性或は非極性溶媒の特
性も保持されるものであり、旧来の電解技術で
は電位規制条件で電気分解し得なかつたポリア
セン等が電位規制条件下で電気分解を行なうこ
とができる。
また有機電解合成を行う場合において溶媒の
選択は生成物に影響を与える。たとえば1、
2、3、4、5―tetra―methylbanyeneの電
解酸化反応では下記のごとく生成物が異なる。
これは反応によつて生成するカチオンの安定性
等と密接な関連をもつている。
{K.Nyberg、Chem.Commun.、774(1969)}
本発明の場合のごとく低極性溶媒中にカチオ
ンとクラウン化合物のコンプレツクス、裸のア
ニオンが存在している場合は生成物は、アニオ
ンの種類、使用する溶媒等により選択的に、ア
ニオンの置換反応、もしくは2量化反応等が起
きることが考えられる。
(D) 半導体湿式光電池への応用
最近では、太陽エネルギーの有効利用の方途
がさぐられ、その内で電気化学的手法のすぐれ
ていることが認識されてきている。
半導体湿式光電池による太陽エネルギーの利
用が実現するためには、少くとも次のような事
項が解決されなければならない。
(1)エネルギー変換効率の向上、(2)半導体材料
の安価で簡単な製造法の確立、(3)半導体電極溶
解の抑制
一方、上記(1)、(2)の条件を満たす半導体電極
材料は、CdSなどのように今までに数多く知ら
れている。しかし後述するように、半導体電極
の溶解が起つてしまい、効率の高い光電池を組
み立てるためには、この半導体電極の溶解抑制
が必須の条件になつている。而して、本発明に
よる電解液は、上述のように現在最も解決を目
されている(3)の半導体電極の抑制に対し著しい
効果を認めるに致つた。
まず、半導体湿式光電池の動作原理と、電極
溶解抑制に関する従来の技術を示す。
半導体湿式光電池の一例として3.0eVと大き
なバンドギヤツプを持ち、光励起状態で自己溶
解反応に対して安定な電極の一例であるTiO2
半導体光アノードが水溶液系の電解液に接して
いる場合を例にとり説明する。
例えば、n型半導体であるTiO2を電極とし
て用い電解液中に入れると、半導体表面に空間
電荷層と呼ばれる電位勾配のある場所ができ
る。第1図でわかるとおり、この空間電荷層部
分が太陽電池におけるp―n接合部分と似た構
造を示し、同様の働きをなすであろうことがわ
かる。すなわち、この界面では光励起によつて
生成した電子や正孔の分離が起こり、つまり光
起電力が生じ、回路を閉じれば光電流が流れ
る。
また、同時に、電極反応として、TiO2電極
側では水の酸化による観察の発生が、また白金
側ではプロトンの還元に対応する水素の発生が
起こり得る。
以上のように、この半導体湿式光電池では、
電池反応の結果として電気エネルギー以外に水
素などの生成物を得ることができる。
しかしTiO2はそのバンドギヤツプが3.0eVで
あるため紫外線に近い波長域の光にしか応答し
ない。太陽エネルギーを少しでも多く捕えよう
とすれば、バンドギヤツプがTiO2よりもせま
い半導体を用いる必要がある。実際には太陽光
のスペクトル分布を考慮して1.1〜1.4eVの半導
体が最適であるといわれている。しかし例えば
Si(1.1eV)では、溶液中で表面に絶縁性酸化
皮膜を作りやすく、光起電力の値も小さいこと
などの問題がある。
現在表1に示すようにいろいろの半導体につ
いて光電極反応に対する検討がすすめられてい
る。この表でも明らかなようにCdS、CdSe、
GaP、GaAsなどの化合物半導体は、感光域が
広いため太陽エネルギーをより有効に利用でき
る可能性を持つている。しかしながら、これら
のn型半導体は、通常の電解液中において、光
照射下で次のような半導体自身の溶解反応をお
こす。
CdS+2p+→Cd2++S (1)
CdSe+2p+→Cd2++Se (2)
GaP+6p++3H2O→Ga3++H3PO3+3H+ (3)
GaAs+6p++3H2O→Ga3++H3AsO3+3H+
(4)
The present invention is a novel electrolyte. Currently, the production of chlorine and caustic soda through salt electrolysis, the electrolysis industry such as aluminum smelting, and various batteries such as manganese dry batteries and lead-acid batteries are becoming important industries. In addition, various electrochemical measurements such as PH measurement are becoming increasingly important. Recently, methods for effectively utilizing solar energy have been deepened, and the superiority of electrochemical methods has begun to be recognized, and organic electrolysis methods are being considered as a new method for producing organic compounds. However, conventional electrochemical systems use water or highly polar organic solvents as solvents, and there are no known electrochemical systems that use nonpolar or low polarity solvents. As a result of careful study of the function of this crown compound, the present inventors discovered that it is possible to construct a completely new electrochemical system different from conventional electrochemical systems using this compound. That is, in conventional electrochemical systems, the role of the electrolyte was simply a dispersion medium for the electrode active material that had ionic conductivity, but in the present invention, the role of the electrolyte was a solution of a crown compound holding cations and a low polar solvent. including;
In the electrolytic solution characterized by substantially not containing a polar solvent, the electrolytic solution containing the crown compound itself includes cations and selectively solubilizes ions or salts, thereby achieving the unique functions of the crown compound. It also makes it possible to utilize the features of low polarity or nonpolar solvents, which were impossible to use in conventional electrochemical systems. That is, the present invention does not contain polar solvents, does not have the disadvantages associated with polar solvents, and allows for a number of completely new electrochemistry systems that cannot be implemented or realized in conventional electrochemical systems due to the characteristics of the solvent itself. This is the first time that a practical method has become practicable. A specific example of such a completely new electrolytic solution will be explained below. (A) A novel electrical system using inexpensive and stable anode materials. In conventional electrochemical systems, water or highly polar organic solvents were used as the electrolyte (solvent), and expensive metals such as platinum had to be used as electrode materials for reasons such as stability. In other words, although there has traditionally been a desire to increase anode stability by using nonpolar or low polarity solvents and to use many inexpensive metals as electrodes, supporting salts are not soluble in these solvents. Because of this, it was not possible to increase the ionic conductivity of the solution, making it unsuitable for use as an electrolyte. The inventors of the present invention have made extensive studies to find out whether this non-polar or low-polar solvent can also be used as an electrochemical solvent, and have discovered that an electrolyte can be created by using a crown compound together with a non-polar or low-polar solvent. discovered and achieved the present invention. The metal electrode that can be newly used in the electrolytic solution according to the present invention may be any metal electrode as long as it is extremely difficult to form a complex between the cation of the constituent metal and the crown compound used. At this time, the dissolution of the electrode itself is suppressed, and the potential range, which was previously limited by the dissolution potential of the metal in the solvent, is expanded to the decomposition potential of supporting salts and crown compounds, making it possible to perform electrolysis in a wide potential range. It is possible to make the electrode possible. For example, when using a (15-crown-5)-benzene mixed solvent and sodium tetraphenylborate as a supporting salt, the added
Metals other than (a), (a) and silver that are known to form stable complexes with 15-crown-5, preferably first transition metals,
More preferred are copper, zinc, iron, and alloys thereof. (B) A new metal refining method that controls the metal elution potential The electrolyte used in conventional wet metal refining uses water or a highly polar organic solvent as a solvent, and the elution order of metals is controlled. is a direct reflection of the normal ionization tendency. However, in the electrolytic solution according to the present invention, the electrolytic solution itself may strongly reflect the cation inclusion property of the crown compound, and as a result, the elution order of metals can be reversed from the normal order of ionization tendency. Therefore, metals that were conventionally found in abundance in the anode mud can be made to exist in abundance in the electrolyte. The target metal can be extracted with high purity from the electrolyte thus obtained by direct solvent extraction or by the reverse process of anodic elution (cathode deposition). As described above, we have invented a metal refining method that is completely different from conventional methods. Further, according to the present invention, all metals that can be included in crown compounds such as Group 1 metals such as gold and silver, Group 8 metals such as platinum, palladium, and rhodium, and uranium can be refined. (C) Application to organic electrolysis In conventional electrolytes, water or highly polar organic solvents are used as the electrolyte, and special solvents such as cellosolve are used when electrolyzing polyacene, etc. The current situation was that it was extremely difficult to regulate the electric potential accurately. Organic synthesis methods that originally rely on electrolysis can selectively perform specific oxidation and reduction reactions under potential regulation conditions, and conventionally electrolysis is performed under potential regulation conditions. Polyacenes, which could not be produced, are chemical species that have many possibilities as medical raw materials. Therefore, a technique for carrying out electrolytic reactions of these chemical species under potential regulation has been widely required from the viewpoint of high value-added electrolytic synthesis. On the other hand, in the electrolytic solution according to the present invention, the silver wire reference functions relatively stably due to the ion selectivity of the crown compound, and at the same time, the characteristics of a low polarity or non-polar solvent are maintained, which makes it difficult to use conventional electrolytic technology. In this case, polyacene, etc., which could not be electrolyzed under potential regulation conditions, can be electrolyzed under potential regulation conditions. Furthermore, when performing organic electrosynthesis, the choice of solvent affects the product. For example, 1,
In the electrolytic oxidation reaction of 2, 3, 4, 5-tetra-methylbanyene, the products are different as shown below.
This is closely related to the stability of cations produced by the reaction. {K.Nyberg, Chem.Commun., 774 (1969)} When a complex of a cation and a crown compound or a naked anion is present in a low polar solvent as in the case of the present invention, the product can be selectively produced by an anion substitution reaction depending on the type of anion, the solvent used, etc. Alternatively, it is conceivable that a dimerization reaction or the like may occur. (D) Application to semiconductor wet photovoltaic cells Recently, ways to effectively utilize solar energy have been explored, and the superiority of electrochemical methods has been recognized. In order to realize the utilization of solar energy by semiconductor wet photovoltaic cells, at least the following matters must be solved. (1) Improving energy conversion efficiency, (2) Establishing a cheap and simple manufacturing method for semiconductor materials, (3) Suppressing semiconductor electrode melting.On the other hand, semiconductor electrode materials that meet the conditions (1) and (2) above are , CdS, and many others have been known so far. However, as will be described later, the semiconductor electrode tends to melt, and in order to assemble a highly efficient photovoltaic cell, suppressing the melting of the semiconductor electrode is an essential condition. Thus, the electrolytic solution according to the present invention has been found to have a remarkable effect on suppressing the formation of semiconductor electrodes, which is currently the most sought-after problem (3). First, the operating principle of a semiconductor wet photovoltaic cell and conventional techniques for suppressing electrode dissolution will be explained. TiO 2 is an example of a semiconductor wet photovoltaic cell that has a large band gap of 3.0 eV and is an example of an electrode that is stable against self-dissolution reactions in a photoexcited state.
An example will be explained in which a semiconductor photoanode is in contact with an aqueous electrolyte. For example, when TiO 2 , an n-type semiconductor, is used as an electrode and placed in an electrolytic solution, a region with a potential gradient called a space charge layer is created on the semiconductor surface. As can be seen in FIG. 1, this space charge layer portion exhibits a structure similar to the pn junction portion in a solar cell, and it is understood that it will perform a similar function. That is, at this interface, separation of electrons and holes generated by photoexcitation occurs, that is, a photovoltaic force is generated, and when the circuit is closed, a photocurrent flows. At the same time, as an electrode reaction, the observed occurrence of water oxidation may occur on the TiO 2 electrode side, and hydrogen generation corresponding to the reduction of protons may occur on the platinum side. As mentioned above, in this semiconductor wet photovoltaic cell,
In addition to electrical energy, products such as hydrogen can be obtained as a result of the battery reaction. However, TiO 2 has a band gap of 3.0 eV, so it only responds to light in the wavelength range close to ultraviolet. In order to capture as much solar energy as possible, it is necessary to use a semiconductor with a narrower bandgap than TiO 2 . In reality, it is said that a semiconductor with a voltage of 1.1 to 1.4 eV is optimal considering the spectral distribution of sunlight. But for example
Si (1.1eV) has problems such as the tendency to form an insulating oxide film on the surface in solution and the photovoltaic force value is low. As shown in Table 1, various semiconductors are currently being studied for photoelectrode reactions. As is clear from this table, CdS, CdSe,
Compound semiconductors such as GaP and GaAs have a wide photosensitive range and have the potential to utilize solar energy more effectively. However, these n-type semiconductors cause the following dissolution reaction of the semiconductor itself under light irradiation in a normal electrolytic solution. CdS+2p + →Cd 2+ +S (1) CdSe+2p + →Cd 2+ +Se (2) GaP+6p + +3H 2 O→Ga 3+ +H 3 PO 3 +3H + (3) GaAs+6p + +3H 2 O→Ga 3+ +H 3 AsO 3 +3H +
(Four)
【表】
この半導体湿式光電池に於ける半導体アノー
ドの安定、不安定に関する理論は、1977年西ド
イツのゲリツシヤーおよびアメリカのバード、
ライトン等により半導体の分解電位と酸化還元
剤、例えば水の酸化電位の関係が重要な役割を
なしていることを見い出され、第2図に示すよ
うな結果が提出された。
CdSなどを電気化学光学電池の電極として使
用するためには、その溶解反応を抑えることが
できなければならない。そのためにはいろいろ
の試みがあるが、従来最も良く研究されている
のは、光励起で生じた正孔を溶解反応に関与さ
せるのではなく、電解液中に添加した化学種と
優先的に反応させてしまう方法である。CdSや
CdSeに対し、その化学種としてS2-、Se2-、
Te2-等のカルコゲナイド系の還元剤が
Wrightonらによつて精力的に研究され、表2
に示すような結果が報告されている。(J.Am.
Chem.SoC.99、2839、1977及び同99、2834、
1977)この場合、半導体表面では、反応(1)〜(4)
と次に示す反応(5)との競争反応が起こり、反応
(5)がほぼ完全に優先的に起こつている時には、
「安定」といい、溶解反応も一部起こつている
時には「不安定」になつていると言う。
Red+np+→OXn+ (5)[Table] The theory regarding the stability and instability of semiconductor anodes in semiconductor wet photovoltaic cells was developed in 1977 by West German Gerritscher and American Bird.
Wrighton et al. discovered that the relationship between the decomposition potential of a semiconductor and the oxidation potential of a redox agent, such as water, plays an important role, and the results shown in FIG. 2 were submitted. In order to use CdS as an electrode for electrochemical optical cells, it is necessary to be able to suppress its dissolution reaction. There have been various attempts to achieve this, but the most well-researched method has been to use holes generated by photoexcitation to preferentially react with chemical species added to the electrolyte, rather than involving them in the dissolution reaction. This is a way to avoid it. CdS and
For CdSe, its chemical species are S 2- , Se 2- ,
Chalcogenide reducing agents such as Te 2-
As extensively studied by Wrighton et al., Table 2
The results shown below have been reported. (J.Am.
Chem.SoC.99, 2839, 1977 and 99, 2834,
(1977) In this case, on the semiconductor surface, reactions (1) to (4)
A competitive reaction with reaction (5) shown below occurs, and the reaction
When (5) occurs almost completely preferentially,
It is said to be ``stable,'' but when some dissolution reactions are occurring, it is said to be ``unstable.'' Red+np + →OX n+ (5)
【表】
本発明者等も以前この不安定電極の安定化に
ついての研究を行い有効な還元剤は、どのよう
な酸化還元電位をもつものであるかを決めるこ
とができた。(T.Inoue、T.Watanabe、A.
Fujishima、K.Honda、K.Kohayakawa、J.
Electrochem.Soc.、124、719(1977))
結果的には第3図に示すように例えばCdS単
結晶電極を例にとれば、CdS単結晶電極上にお
ける反応(1)と反応(5)との競争反応が、レドツク
ス電位とともに変化し、強い還元剤であると、
CdSの溶解抑制効果が大きいことがわかる。こ
の結果から第4図に示すように、CcS溶解を抑
制できるレドツクス剤の電位は、溶解電位より
上にあることが必要である。
また、同時に、この半導体湿式光電池の光励
起状態での最大理論回路電圧は|ECB−ED|と
なる。
以上は、従来行なわれてきた半導体湿式電池
の安定化に関わる技術であるが、この方式は、
表2に示すように著しく着色した還元剤を電解
液系に添加する事が必須となり光エネルギーの
有効利用という観点からは、避けられない損失
を持つている。また、半導体湿式光電池の光励
起状態での開路起電圧は、添加還元剤の酸化還
元電位をEred/oXとして、最大理論値は|
Ered/oX−ED|を越えるものではない。
一方本発明による電解液では、半導体湿式光
電池の半導体光アノードの安定化に際して従来
のものとは全く異なる機構を用いている。
即ち、従来の半導体湿式光電池の安定化の系
に於ては、電解液の役割は、イオン導電性を持
つた単なる電極活物質の分散媒であつた。一
方、本発明による電解液を利用する半導体湿式
光電池の安定化の系に於ては、電解液自体が、
イオン又は塩を選択的にクラウン化合物に陽イ
オンを包接して可溶化するなどのクラウン化合
固有の機能を持つているので、結果として
MnXmを半導体組成とした場合、MnXm〓
nM〓+(Solv)mX+n〓e-の△Gで規定されるED
が、M〓+(Solv)の安定性即ち、クラウン化合
物と半導体を構成する金属陽イオンとの錯体の
安定性を強く反映して結果的に著しく貴な方向
に移動する。結果として従来のものとは異な
り、着色した還元剤等の添加が全く無い場合で
すら、著しい電極の安定化が認められ、完全に
電極の安定化即ち、Ep>EVBの条件が達成され
ない場合に於てもEDが著しく従来の系に比べ
て貴に移動しているため、添加還元剤の酸化還
元電位の選択の巾が拡大するために、半導体湿
式光電池の光励起状態での開路電圧は、従来の
半導体湿式光電池の安定化条件のものよりも向
上することができた。
以上要約すると、半導体湿式光電池の中必課
題であつた半導体光アノードの安定化が本発明
による新規電解液を採用することによつて解決
を見るに致つた。
(E) 非水電池系への利用
最近のエレクトロニクスの発展により高エネ
ルギー密度の電池の開発が望まれている。負極
にリチウムまたはナトリウムを用いた電池は、
イオン化傾向が大きいことまた高エネルギー密
度であることによりすでに一部は実用化が行わ
れている。旧来用いられてきた電解液としては
非プロトン系高イオン導電性であること等のた
めプロピレンカーボネイト、r―ブチロラクト
ン、ジメチルフオルムアミド、テトラヒドロフ
ラン等が用いられた。しかし陽極活物質に
CuF2、CuCl2等を用いたリチウム電池は広く検
討されてきたが、たとえばフツ化銅(CuF2)
―リチウム電池は放電電流の増加に伴う利用率
の低下が大きい。またCuF2の有機電解質中へ
の溶解度が大きく、水などの不純物にもきわめ
て敏感である。このため保存寿命が短いのが欠
点で、LiClO4―PC電解質を用いた電池が、35
℃の保存では数か月で完全に自己放電してしま
うなどの報告がある。
また塩化銅(CuCl2)―リチウム電池も、
CuCl2がCuF2以上に溶解度が大きく自己放電が
問題となつた。過剰のAlCl3共存による共通イ
オン効果、あるいはイオン交換膜の使用の研究
などがなされたが成功しなかつた。かなり大電
流の放電が、広い温度範囲で可能であるが、放
電曲線は不安定である。
ところが、たとえば電解液をカチオン―クラ
ウンコンプレツクス(過剰の遊離のクラウン化
合物を含む)と少量のテトラヒドロフランの混
合液に変えるとフツ化銅、塩化銅の有機電解質
への溶解が小さくなるため、利用率を高く保持
でき、電池の保存寿命を著しく延長させること
ができる。
以上本発明の電解液の具体例を例示したが、陽
イオンを保持せしめたクラウン化合物と低極性溶
媒との溶液を電解液又はその一部として使用する
ことによつて従来困難又は不可能であつた各種電
気化学反応を可能にし、その結果太陽エネルギー
の有効な変換法、安価な電極材料の使用法、貴金
属などの簡単な精錬法あるいは高出力電池の製造
などに関し多くの有効かつ新規の方法を開発する
ことができた。
本発明においてクラウン化合物とは、電子供本
性原子として酸素または酸素と窒素及び又はイオ
ウをもつヘテロ環状構造を有し、環の空孔内に陽
イオンを取り込んで錯体を形成する能力を有する
一群の化合物をいい、このような能力を有する非
還状のヘテロ化合物類縁体も含まれる。これらク
ラウン化合物の典型的な例としては、C.J.
PedereenがJ.Amer.Chem.Soc.、89、7017(1967)
に報告したクラウンエーテルと呼称される一群の
大環状ポリエーテル及びその誘導体、J.M.Lehn
がStructure and Bonding、16、1(1973)に報
告したクリプタンドと呼称される一群の窒素を橋
頭原子とする双環式ポリエーテル及びその類縁体
があり、さらにこれらを含め、J.J.Christensen、
D.J.E―atough、R.M.IzattがChem.Revs.、74、
351(1974)にクラウン化合物と総称して紹介した
ヘテロ環状化合物がある。
これらクラウン化合物の構造の例を一般式で示
せば例えば下記の()、()、()、()、()、
などがある。
ここで、[Table] The present inventors have previously conducted research on stabilizing this unstable electrode and were able to determine what kind of redox potential an effective reducing agent has. (T.Inoue, T.Watanabe, A.
Fujishima, K. Honda, K. Kohayakawa, J.
Electrochem.Soc., 124, 719 (1977)) As a result, as shown in Figure 3, taking a CdS single crystal electrode as an example, reaction (1) and reaction (5) on the CdS single crystal electrode are The competitive reaction of changes with the redox potential and is a strong reducing agent.
It can be seen that the effect of suppressing the dissolution of CdS is large. From this result, as shown in FIG. 4, the potential of the redox agent capable of suppressing CcS dissolution needs to be above the dissolution potential. At the same time, the maximum theoretical circuit voltage of this semiconductor wet photovoltaic cell in a photoexcited state is |E CB −ED | . The above is the technology related to the stabilization of semiconductor wet batteries that has been used in the past, but this method is
As shown in Table 2, it is essential to add a significantly colored reducing agent to the electrolytic solution system, resulting in an unavoidable loss from the viewpoint of effective utilization of light energy. In addition, the maximum theoretical value of the open circuit electromotive voltage in the photoexcited state of a semiconductor wet photovoltaic cell is |
It does not exceed Ered/oX−E D |. On the other hand, the electrolytic solution according to the present invention uses a completely different mechanism from the conventional one when stabilizing the semiconductor photoanode of the semiconductor wet photovoltaic cell. That is, in the conventional stabilization system of a semiconductor wet photovoltaic cell, the role of the electrolytic solution was merely a dispersion medium for the electrode active material having ionic conductivity. On the other hand, in the system for stabilizing a semiconductor wet photovoltaic cell using the electrolyte according to the present invention, the electrolyte itself is
As a result, it has functions unique to crown compounds, such as selectively including cations or salts in crown compounds and solubilizing them.
When MnXm is used as a semiconductor composition, MnXm〓
nM〓 + (Solv) mX+n〓 ED defined by △G of e-
However, it strongly reflects the stability of M〓 + (Solv), that is, the stability of the complex between the crown compound and the metal cation constituting the semiconductor, and as a result moves in a significantly noble direction. As a result, unlike conventional methods, significant electrode stabilization was observed even without the addition of colored reducing agents, etc., and the condition of complete electrode stabilization, that is, E p > E VB , was not achieved. Even in this case, the open circuit voltage in the photoexcited state of the semiconductor wet photovoltaic cell increases because the E D is significantly more noble than in the conventional system, and the range of selection of the redox potential of the additive reducing agent is expanded. could be improved over the stabilization conditions of conventional semiconductor wet photovoltaic cells. In summary, the stabilization of semiconductor photoanodes, which was an essential issue in semiconductor wet photovoltaic cells, has been solved by employing the novel electrolyte according to the present invention. (E) Application to non-aqueous battery systems With the recent development of electronics, it is desired to develop batteries with high energy density. Batteries using lithium or sodium as the negative electrode are
Due to their large ionization tendency and high energy density, some of them have already been put into practical use. Conventionally used electrolytes include propylene carbonate, r-butyrolactone, dimethylformamide, and tetrahydrofuran because of their aprotic high ionic conductivity. However, the anode active material
Lithium batteries using CuF 2 , CuCl 2 , etc. have been widely studied, but for example, copper fluoride (CuF 2 )
-The utilization rate of lithium batteries decreases significantly as the discharge current increases. Furthermore, CuF 2 has a high solubility in organic electrolytes and is extremely sensitive to impurities such as water. As a result, batteries using LiClO 4 -PC electrolyte have a short shelf life.
There are reports that when stored at ℃, the battery completely self-discharges after several months. Copper chloride (CuCl 2 )-lithium batteries also
CuCl 2 has a higher solubility than CuF 2 and self-discharge became a problem. Attempts have been made to investigate the common ion effect caused by the coexistence of excess AlCl 3 or the use of ion exchange membranes, but without success. Discharges of fairly high currents are possible over a wide temperature range, but the discharge curves are unstable. However, if the electrolyte is changed to a mixture of a cation-crown complex (containing an excess of free crown compounds) and a small amount of tetrahydrofuran, for example, the dissolution of copper fluoride and copper chloride in the organic electrolyte becomes smaller, resulting in a lower utilization rate. can be maintained at a high level, significantly extending the shelf life of the battery. Although specific examples of the electrolytic solution of the present invention have been illustrated above, by using a solution of a crown compound that retains cations and a low polar solvent as the electrolytic solution or a part thereof, it is possible to solve problems that were previously difficult or impossible. It has enabled a variety of electrochemical reactions, resulting in many effective and novel methods for the effective conversion of solar energy, the use of inexpensive electrode materials, the simple refining of precious metals, and the production of high-power batteries. I was able to develop it. In the present invention, crown compounds are a group of compounds that have a heterocyclic structure with oxygen or oxygen and nitrogen and/or sulfur as electronic atoms, and have the ability to incorporate cations into the vacancies of the ring to form a complex. It refers to a compound, and also includes non-reduced hetero compound analogs having such abilities. Typical examples of these crown compounds include CJ
Pedereen J.Amer.Chem.Soc., 89 , 7017 (1967)
A group of macrocyclic polyethers called crown ethers and their derivatives reported in J.M.Lehn
There is a group of bicyclic polyethers and their analogues with a nitrogen bridgehead atom called cryptands, which were reported by J. J. Christensen in Structure and Bonding, 16 , 1 (1973), and their analogs.
DJE―atough, RMIzatt Chem.Revs., 74 ,
351 (1974), there are heterocyclic compounds that are collectively referred to as crown compounds. Examples of the structures of these crown compounds are as follows (), (), (), (), (),
and so on. here,
【式】(X=H、―CH3また
は―C2H5、m=2〜4)D=O、N及び又はS、
n=4〜10である。
ここで、Rは()のRと同じ、m=1〜4であ
り、n=4〜10であり、D=O、N及び又はSで
あり、[Formula] (X=H, -CH 3 or -C 2 H 5 , m=2-4) D=O, N and or S,
n=4-10. Here, R is the same as R in (), m = 1 to 4, n = 4 to 10, D = O, N and or S,
【式】【formula】
【式】【formula】
【式】又は[Formula] or
【式】である。
ここで、R1、R2は()のRと同じであり、R1
とR2は同一であつても異なつていてもよい。D
=O、N及び又はSであり、A、Bは()のAと
同じであり、AとBは同一であつても異なつてい
てもよい。またm=0〜4であり、n=1〜4で
ある。
ここで、l、m、nは0〜2の整数である。
() R1―O(―R2―O―)―oR1
ここで、R1は―CH3、―C2H5、[Formula]. Here, R 1 and R 2 are the same as R in (), and R 1
and R 2 may be the same or different. D
=O, N and/or S, A and B are the same as A in (), and A and B may be the same or different. Moreover, m=0-4, and n=1-4. Here, l, m, and n are integers of 0 to 2. () R 1 ―O(―R 2 ―O―)― o R 1Here , R 1 is ―CH 3 , ―C 2 H 5 ,
【式】【formula】
【式】
であり、R2は()のRと同じ、n=3〜9であ
る。
このようなクラウン化合物がその環の空孔内に
陽イオンを取り込んで錯体を形成する能力は、環
中に存在する電子供与性原子の種類及び数、環の
大きさ(すなわち環員数)、陽イオンのイオン径
などの因子によつて定まり、従つて上記一般式に
おけるl、m、n、D、R、R1、R2、A、Bに
対応する数値や置換基などはそれぞれの一般式に
記した範囲内であることが好ましく、本発明にお
いて使用される(支持塩の)陽イオン種によつて
選択することが好ましい。
クラウン化合物の具体的な例を示せば次のよう
なものが含まれる。以下の具体例において()、
()、()に属するものは主としてPedersenが前
記報文において提案し、現在慣用的に用いられる
クラウン名によるものであり、〔ポリエーテル環
についた置換基の種類と数〕―〔環を構成してい
る原子の数(すなわち環員数)〕―〔クラウン
(電子供与性原子として酸素と窒素とよりなるも
のはアザクラウン、酸素とイオウとよりなるもの
はチアクラウン、酸素と窒素とイオウとよりなる
ものはアザチアクラウン)〕−〔環中に存在する電
子供与性原子の数〕の順で表わしたものである。
すなわち()に属するものとしては、12―クラウ
ン―4,14―クラウン―4,15―クラウン―5,
18―クラウン―6,18―ジアザクラウン―6,18
―ジチアクラウン―6,18―アザチアクラウン―
6、酸化プロピレン環状四量体などが含まれ、
()に属するものとしては、ベンゾ―15―クラウ
ン―5、ベンゾ―18―クラウン―6、メチルベン
ゾ―18―クラウン―6、シクロヘキシル―18―ク
ラウン―6、ベンゾ―18―アザクラウン―6、[Formula], and R 2 is the same as R in (), and n=3 to 9. The ability of such a crown compound to incorporate a cation into the vacancy of its ring to form a complex depends on the type and number of electron-donating atoms present in the ring, the size of the ring (i.e., the number of ring members), and the cation. It is determined by factors such as the ionic diameter of the ion, and therefore the numerical values and substituents corresponding to l, m, n, D, R, R 1 , R 2 , A, and B in the above general formula are determined by the respective general formula. It is preferably within the range described above, and is preferably selected depending on the cationic species (of the supporting salt) used in the present invention. Specific examples of crown compounds include the following: In the following specific example(),
Those belonging to () and () are mainly based on the crown names proposed by Pedersen in the above-mentioned paper and currently commonly used. number of atoms (i.e., number of ring members)] - [Crown (An azacrown is composed of oxygen and nitrogen as electron-donating atoms, a thiacrown is composed of oxygen and sulfur, and a thiacrown is composed of oxygen, nitrogen, and sulfur. (Azathia crown) - [Number of electron-donating atoms present in the ring].
In other words, those belonging to () are 12-crown-4, 14-crown-4, 15-crown-5,
18-Crown-6,18-Zia the Crown-6,18
―Jitia Crown―6,18―Azachia Crown―
6. Contains propylene oxide cyclic tetramer, etc.
Those belonging to () include benzo-15-crown-5, benzo-18-crown-6, methylbenzo-18-crown-6, cyclohexyl-18-crown-6, benzo-18-azacrown-6,
【式】【formula】
【式】
などが含まれ、()に属するものとしてはジベン
ゾ―15―クラウン―5、ジシクロヘキシル―15―
クラウン―5、ジベンゾ―18―クラウン―6、ジ
ベンゾ―24―クラウン―8、ジメチルジベンゾ―
30―クラウン―10、ジシクロヘキシル―18―クラ
ウン―6、[Formula] etc., and those belonging to () include dibenzo-15-crown-5, dicyclohexyl-15-
Crown-5, Dibenzo-18-Crown-6, Dibenzo-24-Crown-8, Dimethyldibenzo-
30-crown-10, dicyclohexyl-18-crown-6,
【式】【formula】
【式】【formula】
【式】
などが含まれる。
()に属するものの具体例をLehnが前記報文で
提案し現在慣用的に用いられているクリプタンド
名すなわち〔クリープタンド〕―〔3個の鎖中に
それぞれ存在する酸素原子の数〕を用いて示せ
ば、クリプタンド〔2,2,1〕、クリプタンド
〔2,2,2〕、クリプタンド〔3,3,3〕など
が含まれる。()に属するものとしては、テトラ
エチレングリコールジメトキシエーテル、ペンタ
エチレングリコールジメトキシエーテル、テトラ
プロピレングリコールジメトキシエーテルなどが
含まれ、これらは非環状化合物ではあるが鎖中に
存在する電子供与性の酸素原子が陽イオンの周囲
に配位し、実質的には、ヘテロ環状化合物と同様
な挙動を示すものである。
本発明に使用するクラウン化合物は前記
Pedersen、Lehn、Christensenらの文献に記載さ
れた方法に従つて合成することができる。
本発明において、クラウン化合物に保持せしめ
て使用される陽イオン及びその対陰イオンは次の
通りである。
陽イオンとしては、周期律表の(a)族原子
(Li、Na、K、Rb、Cs)、(a)族原子(Mg、
Ca、Sr、Ba)及びNH4 +が用いられる。
対陰イオンとしては本発明の電解液に溶解する
ものである必要があり、ある程度イオン解離し、
電導度を持つものが用いられる。具体的にはI-、
SCN-、PF6 -、ClO4 -、RCOO-、ピクレート、
BF6 -、BR4 -(Rは水素原子または炭素数1〜12
の脂肪族または芳香族炭化水素残基)、AlCl4 -等
が選ばれる。
本発明で用いられる低極性溶媒とはいわゆる非
極性溶媒を含むものであり、飽和脂肪族炭化水
素、芳香族炭化水素、不飽和炭化水素、ハロゲン
炭化水素、エーテル化合物である。
飽和脂肪族炭化水素としては、シクロペンタ
ン、ペンタン、2―メチルブタン、2,2―ジメ
チルプロパン、メチルシクロペンタン、シクロヘ
キサン、ヘキサン、メチルペンタン、ジメチルブ
タン、メチルシクロヘキサン、ヘプタン、メチル
ヘキサン、ジメチルペンタン、エチルシクロヘキ
サン、オクタン等である。
芳香族炭化水素とは、ベンゼン、トルエン、O
―キシレン、m―キシレン、p―キシレン、エチ
ルベンゼン、クメン、メシチレン等である。
不飽和炭化水素としては、ペンテン、ヘキセ
ン、オクテン、シクロヘキセン、スチレン等であ
る。
ハロゲン化炭化水素としては、4塩化炭素、ク
ロロホルム、クロロベンゼン、フルオロベンゼ
ン、フルオロトルエン、ブロモベンゼン、ブロモ
ホルム等である。
エーテル化合物としては、1,4―ジオキサ
ン、ジフエニルエーテル、ジエチルエーテル、ジ
メチルエーテル、エチルメチルエーテル、テトラ
ヒドロフラン、アニソール、ジメトキシエタン等
である。
本発明において陽イオンを保持せしめたクラウ
ン化合物と低極性溶媒との混合比は、期待する電
解液の電導度、クラウン化合物の溶解度等により
異なるが一般的にモル比で99〜10:1〜90であ
る。
本発明の電解液の調整方法としては、クラウン
化合物と低極性溶媒との溶液中に適当な陽イオン
及び対陰イオンを有する支持塩を溶解せしめる方
法など通常の陽イオン保持クラウン化合物の調整
法が採用される。
以下に実施例を挙げて本発明を説明する。
実施例 1
最初に、クラウン化合物としてその室孔半径が
ナトリウムのイオン半径とほぼ等しい15―クラウ
ン―5(1,4,7,10,13―ペンタオキサシク
ロペンタデカン)を使用し、また低極性溶媒とし
てベンゼンを使用して両者の混合比を変えた溶液
の誘電率を測定した。測定系は、ガード電極を含
む3極構成の測定容器を用い、1KHzの正弦波を
入力しLock―in Ampを検出器に用いて、ブリツ
ジをバランスさせることにより、電導度と静電容
量を測定した。溶液の比誘電率は測定容器の空容
量と測定した静電容量との比から求めた。測定結
果を第5図に示す。
次に、ベンゼンのモル分率を0.8に固定した比
誘電率が5.7の溶液を用い、この溶液に支持塩と
してソデイウムテトラフエニルボレートを序々に
添加し、その際の電気伝導度の変化を調べた。測
定は白金黒を電極に持つ電導度測定容器に、1K
Hzの正弦波を入力しブリツジをバランスさせる事
によりおこなつた。測定結果を第6図に示す。
添加塩濃度が0.1Mの時に電気伝導度は2.8×
10-4ohm-1cm-1となつた。
ベンゼンのモル分率が0.8、比誘電率が5.7の溶
液に0.1Mのソデイウムチトラフエニルボレート
を添加した電気伝導度が2.8×10-4ohm-1cm-1の溶
液に10-3Mのフエロセンを酸化還元剤として添加
し、銀線を参照極に用いて、作用極および対極を
白金線にしてサイクリツクボルタモグラムを測定
した。結果を第7図に示す。
以上の結果をふまえ、作用極を白金線から銅線
に替え酸化還元剤を含まない条件でサイクリツク
ボルタモグラムを測定した。結果を第8図aに示
す。ここで比較のためにアセトニトリル中ソデイ
ウムテトラフエニルボレートを支持塩としてサイ
クリツクボルタモグラムを測定した結果を第8図
bに示す。
同様に、作用極として亜鉛線を用い、上述の溶
液組成の中でサイクリツクボルタモグラムを測定
した結果を第9図aに示す。また、ここで比較の
ためにアセトニトリル中ソデイウムテトラフエニ
ルボレートを支持塩としてサイクリツクボルタモ
グラムを測定した結果を第9図bに示す。
同様に作用極として銀線を用い上述の溶液組成
の中でサイクリツクボルタモグラムを測定した結
果を第10図に示す。
以上の測定結果を会釈すれば、本発明による電
解液は従来の電解液とは著しく異なり、金属塩の
電解液中への溶け込みがクラウン化合物との錯体
形成の安定性を強く反映して制御されている。従
つてこの理由により上記(A)から(E)にわたる数々の
本発明の具体的応用が可能になる。
即ち上記の実施例から知れるように、従来電気
化学系を構成し得なかつたような非極性溶媒であ
るベンゼンが電気化学系の構成に関与し、かかる
新規な電気化学系では銅電極、亜鉛電極の安定な
電位領域がこの電解液の分解電位にまで拡大され
る事が明らかになつた。
一方、銀電極は、銀イオンが15―クラウン―5
との間に強い錯体を形成する事実を反映し、過電
圧零で電解液中に溶出した。
以上の結果から本発明による電解液では、通常
のイオン化傾向とは逆の溶出順位を持つに致るこ
とが明らかであり、前記(B)に示すような新規な金
属精錬法が構成される。
また上記から(A)、(C)のような新規技術が構成し
得ることは言うまでもない。
実施例 2
非極性溶媒であるベンゼンとその空孔半径がナ
トリウムのイオン半径にほぼ等しい15―クラウン
―5を、ベンゼンのモル分率が0.8になる様に混
合し、そこにソデイウムテトラフエニルボレート
を0.1Mの濃度となるように添加し電解液を調製
した。
まず第1番目に硫化カドミウムの単結晶に、イ
ンジウム―ガリウム合金を一面に塗り、次に銀ペ
ーストを用いて銅線を接続しオーム接合を作り、
全体を結晶の一面のみが電解液に露出するように
残して、他はエポキシ樹脂で塗り込み電極をガラ
ス基板上に固定した。
上記電極を作用極とし、白金電極を対極とな
し、参照極を銀線とし、これら3つの電極を上記
電解液中に漬けてポテンシヨスタツトにより暗条
件および500wキセノン灯による光励起条件での
サイクリツクボルタモグラムを測定した。
測定結果は、暗条件では、銀線に対する電極電
位が−0.9Vより卑な場合にのみカソード電流が
観測され、−0.9Vより貴な場合には何ら電流は観
測されなかつた。
一方、キセノン灯による光励起条件では、−
0.9Vからカソード電流が認められるものの、−
0.6Vより貴の電位で暗条件下では認められなか
つたアノード電流が新らたに認められた。
また、このアノード電流は、励起光を断つと速
やかに消失し、再び励起光を入射させると速やか
に回復されることが認められた。
また以上の結果をふまえ、電極電位を銀線に対
して1.0Vに固定し励起光により生ずる光電流の
経時挙動を調べた。その結果、光増感電解初期に
は、1.6mA/cm2の光電流が測定され、これが6時
間以上の連続的な光増感電解ののちにもほとんど
減衰を示さずに流れ続けた。
CdS光アノードが安定化されることが判明した
ので、この半導体電極と白金電極を用いて光電池
を組んだ。この時の光電池の様子を第11図に示
す。U字管の両方にそれぞれの電極を挿入し、静
かに、上記硫化カドミウム単結晶電極側からは、
最初に記した組成の電解液を注入し、一方、反対
の白金電極側からは硫酸酸性の飽和塩化ナトリウ
ム水溶液を注入した。両電解液は二相に分離して
接した。両電極を単絡したのち硫化カドミウム単
結晶電極を500WXe灯で光励起したところ、光電
流が外部回路を流れ、白金極からは水素気泡が発
生した。
第2番目に、上記硫化カドミウム単結晶で述べ
たと同様の方法により酸化亜鉛粉末を加圧焼成し
て作つた酸化亜鉛半導体電極を作り、白金対極、
銀参照極の3電極を、硫化カドミウム電極の場合
と全く同様な組成を持つ電解液中に漬け、ポテン
シヨスタツトによる電位規制条件下で暗条件およ
び500wXe灯による光励起条件でサイクリツクボ
ルタモグラムを測定した。
結果は暗条件のもと、−0.3Vより卑な電位領域
でカソード電流が認められ、−0.2Vより貴な電気
領域では暗条件下では観測されなかつた光増感電
流がアノード電流として流れた。
第3番目にn型シリコンを上記、第1番目およ
び第2番目に述べたと全く同様の方法で電極とな
し、白金対極、銀参照極の3電極を、上記第1番
目および第2番目と全く同じ電解液中に漬け、ポ
テンシヨスタツトによる電位規制条件下で、暗条
件および500wXe灯による光励起条件でサイクリ
ツクボルタモグラムを測定した。
次にn型シリコン電極の電位を+1.7Vに固定
し500wXe灯の光をチヨツプしながら、光電流の
経時変化を調べた。2時間の光増感電解を連続に
おこなつたところ通常の電解液に比して著しく安
定であることが確認された。[Formula] etc. are included. A specific example of something belonging to () was proposed by Lehn in the above paper and is now commonly used using the name of cryptand, namely [creeptand] - [the number of oxygen atoms present in each of the three chains]. If shown, cryptand [2, 2, 1], cryptand [2, 2, 2], cryptand [3, 3, 3], etc. are included. Those belonging to () include tetraethylene glycol dimethoxy ether, pentaethylene glycol dimethoxy ether, tetrapropylene glycol dimethoxy ether, etc. Although these are acyclic compounds, electron-donating oxygen atoms present in the chain It coordinates around a cation and exhibits substantially the same behavior as a heterocyclic compound. The crown compound used in the present invention is as described above.
It can be synthesized according to the method described in Pedersen, Lehn, Christensen et al. In the present invention, the cations and their counter anions that are used and retained in the crown compound are as follows. As cations, group (a) atoms of the periodic table (Li, Na, K, Rb, Cs), group (a) atoms (Mg,
Ca, Sr, Ba) and NH4 + are used. The counter anion must be soluble in the electrolyte of the present invention, and must be ionically dissociated to some extent.
A material with electrical conductivity is used. Specifically, I - ,
SCN - , PF 6 - , ClO 4 - , RCOO - , Pirate,
BF 6 - , BR 4 - (R is a hydrogen atom or has 1 to 12 carbon atoms
aliphatic or aromatic hydrocarbon residues), AlCl 4 - , etc. The low polar solvent used in the present invention includes so-called non-polar solvents, and includes saturated aliphatic hydrocarbons, aromatic hydrocarbons, unsaturated hydrocarbons, halogen hydrocarbons, and ether compounds. Saturated aliphatic hydrocarbons include cyclopentane, pentane, 2-methylbutane, 2,2-dimethylpropane, methylcyclopentane, cyclohexane, hexane, methylpentane, dimethylbutane, methylcyclohexane, heptane, methylhexane, dimethylpentane, and ethyl. Cyclohexane, octane, etc. Aromatic hydrocarbons include benzene, toluene, O
-xylene, m-xylene, p-xylene, ethylbenzene, cumene, mesitylene, etc. Examples of unsaturated hydrocarbons include pentene, hexene, octene, cyclohexene, and styrene. Examples of halogenated hydrocarbons include carbon tetrachloride, chloroform, chlorobenzene, fluorobenzene, fluorotoluene, bromobenzene, and bromoform. Examples of the ether compound include 1,4-dioxane, diphenyl ether, diethyl ether, dimethyl ether, ethyl methyl ether, tetrahydrofuran, anisole, and dimethoxyethane. In the present invention, the mixing ratio of the crown compound that retains cations and the low polar solvent varies depending on the expected conductivity of the electrolyte, the solubility of the crown compound, etc., but is generally a molar ratio of 99 to 10:1 to 90. It is. The electrolytic solution of the present invention can be prepared using conventional methods for preparing a cation-retaining crown compound, such as dissolving a supporting salt having appropriate cations and counteranions in a solution of a crown compound and a low polar solvent. Adopted. The present invention will be explained below with reference to Examples. Example 1 First, 15-crown-5 (1,4,7,10,13-pentaoxacyclopentadecane), whose pore radius is approximately equal to the ionic radius of sodium, was used as a crown compound, and a low polar solvent was used. The dielectric constants of solutions with different mixing ratios of benzene and benzene were measured. The measurement system uses a three-pole measurement container including a guard electrode, inputs a 1KHz sine wave, uses a Lock-in Amp as a detector, and balances the bridge to measure conductivity and capacitance. did. The dielectric constant of the solution was determined from the ratio of the empty capacity of the measurement container to the measured capacitance. The measurement results are shown in Figure 5. Next, using a solution with a dielectric constant of 5.7 in which the molar fraction of benzene was fixed at 0.8, sodium tetraphenylborate was gradually added to this solution as a supporting salt, and the electrical conductivity changed at that time. I looked into it. The measurement is carried out using a 1K conductivity measuring container with platinum black electrodes.
This was done by inputting a Hz sine wave and balancing the bridge. The measurement results are shown in Figure 6. When the added salt concentration is 0.1M, the electrical conductivity is 2.8×
It became 10 -4 ohm -1 cm -1 . 10 -3 M is added to a solution with an electrical conductivity of 2.8 × 10 -4 ohm -1 cm -1, which is obtained by adding 0.1 M sodium titraphenylborate to a solution with a benzene molar fraction of 0.8 and a dielectric constant of 5.7. of ferrocene was added as a redox agent, a silver wire was used as a reference electrode, and a cyclic voltammogram was measured using a platinum wire as a working electrode and a counter electrode. The results are shown in FIG. Based on the above results, the cyclic voltammogram was measured under conditions in which the working electrode was changed from a platinum wire to a copper wire and no redox agent was included. The results are shown in Figure 8a. For comparison, a cyclic voltammogram was measured using sodium tetraphenylborate in acetonitrile as a supporting salt, and the results are shown in FIG. 8b. Similarly, using a zinc wire as the working electrode, the cyclic voltammogram was measured in the above solution composition, and the results are shown in FIG. 9a. For comparison, a cyclic voltammogram was measured using sodium tetraphenylborate in acetonitrile as a supporting salt, and the results are shown in FIG. 9b. Similarly, FIG. 10 shows the results of measuring the cyclic voltammogram in the above solution composition using a silver wire as the working electrode. Considering the above measurement results, the electrolytic solution according to the present invention is significantly different from conventional electrolytic solutions, and the dissolution of the metal salt into the electrolytic solution is controlled to strongly reflect the stability of complex formation with the crown compound. ing. Therefore, for this reason, a number of specific applications of the present invention from (A) to (E) above are possible. That is, as can be seen from the above examples, benzene, a non-polar solvent that could not be used in conventional electrochemical systems, is involved in the structure of the electrochemical system, and in this new electrochemical system, copper electrodes and zinc electrodes are used. It has become clear that the stable potential range of is extended to the decomposition potential of this electrolyte. On the other hand, in the silver electrode, silver ions are 15-crown-5
Reflecting the fact that a strong complex is formed between the two, it elutes into the electrolyte at zero overvoltage. From the above results, it is clear that the electrolytic solution according to the present invention has an elution order that is opposite to the normal ionization tendency, and a novel metal refining method as shown in (B) above is constructed. Furthermore, it goes without saying that new technologies such as (A) and (C) above can be constructed. Example 2 Benzene, a non-polar solvent, and 15-crown-5, whose pore radius is approximately equal to the ionic radius of sodium, were mixed so that the molar fraction of benzene was 0.8, and sodium tetraphrase was added to the mixture. An electrolytic solution was prepared by adding enylborate to a concentration of 0.1M. First, a single crystal of cadmium sulfide is coated with an indium-gallium alloy, and then a copper wire is connected using silver paste to create an ohmic junction.
Only one side of the crystal was left exposed to the electrolyte, and the other side was filled with epoxy resin to fix the electrode on a glass substrate. The above electrode was used as the working electrode, the platinum electrode was used as the counter electrode, and the silver wire was used as the reference electrode.These three electrodes were immersed in the above electrolyte solution and cyclically operated using a potentiometer under dark conditions and under light excitation conditions using a 500W xenon lamp. A voltammogram was measured. The measurement results showed that under dark conditions, cathode current was observed only when the electrode potential relative to the silver wire was less noble than -0.9V, and no current was observed when it was nobler than -0.9V. On the other hand, under optical excitation conditions using a xenon lamp, -
Although cathode current is observed from 0.9V, −
At a potential higher than 0.6 V, an anodic current that was not observed under dark conditions was newly observed. It was also found that this anode current quickly disappeared when the excitation light was cut off, and was quickly recovered when the excitation light was introduced again. Based on the above results, we fixed the electrode potential at 1.0 V with respect to the silver wire and investigated the temporal behavior of the photocurrent generated by excitation light. As a result, a photocurrent of 1.6 mA/cm 2 was measured at the initial stage of photosensitization electrolysis, and this continued to flow with almost no attenuation even after continuous photosensitization electrolysis for more than 6 hours. Since the CdS photoanode was found to be stable, a photovoltaic cell was assembled using this semiconductor electrode and a platinum electrode. FIG. 11 shows the state of the photovoltaic cell at this time. Insert each electrode into both sides of the U-shaped tube, and gently insert the cadmium sulfide single crystal electrode from above.
An electrolytic solution having the composition described above was injected, while a sulfuric acid acidic saturated sodium chloride aqueous solution was injected from the opposite platinum electrode side. Both electrolytes were separated into two phases and contacted each other. When both electrodes were single-circuited and the cadmium sulfide single crystal electrode was photoexcited with a 500WXe lamp, a photocurrent flowed through the external circuit and hydrogen bubbles were generated from the platinum electrode. Second, a zinc oxide semiconductor electrode was made by pressure firing zinc oxide powder using the same method as described for the cadmium sulfide single crystal above, and a platinum counter electrode,
The three silver reference electrodes were immersed in an electrolytic solution with the same composition as the cadmium sulfide electrode, and cyclic voltammograms were measured under potential regulation conditions using a potentiostat in the dark and under light excitation conditions using a 500w Xe lamp. . The results showed that under dark conditions, a cathodic current was observed in the potential range less noble than -0.3V, and in the electrical potential region more noble than -0.2V, a photosensitizing current that was not observed under dark conditions flowed as an anode current. . Third, use n-type silicon as an electrode in exactly the same manner as described in the first and second sections above, and use three electrodes, a platinum counter electrode and a silver reference electrode, in exactly the same manner as in the first and second sections. The samples were immersed in the same electrolyte solution, and cyclic voltammograms were measured under potential control conditions using a potentiostat, under dark conditions, and under photoexcitation conditions using a 500w Xe lamp. Next, the potential of the n-type silicon electrode was fixed at +1.7V, and the light from a 500w Xe lamp was picked up to examine the change in photocurrent over time. When photosensitized electrolysis was carried out continuously for 2 hours, it was confirmed that the electrolyte was significantly more stable than ordinary electrolytes.
第1図はn型半導体―電解液―金属対極の様子
を示す図である。第2図はn型半導体の分解電位
Edを水の酸化電位Eoの高低による、半導体電極
の安定、不安定を示す図である。第3図は、CdS
の溶解抑制割合還元剤のレドツクス電位に接する
依存性を示す図である。第4図は、不安定な半導
体電極を安定化できるレドツクス剤と安定化でき
ないレドツクス剤を示す図である。第5図は、15
―クラウン―5とベンゼンの組成を変えた溶液の
比誘電率を示す図である。第6図は支持塩の濃度
を変えた場合の溶液の電気伝導度を示す図であ
る。第7図乃至第10図はサイクリツクボルタモ
グラムの測定結果を示す図である。第11図は実
施例2で使用した装置を示す図である。第11図
において数字は以下を示す。
1……硫化カドミウム単結晶電極、2……白金
電極、3……本発明の電解液、4……硫酸酸性の
飽和塩化ナトリウム水溶液、5……負荷、6……
電圧計、7……発生した水素、8……励起光。
FIG. 1 is a diagram showing the state of an n-type semiconductor-electrolyte-metal counter electrode. Figure 2 shows the decomposition potential of an n-type semiconductor.
FIG. 3 is a diagram showing the stability and instability of a semiconductor electrode depending on the level of Ed and water oxidation potential Eo. Figure 3 shows CdS
FIG. 3 is a diagram showing the dependence of the dissolution inhibition rate on the redox potential of the reducing agent. FIG. 4 is a diagram showing redox agents that can stabilize an unstable semiconductor electrode and redox agents that cannot. Figure 5 shows 15
FIG. 3 is a diagram showing the dielectric constants of solutions with different compositions of Crown-5 and benzene. FIG. 6 is a diagram showing the electrical conductivity of the solution when the concentration of the supporting salt is changed. FIGS. 7 to 10 are diagrams showing the measurement results of cyclic voltammograms. FIG. 11 is a diagram showing the apparatus used in Example 2. In FIG. 11, the numbers indicate the following. DESCRIPTION OF SYMBOLS 1... Cadmium sulfide single crystal electrode, 2... Platinum electrode, 3... Electrolyte of the present invention, 4... Sulfuric acid acidic saturated sodium chloride aqueous solution, 5... Load, 6...
Voltmeter, 7... generated hydrogen, 8... excitation light.
Claims (1)
極性溶媒との溶液を含み、実質的に極性溶媒を含
まないことを特徴とする電解液。1. An electrolytic solution comprising a solution of a crown compound holding cations and a low polar solvent, and containing substantially no polar solvent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10163080A JPS5727129A (en) | 1980-07-24 | 1980-07-24 | Electrochemical system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10163080A JPS5727129A (en) | 1980-07-24 | 1980-07-24 | Electrochemical system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5727129A JPS5727129A (en) | 1982-02-13 |
JPS641174B2 true JPS641174B2 (en) | 1989-01-10 |
Family
ID=14305712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10163080A Granted JPS5727129A (en) | 1980-07-24 | 1980-07-24 | Electrochemical system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5727129A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SA112330516B1 (en) * | 2011-05-19 | 2016-02-22 | كاليرا كوربوريشن | Electrochemical hydroxide systems and methods using metal oxidation |
US9200375B2 (en) | 2011-05-19 | 2015-12-01 | Calera Corporation | Systems and methods for preparation and separation of products |
TWI633206B (en) | 2013-07-31 | 2018-08-21 | 卡利拉股份有限公司 | Electrochemical hydroxide systems and methods using metal oxidation |
CA2958089C (en) | 2014-09-15 | 2021-03-16 | Calera Corporation | Electrochemical systems and methods using metal halide to form products |
CN108290807B (en) | 2015-10-28 | 2021-07-16 | 卡勒拉公司 | Electrochemical, halogenation and oxyhalogenation system and method |
US10619254B2 (en) | 2016-10-28 | 2020-04-14 | Calera Corporation | Electrochemical, chlorination, and oxychlorination systems and methods to form propylene oxide or ethylene oxide |
WO2019060345A1 (en) | 2017-09-19 | 2019-03-28 | Calera Corporation | Systems and methods using lanthanide halide |
US10590054B2 (en) | 2018-05-30 | 2020-03-17 | Calera Corporation | Methods and systems to form propylene chlorohydrin from dichloropropane using Lewis acid |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5812992B2 (en) * | 1976-12-17 | 1983-03-11 | 松下電器産業株式会社 | battery |
-
1980
- 1980-07-24 JP JP10163080A patent/JPS5727129A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5727129A (en) | 1982-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Murase et al. | Electrochemical behaviour of copper in trimethyl-n-hexylammonium bis ((trifluoromethyl) sulfonyl) amide, an ammonium imide-type room temperature molten salt | |
JP4875657B2 (en) | Photoelectrochemical cell and electrolytic solution for this battery | |
US4020240A (en) | Electrochemical cell with clovoborate salt in electrolyte and method of operation and composition of matter | |
Galiński et al. | Ionic liquids as electrolytes | |
Xia et al. | Ionic liquid electrolytes for aluminium secondary battery: Influence of organic solvents | |
US5683832A (en) | Hydrophobic liquid salts, the preparation thereof and their appliction in electrochemistry | |
CA1218110A (en) | Non-aqueous electrochemical cell and electrolyte | |
US6787019B2 (en) | Low temperature alkali metal electrolysis | |
US5552241A (en) | Low temperature molten salt compositions containing fluoropyrazolium salts | |
US4889659A (en) | Nitrogenized electronic conductive polymers, their preparation processes, electrochromic display cell and electrochemical generator using these polymers | |
Watanabe et al. | Solvents effects on electrochemical characteristics of graphite fluoride—lithium batteries | |
EP2623643A1 (en) | Aluminum electroplating solution | |
KR20020017927A (en) | Ionic liquids | |
Gores et al. | Nonaqueous electrolyte solutions: New materials for devices and processes based on recent applied research | |
Gelman et al. | Challenges and prospect of non–aqueous non-alkali (NANA) metal–air batteries | |
Licht et al. | Speciation analysis of aqueous polyselenide solutions | |
KR101918788B1 (en) | Electrolyte and secondary battery | |
Twardowski et al. | A Comparison of Perfluorinated Carboxylate and Sulfonate Ion Exchange Polymers: II. Sorption and Transport Properties in Concentrated Solution Environments | |
JPS641174B2 (en) | ||
Picart et al. | Electrochemical study of 2, 5-dimercapto-1, 3, 4-thiadiazole in acetonitrile | |
Mamantov et al. | The use of tetravalent sulfur in molten chloroaluminate secondary batteries | |
Bogolowski et al. | An electrically rechargeable Al-air battery with aprotic ionic liquid electrolyte | |
EP0235444B1 (en) | Metal halogen electrochemical cell | |
Egashira et al. | The effect of additives in room temperature molten salt-based lithium battery electrolytes | |
Mondon | Electrochemical Deposition of Cadmium Sulfide Thin Films from Organic Solution: I. Sulfur Reduction and Cadmium‐Polysulfide Complex Formation |