JPS6411698B2 - - Google Patents

Info

Publication number
JPS6411698B2
JPS6411698B2 JP56193829A JP19382981A JPS6411698B2 JP S6411698 B2 JPS6411698 B2 JP S6411698B2 JP 56193829 A JP56193829 A JP 56193829A JP 19382981 A JP19382981 A JP 19382981A JP S6411698 B2 JPS6411698 B2 JP S6411698B2
Authority
JP
Japan
Prior art keywords
nickel
silver
powder
contact
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56193829A
Other languages
Japanese (ja)
Other versions
JPS5896833A (en
Inventor
Takeshi Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP56193829A priority Critical patent/JPS5896833A/en
Publication of JPS5896833A publication Critical patent/JPS5896833A/en
Publication of JPS6411698B2 publication Critical patent/JPS6411698B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Switches (AREA)
  • Contacts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、電気接点焼結材料(以下「電気接点
材料」という)に関するものである。 従来より電気接点材料としては、銀―金属酸化
物系、銀―ニツケル系、銀―タングステン系、銀
―グラフアイト系などが用いられている。特に銀
―ニツケル系電気接点は接点性能もさることなが
ら加工性が良いため多用されている。従来ニツケ
ルが重量比で10%〜30%が多く使用されている。
この理由は電気接点として要求される接触抵抗、
耐溶着性、耐消耗性の総合評価がすぐれているた
めである。10%以下の場合、銀と接点性能がほと
んどかわらないため従来は使用されていなかつた
が、最近機構部品が小型化され、それにともない
接触力、開離力などが小さくなり接触抵抗が高
く、もしくは不安定となり最終的には導通不良が
生じ機構部品が正常に作動しないという問題が発
生している。この原因は銀とニツケルはほとんど
固溶しないため銀粉とニツケル粉を混合、圧縮、
押出しという粉末冶金法にて製造される。それゆ
え銀粉とニツケル粉は機械的に混合され、結びつ
いている状態であり、この材料を電気接点として
使用した場合、開閉時のジユール熱、アーク熱に
よりニツケルが凝集しかつニツケルが酸化して酸
化ニツケルとなるためである。ただし従来この問
題は接触力、開離力を大きくするなど、機構部品
の改良でもつて対応出来たが最初に述べたように
機構部品の小型化にともない対応出来なくなつ
た。 本発明は上記事情に鑑み銀―ニツケル系電気接
点材料の接触抵抗を安定されることを目的として
なされたものである。また本発明は銀―ニツケル
系電気接点材料の長所である加工性の良さ、良好
な耐溶着性、および耐消耗性を損うことなく接触
抵抗を安定せしめた電気接点材料を提供すること
を目的とする。 本発明は、重量比で、ニツケル5〜10%および
炭化タングステン、炭化クロム又は炭化モリブデ
ンの少くとも一種を合計で0.4〜2%残部銀から
なることを特徴とする電気接点材料である。 炭化タングステン、炭化クロム又は炭化モリブ
デンは、いずれも非常に硬度が高く、銀ともニツ
ケルともなじみが悪いものである。そこで、本発
明はこれらの炭化物の少なくとも1種を銀―ニツ
ケル合金素材中に均一分散せしめてニツケルの凝
集を防ぎ接点性能を向上しようとしたものであ
る。 ここで、ニツケルの重量%を5〜10%と限定し
たのは5%以下では耐溶着性、耐消耗性が劣化
し、又10%以上になるとニツケルの凝集、酸化が
ひどくなるためである。また炭化タングステン、
炭化クロム、又は炭化モリブデンは0.4〜2%の
範囲で均等に銀―ニツケル合金に作用しいずれの
炭化物も耐溶着性、耐消耗性を損じることなく接
触抵抗を安定させる。しかし0.4%未満では電気
接点開閉時のジユール熱、アーク熱によるニツケ
ルの凝集を防ぐことができず、2%をこえると加
工性が悪くなり開閉時の消耗が著しくなるのでこ
れら炭化物の総量を0.4〜2%に限定した。 次に、本発明による電気接点材料の効果を明瞭
ならしめるため、その具体的な実施例と従来例に
ついて説明する。 実施例 1 粒径数十ミクロン程度の銀粉とニツケル粉と炭
化タングステン粉とを重量比で90:8:2の割合
で混合した。この混合粉末を圧縮、焼結をくりか
えしたのち、熱間押出、冷間伸線した。そして、
この線材をヘツダー加工により、頭径2.8mmの可
動接点と頭径3.5mmの固定接点を得た。 実施例 2 粒径百ミクロン程度の銀粉とニツケル粉と炭化
タングステン粉と炭化モリブデン粉とを重量比で
94:5:0.5:0.5の割合で混合した。この混合粉
末を実施例1と同様な方法で、可動接点と固定接
点を得た。 実施例 3 粒径百ミクロン程度の銀粉とニツケル粉と炭化
クロム粉とを重量比で89.6:10:0.4の割合で混
合した。この混合粉末を実施例1と同様な方法
で、可動接点と固定接点を得た。 従来例 1 粒径数10ミクロンの銀粉とニツケル粉を重量比
で90:10の割合で混合した。この混合粉末を圧
縮、焼結をくりかえしたのち、熱間押出、冷間伸
線した。そして、この線材をヘツダー加工により
頭径2.8mmの可動接点と頭径3.5mmの固定接点を得
た。 従来例 2 粒径百ミクロン程度の銀粉とニツケル粉とを
70:30の割合で混合した。この混合粉末を従来例
1と同様の方法で、可動接点と固定接点を得た。 しかして、実施例1乃至3および従来例1乃至
2のリベツト型電気接点各9組を下記の試験条件
にて開閉試験を行い、耐溶着性と接触抵抗を調べ
たところ下表のような結果を得た。 試験条件 電 圧 AC100V 50Hz 電 流 5A 開閉頻度 20回/分 負 荷 抵 抗 開閉回数 溶着発生まで
The present invention relates to a sintered electrical contact material (hereinafter referred to as "electrical contact material"). Conventionally, as electrical contact materials, silver-metal oxide type, silver-nickel type, silver-tungsten type, silver-graphite type, etc. have been used. In particular, silver-nickel electrical contacts are widely used because of their good contact performance and workability. Conventionally, 10% to 30% nickel by weight is often used.
The reason for this is the contact resistance required for electrical contacts,
This is because the overall evaluation of welding resistance and abrasion resistance is excellent. If it is less than 10%, it has not been used in the past because the contact performance is almost the same as that of silver, but as mechanical parts have recently become smaller, the contact force and separation force have become smaller, resulting in higher contact resistance or This causes instability and ultimately leads to poor conduction, causing mechanical parts to malfunction. The reason for this is that silver and nickel hardly dissolve in solid solution, so silver powder and nickel powder are mixed, compressed,
Manufactured using a powder metallurgy method called extrusion. Therefore, silver powder and nickel powder are mechanically mixed and bonded, and when this material is used as an electrical contact, the nickel aggregates due to the electrical contact heat and arc heat during opening and closing, and the nickel oxidizes. It is to become nickel. However, in the past, this problem could be solved by improving the mechanical parts, such as by increasing the contact force and separation force, but as mentioned at the beginning, with the miniaturization of the mechanical parts, it became impossible to deal with this problem. In view of the above circumstances, the present invention was made with the object of stabilizing the contact resistance of silver-nickel electrical contact materials. Another object of the present invention is to provide an electrical contact material that has stable contact resistance without impairing the advantages of silver-nickel electrical contact materials, such as good workability, good welding resistance, and wear resistance. shall be. The present invention is an electrical contact material comprising, by weight, 5 to 10% nickel and at least one of tungsten carbide, chromium carbide, or molybdenum carbide, with the balance being silver in a total of 0.4 to 2%. Tungsten carbide, chromium carbide, and molybdenum carbide all have extremely high hardness and are poorly compatible with silver and nickel. Therefore, the present invention attempts to uniformly disperse at least one of these carbides in a silver-nickel alloy material to prevent agglomeration of nickel and improve contact performance. Here, the reason why the weight percent of nickel is limited to 5 to 10% is because if it is less than 5%, the welding resistance and abrasion resistance will deteriorate, and if it is more than 10%, the agglomeration and oxidation of nickel will become severe. Also tungsten carbide,
Chromium carbide or molybdenum carbide acts equally on the silver-nickel alloy in the range of 0.4 to 2%, and either carbide stabilizes contact resistance without impairing welding resistance or abrasion resistance. However, if it is less than 0.4%, it will not be possible to prevent the agglomeration of nickel due to the heat of the dure and arc when electrical contacts are opened and closed, and if it exceeds 2%, the workability will deteriorate and the wear and tear during opening and closing will be significant, so the total amount of these carbides should be reduced to 0.4%. It was limited to ~2%. Next, in order to clarify the effects of the electrical contact material according to the present invention, specific examples and conventional examples thereof will be described. Example 1 Silver powder, nickel powder, and tungsten carbide powder each having a particle size of about several tens of microns were mixed in a weight ratio of 90:8:2. This mixed powder was repeatedly compressed and sintered, then hot extruded and cold wire drawn. and,
By header processing this wire, we obtained a movable contact with a head diameter of 2.8 mm and a fixed contact with a head diameter of 3.5 mm. Example 2 Silver powder, nickel powder, tungsten carbide powder, and molybdenum carbide powder with a particle size of about 100 microns were mixed in weight ratio.
They were mixed at a ratio of 94:5:0.5:0.5. A movable contact and a fixed contact were obtained using this mixed powder in the same manner as in Example 1. Example 3 Silver powder, nickel powder, and chromium carbide powder each having a particle size of about 100 microns were mixed in a weight ratio of 89.6:10:0.4. A movable contact and a fixed contact were obtained using this mixed powder in the same manner as in Example 1. Conventional Example 1 Silver powder and nickel powder with a particle size of several tens of microns were mixed at a weight ratio of 90:10. This mixed powder was repeatedly compressed and sintered, then hot extruded and cold wire drawn. Then, by header processing this wire, a movable contact with a head diameter of 2.8 mm and a fixed contact with a head diameter of 3.5 mm were obtained. Conventional example 2 Silver powder and nickel powder with a particle size of about 100 microns are
They were mixed at a ratio of 70:30. A movable contact and a fixed contact were obtained using this mixed powder in the same manner as in Conventional Example 1. Therefore, nine sets of rivet-type electrical contacts of Examples 1 to 3 and Conventional Examples 1 to 2 were subjected to opening/closing tests under the following test conditions, and the welding resistance and contact resistance were investigated, and the results are shown in the table below. I got it. Test conditions Voltage AC100V 50Hz Current 5A Opening/closing frequency 20 times/min Load Resistance Number of opening/closing Until welding occurs

【表】 上記表の結果からあきらかなように、本発明の
電気接点材料でつくつた電気接点は従来の電気接
点に比し接触抵抗が安定しておりまた、耐溶着性
は従来例とかわらずすぐれていることがわかる。 以上の説明からあきらかなように、本発明の電
気接点材料は、従来の電気接点材料に比し接触抵
抗の安定性にすぐれた画期的な発明であるといえ
る。
[Table] As is clear from the results in the table above, the electrical contacts made using the electrical contact material of the present invention have more stable contact resistance than conventional electrical contacts, and the welding resistance is the same as that of conventional electrical contacts. I can see that it is excellent. As is clear from the above description, the electrical contact material of the present invention can be said to be an epoch-making invention that has superior stability in contact resistance compared to conventional electrical contact materials.

Claims (1)

【特許請求の範囲】[Claims] 1 重量比でニツケル5〜10%および炭化タング
ステン、炭化クロム、炭化モリブデンの少くとも
一種を合計で0.4〜2%、残部銀からなることを
特徴とする電気接点焼結材料。
1. A sintered electrical contact material comprising, by weight, 5 to 10% nickel, a total of 0.4 to 2% of at least one of tungsten carbide, chromium carbide, and molybdenum carbide, and the balance being silver.
JP56193829A 1981-12-02 1981-12-02 Electric contact material Granted JPS5896833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56193829A JPS5896833A (en) 1981-12-02 1981-12-02 Electric contact material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56193829A JPS5896833A (en) 1981-12-02 1981-12-02 Electric contact material

Publications (2)

Publication Number Publication Date
JPS5896833A JPS5896833A (en) 1983-06-09
JPS6411698B2 true JPS6411698B2 (en) 1989-02-27

Family

ID=16314431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56193829A Granted JPS5896833A (en) 1981-12-02 1981-12-02 Electric contact material

Country Status (1)

Country Link
JP (1) JPS5896833A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159950A (en) * 1983-03-03 1984-09-10 Tanaka Kikinzoku Kogyo Kk Electrical contact material
CN105405685A (en) * 2015-12-10 2016-03-16 宋和明 Disconnecting switch contact material and processing technology therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834425B2 (en) * 1978-03-02 1983-07-26 株式会社井上ジャパックス研究所 metal carbon composite material

Also Published As

Publication number Publication date
JPS5896833A (en) 1983-06-09

Similar Documents

Publication Publication Date Title
US3951872A (en) Electrical contact material
US4537743A (en) Electrode composition for vacuum switch
US2145690A (en) Electric contact material
US2470034A (en) Electric contact formed of a ruthenium composition
JPS6411698B2 (en)
JPS6411699B2 (en)
JPS6361376B2 (en)
JPH0146571B2 (en)
JPH0118975B2 (en)
JP2001351451A (en) Contact element material and contact element
JPS5914218A (en) Contact material for vacuum breaker
EP0178796A2 (en) Manufacture of vacuum interrupter contacts
JPS58126607A (en) Electric contact material
JPS5896835A (en) Electric contact material
JPH0138859B2 (en)
JPH0361738B2 (en)
EP0440340A2 (en) Electrical contact materials and method of manufacturing the same
JPS5823119A (en) Method of producing electric contact material
JPH0127137B2 (en)
JPH029096B2 (en)
JPS6215977B2 (en)
JPH0369126B2 (en)
JPS5935306A (en) Electric contact material
JPS6059978B2 (en) electrical contact materials
JPH0237417B2 (en)