JPS6411685B2 - - Google Patents

Info

Publication number
JPS6411685B2
JPS6411685B2 JP933384A JP933384A JPS6411685B2 JP S6411685 B2 JPS6411685 B2 JP S6411685B2 JP 933384 A JP933384 A JP 933384A JP 933384 A JP933384 A JP 933384A JP S6411685 B2 JPS6411685 B2 JP S6411685B2
Authority
JP
Japan
Prior art keywords
gas
quenching
supply pipe
heating chamber
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP933384A
Other languages
Japanese (ja)
Other versions
JPS60152621A (en
Inventor
Mitsuo Imayasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP933384A priority Critical patent/JPS60152621A/en
Publication of JPS60152621A publication Critical patent/JPS60152621A/en
Publication of JPS6411685B2 publication Critical patent/JPS6411685B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Furnace Details (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Description

【発明の詳細な説明】 この発明は加工された金属部品の素材の組織を
微細且つ均一化してその機械的強度を向上させる
為の無酸化焼入れ方法及び焼入れに使用される焼
入れ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-oxidation hardening method and a hardening device used for hardening to improve the mechanical strength of processed metal parts by making the structure of the material fine and uniform. .

イ 従来技術 自動車の各種構成部品や工作機械の構成部品
は、所定の形状に加工された後、機械的強度を向
上させる為に焼入れが行われる。この焼入れに際
しては、被焼入れ部品(ワーク)の酸化を防止す
る為に保護雰囲気を用いるいわゆる無酸化焼入れ
が一般的に行われている。
B. Prior Art After various components of automobiles and machine tools are processed into a predetermined shape, they are hardened to improve their mechanical strength. During this hardening, so-called non-oxidation hardening is generally performed in which a protective atmosphere is used to prevent oxidation of the part to be hardened (workpiece).

前記無酸化焼入れに用いる保護ガスとしては従
来、原料ガスに理論量の空気を混合して高温に加
熱された変成炉内に入れ、当該変成炉内で外熱さ
れたレトレル中に充填されたニツケル触媒に接触
させて変成した吸熱型変成ガス(RXガス)を用
い、且つガス内のカーボンポテンシヤルをワーク
の素材の炭素量に等しく調整してワークの表面炭
素量の増減を避け乍ら焼入れを行つていた。
Conventionally, the protective gas used in the non-oxidizing quenching is a mixture of raw material gas and a theoretical amount of air, which is then placed in a high-temperature shift furnace, and nickel is filled in a retrel that is externally heated in the shift furnace. Hardening is performed using an endothermic modified gas (RX gas) that has been transformed by contact with a catalyst, and by adjusting the carbon potential in the gas to be equal to the carbon content of the workpiece material, while avoiding an increase or decrease in the surface carbon content of the workpiece. It was on.

しかし、前記RXガスは、活性ガスである為、
空気の混入量が多くなると、爆発の危険性が高い
為、焼入炉内へ多量(10m3/Hr)のRXガスを供
給し、炉内の圧力を高くして炉内への空気の侵入
を防止するようにしている。従つて多量のRXガ
スを消費し、しかもこのRXガスは単価が高い為
にランニングコストが高くつき、省エネルギー対
策上問題があつた。
However, since the RX gas is an active gas,
If there is a large amount of air mixed in, there is a high risk of explosion, so a large amount (10m 3 /Hr) of RX gas is supplied into the quenching furnace to increase the pressure inside the furnace and prevent air from entering the furnace. We are trying to prevent this. Therefore, a large amount of RX gas is consumed, and since the unit price of this RX gas is high, running costs are high, which poses a problem in terms of energy saving measures.

そこで爆発の危険のない不活性ガスを保護ガス
として焼入れを行う方法が考えられる。不活性ガ
スとしては原料ガスに過剰空気を混合し、その燃
焼熱を利用して変成した発熱型変成ガス(NXガ
ス)を用いる。
Therefore, a method of quenching using an inert gas as a protective gas without the risk of explosion may be considered. As the inert gas, exothermic modified gas (NX gas) is used, which is obtained by mixing raw material gas with excess air and using the combustion heat to transform the mixture.

NXガスを用いることにより空気が混入しても
爆発の危険がないので、焼入炉内の圧力を低くす
ることができ、NXガスの供給量を少なく(1〜
3m3/Hr)でき、しかもNXガスの単価も易い
のでランニングコストが安くなり、且つ省エネル
ギー上も好ましいものである。
By using NX gas, there is no danger of explosion even if air gets mixed in, so the pressure inside the quenching furnace can be lowered, and the amount of NX gas supplied can be reduced (1~
3 m 3 /Hr), and the unit price of NX gas is low, so the running cost is low and it is also preferable in terms of energy saving.

しかし、単にNXガスを用いただけでは、カー
ボンポテンシヤルがワークの炭素量より低く脱炭
を生じる恐れがある為、NXガスに少量のメタ
ン、ブタン、或いはメタンを主成分とする液化天
然ガスを原料とする増熱都市ガス(以下13A低圧
都市ガスと称す)をエンリツチガスとして混入さ
せてカーボンポテンシヤルを調整せねばならな
い。
However, if only NX gas is used, the carbon potential is lower than the carbon content of the workpiece, and decarburization may occur. The carbon potential must be adjusted by mixing heated city gas (hereinafter referred to as 13A low-pressure city gas) as enrichment gas.

このようにNXガスを保護ガスとして用いた場
合、これに少量のメタンを混入させるので空気が
多量に混入すると爆発の危険性がある為、焼入炉
内へのワークの搬入時及び焼入炉からのワークの
搬出時に炉内へ空気が混入しないように工夫する
必要がある。
When NX gas is used as a protective gas in this way, a small amount of methane is mixed in with it, so if a large amount of air gets mixed in, there is a risk of explosion. It is necessary to take measures to prevent air from entering the furnace when transporting workpieces from the furnace.

ロ 発明の目的 この発明はワークの搬入・搬出時に焼入炉内へ
の空気の混入を防止した無酸化焼入れ方法および
その方法の実施に使用される焼入れ装置を提供せ
んとするものである。
B. Purpose of the Invention The present invention aims to provide a non-oxidizing quenching method that prevents air from entering the quenching furnace during loading and unloading of workpieces, and a quenching device used to carry out the method.

ハ 発明の構成 この発明は、焼入炉へ、保護ガスとしてNXガ
ス(発熱型変成ガス)を供給し、エンリツチガス
として各種メタン系ガスを混入させて焼入れする
方法において、焼入槽を備えた前室と、加熱室と
を並設し、両室間に中間扉を開閉自在に設けた焼
入炉の、中間扉を通つてワークを加熱室へ搬入及
び搬出する際に、エンリツチガスの供給を停止
し、且つNXガスの供給量を増大させて焼入れを
行うようにした無酸化焼入れ方法である。
C. Structure of the Invention The present invention provides a method for quenching by supplying NX gas (exothermic gas) as a protective gas to a quenching furnace and mixing various methane-based gases as an enrichment gas. In a quenching furnace where a chamber and a heating chamber are installed side by side and an intermediate door is provided between the two chambers, the supply of enrichment gas is stopped when the workpiece is carried into and out of the heating chamber through the intermediate door. This is a non-oxidation quenching method in which quenching is performed by increasing the amount of NX gas supplied.

また第2の発明は、焼入槽を備えた前室3と加
熱室2とを並設し、両室2,3間に中間扉9を開
閉自在に設けた焼入炉1の加熱室2へNXガスを
供給する第1のガス供給管11及びエンリツチガ
スを供給する第2のガス供給管13を設け、焼入
炉1の前室3へNXガスを供給する第3のガス供
給管15を設け、前記第2のガス供給管13に中
間扉9の開放に伴つて管路を閉止する常開の電磁
弁17を設け、第3のガス供給管15に中間扉9
の開放に伴つて管路を開放する常閉の電磁弁18
を設けたもので焼入れ時には第1のガス供給管1
1及び第2のガス供給管13からNXガス及びエ
ンリツチガスを焼入炉の加熱室2へ供給して焼入
れし、ワークの搬入・搬出時に第2のガス供給管
13からのエンリツチガスの供給を停止し、第3
のガス供給管15を開放し、第1のガス供給管1
1及び第3のガス供給管15から加熱室2及び前
室3へNXガスを供給するようにしたものであ
る。
Further, the second invention provides a heating chamber 2 of the quenching furnace 1 in which a front chamber 3 equipped with a quenching tank and a heating chamber 2 are arranged side by side, and an intermediate door 9 is provided between both chambers 2 and 3 so as to be openable and closable. A first gas supply pipe 11 for supplying NX gas to and a second gas supply pipe 13 for supplying enrichment gas are provided, and a third gas supply pipe 15 for supplying NX gas to the front chamber 3 of the quenching furnace 1 is provided. The second gas supply pipe 13 is provided with a normally open solenoid valve 17 that closes the pipe line when the intermediate door 9 is opened, and the third gas supply pipe 15 is provided with a normally open solenoid valve 17 that closes the pipeline when the intermediate door 9 is opened.
Normally closed solenoid valve 18 that opens the pipeline when the
The first gas supply pipe 1 is installed during quenching.
NX gas and enrichment gas are supplied from the first and second gas supply pipes 13 to the heating chamber 2 of the quenching furnace for quenching, and the supply of enrichment gas from the second gas supply pipe 13 is stopped when loading and unloading the workpiece. , 3rd
The first gas supply pipe 15 is opened, and the first gas supply pipe 1 is opened.
NX gas is supplied from the first and third gas supply pipes 15 to the heating chamber 2 and the front chamber 3.

ニ 実施例 第1図は本発明方法の実施に際して使用される
焼入れ装置の一例を示す図面で、同図において、
1は焼入炉で、加熱室2と前室3とを並設してあ
る。前記加熱室2は耐熱且つ断熱に優れた構造に
構成され、内部に室内を加熱する適宜の加熱手段
(図示せず)が設けられ、天井面2aに加熱の迅
速化及び温度分布と雰囲気作用の均一化を行わせ
る為のRCフアン4が設けられている。前室3は
前部にワーク装入用の前扉5が上下方向に開閉自
在に設けられ、下部に焼入れ槽、例えば油槽6を
一体に構成している。前記油槽6には焼入れ用エ
レベータ7が上下動可能に設けられ、且つ焼入れ
油8が充填されている。
D. Example FIG. 1 is a diagram showing an example of a hardening apparatus used in carrying out the method of the present invention, and in the same figure,
1 is a quenching furnace in which a heating chamber 2 and a front chamber 3 are arranged side by side. The heating chamber 2 has a structure with excellent heat resistance and heat insulation, and is provided with an appropriate heating means (not shown) for heating the interior of the room, and has a ceiling surface 2a that is designed to speed up heating and control temperature distribution and atmospheric effects. An RC fan 4 is provided for uniformity. The front chamber 3 is provided with a front door 5 for loading a workpiece in the front part thereof, which can be opened and closed in the vertical direction, and a quenching tank, for example, an oil tank 6 is integrally formed in the lower part. A quenching elevator 7 is provided in the oil tank 6 so as to be movable up and down, and is filled with quenching oil 8.

9は加熱室2と前室3との間に上下動自在に設
けられた中間扉で、焼入炉1の上方に配置された
エアーシリンダ10のピストンロツド10aに上
端を連結され、エアーシリンダ10の伸縮動作に
て開閉され、加熱室2の開閉を行う。
An intermediate door 9 is vertically movable between the heating chamber 2 and the front chamber 3, and its upper end is connected to the piston rod 10a of the air cylinder 10 disposed above the quenching furnace 1. It opens and closes by expanding and contracting, and opens and closes the heating chamber 2.

11は変成炉(図示せず)にて変成されたNX
ガスを焼入炉1の加熱室2へ供給する第1のガス
供給管で、その先端を加熱室2へ導入させてあ
る。12は第1のガス供給管11に設けられた第
1の流量計である。13はエンリツチガスを加熱
室2へ供給する第2のガス供給管で、その先端を
第1の流量計12より下流側の第1のガス供給管
11に接続してある。14は第2のガス供給管1
3に設けられた第2の流量計である。前記エンリ
ツチガスとしては、例えばメタンを主成分とする
液化天然ガスを原料とした13A低圧都市ガスを使
用する。15はNXガスを焼入炉1の前室3へ供
給する第3のガス供給管で、後端を第1のガス供
給管11に接続し、先端を前室3へ導入させてあ
る。16は第3のガス供給管15にもうけられた
第3の流量計である。
11 is NX that has been metamorphosed in a metamorphosis furnace (not shown)
This is a first gas supply pipe that supplies gas to the heating chamber 2 of the quenching furnace 1, and its tip is introduced into the heating chamber 2. 12 is a first flow meter provided in the first gas supply pipe 11. A second gas supply pipe 13 supplies enrichment gas to the heating chamber 2, and its tip is connected to the first gas supply pipe 11 downstream of the first flowmeter 12. 14 is the second gas supply pipe 1
This is the second flowmeter provided at No. 3. As the enrichment gas, for example, 13A low-pressure city gas made from liquefied natural gas containing methane as a main component is used. Reference numeral 15 denotes a third gas supply pipe for supplying NX gas to the front chamber 3 of the quenching furnace 1, the rear end of which is connected to the first gas supply pipe 11, and the tip thereof introduced into the front chamber 3. 16 is a third flow meter installed in the third gas supply pipe 15.

17は第2のガス供給管13に設けられた第1
の電磁弁で、常時管路を開放しており、通電され
ると切換つて管路を閉止する。18は第3のガス
供給管15に設けられた第2の電磁弁で、常時管
路を閉止しており、通電されると切換つて管路を
開放する。19は中間扉9の上方に設けられたリ
ミツトスイツチで、中間扉9が上昇すると、その
上昇端でONされる。このリミツトスイツチ19
はONされると、前記第1の電磁弁17及び第2
の電磁弁18に通電し、第2のガス供給管13を
閉止すると共に第3のガス供給管15を開放す
る。
17 is a first gas supply pipe provided in the second gas supply pipe 13;
This is a solenoid valve that keeps the pipeline open at all times, and switches to close the pipeline when energized. Reference numeral 18 denotes a second electromagnetic valve provided in the third gas supply pipe 15, which normally closes the pipe line, and switches to open the pipe line when energized. Reference numeral 19 denotes a limit switch provided above the intermediate door 9, which is turned on at the rising end when the intermediate door 9 rises. This limit switch 19
is turned on, the first solenoid valve 17 and the second solenoid valve 17 are turned on.
The electromagnetic valve 18 is energized to close the second gas supply pipe 13 and open the third gas supply pipe 15.

上記構成において、焼入れ動作を説明すると、
焼入炉1の加熱室2内の加熱手段を作用させて炉
内温度を所定の温度にすると共に加熱室2へ第1
のガス供給管11からNXガスを必要量(1〜3
m3/Hr)の13A低圧都市ガスを供給し、加熱室
2内を保護雰囲気にすると共にカーボンポテンシ
ヤルをワーク20の炭素量に合致させる。この状
態で先ず前扉5を適宜の手段で開放させて多数の
ワーク20を前室3で焼入れし、エレベータ7上
に載置する。この後前扉5を閉じ、続いてエアー
シリンダ10を短縮動作させて中間扉9を上昇さ
せて加熱室2を開放し、ワーク20を加熱室2内
へ搬入する。そして搬入後エアーシリンダ10を
伸長させて中間扉9を下降させ、加熱室2を閉じ
ワーク20を加熱する。この加熱時に前扉5を開
放させて新たなワーク20を装入し、エレベータ
7上に載せる。加熱室2内でワーク20を所定の
温度まで加熱すると、第2図に示すように、中間
扉9を開放させて加熱室2から高温のワーク20
を搬出してエレベータ7上に載置すると共に新た
なワーク20をエレベータ7から加熱室2へ搬入
する。この後中間扉9を閉じて次の加熱を行う。
一方前室ではワーク20の搬出後、エレベータ7
を下降させてワーク20を油槽6内の焼入れ油8
内に浸漬させ、焼入れを行う。焼入れが完了する
と、エレベータ7を上昇させ、続いて前扉5を開
放させて焼入れしたワーク20を前室3から取出
し、続いて新たなワーク20を装入しエレベータ
7上に載せる。この後前述した動作を繰り返して
ワーク20の焼入れを連続して行う。
In the above configuration, the quenching operation is explained as follows.
The heating means in the heating chamber 2 of the quenching furnace 1 is activated to bring the temperature inside the furnace to a predetermined temperature, and the first
Pour the required amount of NX gas (1 to 3
13A low-pressure city gas (m 3 /Hr) is supplied to create a protective atmosphere in the heating chamber 2 and to match the carbon potential to the carbon content of the workpiece 20. In this state, first, the front door 5 is opened by an appropriate means, and a large number of works 20 are hardened in the front chamber 3 and placed on the elevator 7. After that, the front door 5 is closed, and then the air cylinder 10 is shortened, the intermediate door 9 is raised, the heating chamber 2 is opened, and the workpiece 20 is carried into the heating chamber 2. After being carried in, the air cylinder 10 is extended, the intermediate door 9 is lowered, the heating chamber 2 is closed, and the workpiece 20 is heated. During this heating, the front door 5 is opened and a new work 20 is loaded and placed on the elevator 7. When the workpiece 20 is heated to a predetermined temperature in the heating chamber 2, the intermediate door 9 is opened and the high-temperature workpiece 20 is removed from the heating chamber 2, as shown in FIG.
is carried out and placed on the elevator 7, and a new work 20 is carried from the elevator 7 into the heating chamber 2. After this, the intermediate door 9 is closed and the next heating is performed.
On the other hand, in the front room, after carrying out the work 20, the elevator 7
to lower the workpiece 20 into the quenching oil 8 in the oil tank 6.
The material is immersed in water and quenched. When the hardening is completed, the elevator 7 is raised, then the front door 5 is opened to take out the hardened workpiece 20 from the front chamber 3, and then a new workpiece 20 is loaded and placed on the elevator 7. Thereafter, the above-described operations are repeated to continuously harden the workpiece 20.

前記動作時、加熱室2へのワーク20の搬入・
搬出に際して、中間扉9が上昇すると、その上昇
端でリミツトスイツチ19を押上げてONする。
すると、第1及び第2の電磁弁17,18が通電
されて切換わり、第2のガス供給管13を閉じて
加熱室2への13A低圧都市ガスの供給を停止させ
ると共に、第3のガス供給管15を開放してNX
ガスを前室3へ供給し、焼入炉1全体へ大量(4
〜8m3/Hr)のNXガスを供給し、炉内をNXガ
スで充満させる。これは炉内が低圧の場合中間扉
9を開放すると加熱室2の温度が下がり、焼入炉
1内は負圧となるため前扉5が閉止された状態で
も外部から空気が流入するので、加熱室2内への
空気の混入を防止すると共に仮に空気が混入して
も爆発しないようにするものである。そして加熱
室2へのワーク20の搬入・搬出が完了し、中間
扉9が下降すると、リミツトスイツチ19が
OFFされ、第1及び第2の電磁弁17,18が
所定時間経過後復帰し、第3のガス供給管15を
閉じて前室3へのNXガスの供給を停止し、且つ
第2のガス供給管13を開放して13A低圧都市ガ
スを加熱室2へ供給する。
During the above operation, the workpiece 20 is carried into the heating chamber 2.
When the intermediate door 9 rises during unloading, the limit switch 19 is pushed up at the rising end and turned on.
Then, the first and second solenoid valves 17 and 18 are energized and switched, closing the second gas supply pipe 13 and stopping the supply of 13A low-pressure city gas to the heating chamber 2, and at the same time supplying the third gas to the heating chamber 2. Open supply pipe 15 and NX
Gas is supplied to the front chamber 3, and a large amount (4
~8m 3 /Hr) of NX gas is supplied to fill the inside of the furnace with NX gas. This is because when the pressure inside the furnace is low, when the intermediate door 9 is opened, the temperature of the heating chamber 2 decreases, and the inside of the quenching furnace 1 becomes negative pressure, so air flows in from the outside even when the front door 5 is closed. This prevents air from entering the heating chamber 2 and prevents an explosion even if air does enter. When the loading and unloading of the workpiece 20 into and out of the heating chamber 2 is completed and the intermediate door 9 is lowered, the limit switch 19 is activated.
OFF, the first and second solenoid valves 17 and 18 return after a predetermined period of time, the third gas supply pipe 15 is closed, the supply of NX gas to the front chamber 3 is stopped, and the second gas The supply pipe 13 is opened and 13A low pressure city gas is supplied to the heating chamber 2.

尚、前記第1の電磁弁17は通電後30〜45分通
電状態を保持して、中間扉19の閉止後、加熱室
2が一定の加熱温度になつたときに、切換つて
13A低圧都市ガスを加熱室2へ再供給するように
設定する。第2の電磁弁18は通電後1〜5分通
電状態を保持して中間扉9が加熱室2を開放して
いる間だけNXガスを前室3へ供給するように設
定する。
Note that the first solenoid valve 17 is kept energized for 30 to 45 minutes after being energized, and is switched when the heating chamber 2 reaches a certain heating temperature after the intermediate door 19 is closed.
Set to resupply 13A low pressure city gas to heating chamber 2. The second electromagnetic valve 18 is set to maintain the energized state for 1 to 5 minutes after being energized, and to supply NX gas to the front chamber 3 only while the intermediate door 9 opens the heating chamber 2.

上記焼入れ時の加熱室2の温度と、NXガス及
び13A低圧都市ガスの供給のタイミングとを示す
と第3図に示すようになる。尚、第3図のA点は
中間扉9の上昇開始点を示し、B点は下降時を示
す。
The temperature of the heating chamber 2 during the above-mentioned quenching and the timing of supply of NX gas and 13A low pressure city gas are shown in FIG. Note that point A in FIG. 3 indicates the starting point of the intermediate door 9 to rise, and point B indicates the time of descent.

上記説明ではエンリツチガスとして13A低圧都
市ガスを用いたが、他にメタン、ブタン等のガス
を用いてもよい。また第1・第2の電磁弁17,
18の切換え操作をリミツトスイツチ19で行つ
たが、他に手動で行つてもよく、タイマーで行つ
てもよい。
In the above description, 13A low-pressure city gas was used as the enrichment gas, but other gases such as methane and butane may also be used. In addition, the first and second solenoid valves 17,
Although the switching operation 18 was performed using the limit switch 19, it may also be performed manually or by using a timer.

ホ 発明の効果 この発明は焼入れ時の保護ガスとしてNXガス
を用いるので、炉内を低圧にすることができ、ガ
スの使用量を少なくし、且つガスの単価も安価と
なるのでランニングコストを低減させることがで
きる。また焼入れ時のワークの脱炭を防止する為
にメタン系のエンリツチガスを少量混入させるの
で、加熱室へのワークの搬入・搬出時に空気の混
入により爆発の恐れがあるが、ワークの搬入・搬
出時にはエンリツチガスの供給を停止し、且つ
NXガスの供給量を増大させて加熱室への空気の
混入を防止すると共に加熱室内をNXガスで充満
させて仮に空気が混入しても爆発しないようにす
るので安全性が大幅に向上する。
E. Effects of the Invention This invention uses NX gas as a protective gas during quenching, so the pressure inside the furnace can be kept low, reducing the amount of gas used and also reducing the unit price of gas, reducing running costs. can be done. In addition, a small amount of methane-based enrichment gas is mixed in to prevent decarburization of the workpiece during quenching, so there is a risk of an explosion due to air being mixed in when the workpiece is brought in and out of the heating chamber. Stop the supply of enrichment gas, and
By increasing the amount of NX gas supplied, it prevents air from entering the heating chamber, and by filling the heating chamber with NX gas, even if air gets mixed in, it will not explode, greatly improving safety.

さらにエンリツチガスとして13A低圧都市ガス
を用いれば、特別な備蓄設備を必要とせず、装置
も小型にできる。また加熱室を開閉する中間扉の
開閉に伴つてNXガスの供給量の制御及びエンリ
ツチガスの供給の制御を行うので、加熱室の開放
時はエンリツチガスの供給を確実に停止させるこ
とができる。
Furthermore, if 13A low-pressure city gas is used as the enrichment gas, special storage equipment is not required and the equipment can be made smaller. Furthermore, since the supply amount of NX gas and the supply of enrichment gas are controlled as the intermediate door that opens and closes the heating chamber is opened and closed, the supply of enrichment gas can be reliably stopped when the heating chamber is opened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る焼入れ装置の一実施例を
示す断面図、第2図はその動作状態を示す断面
図、第3図は保護ガスの供給タイミングを示すタ
イムチヤートであ。 1…焼入炉、2…加熱室、3…前室、9…中間
扉、11…第1のガス供給管、13…第2のガス
供給管、15…第3のガス供給管、17,18…
電磁弁、19…リミツトスイツチ。
FIG. 1 is a sectional view showing an embodiment of the hardening device according to the present invention, FIG. 2 is a sectional view showing its operating state, and FIG. 3 is a time chart showing the timing of supply of protective gas. 1... Quenching furnace, 2... Heating chamber, 3... Front chamber, 9... Intermediate door, 11... First gas supply pipe, 13... Second gas supply pipe, 15... Third gas supply pipe, 17, 18...
Solenoid valve, 19...limit switch.

Claims (1)

【特許請求の範囲】 1 焼入炉へ保護ガスとして発熱形変成ガスを供
給し、エンリツチガスとしてメタン系ガスを混入
させて無酸化雰囲気内で焼入れする方法におい
て、 焼入槽を備えた前室と加熱室とを並設し、両室
間に中間扉を開閉自在に設けた焼入炉の、中間扉
を通つてワークを加熱室へ搬入、及び搬出する際
に、エンリツチガスの供給を停止し、且つ保護ガ
スの供給量を増大させるようにしたことを特徴と
する無酸化焼入れ方法。 2 焼入槽を備えた前室と加熱室とを並設し、両
室間に中間扉を開閉自在に設けた焼入炉と、焼入
炉の加熱室へ発熱型変成ガスを供給する第1のガ
ス供給管及びエンリツチガスを供給する第2のガ
ス供給管と、焼入れ炉の前室へ発熱型変成ガスを
供給する第3のガス供給管と、第2のガス供給管
に設けられ、中間扉の開放に伴つて管路を閉止す
る常開の電磁弁と、第3のガス供給管に設けら
れ、中間扉の開放に伴つて管路を開放する常閉の
電磁弁とで構成したことを特徴とする焼入れ装
置。
[Claims] 1. A method for quenching in a non-oxidizing atmosphere by supplying exothermic modified gas as a protective gas to a quenching furnace and mixing methane-based gas as an enrichment gas, comprising: a front chamber equipped with a quenching tank; In a quenching furnace in which a heating chamber is installed in parallel with a heating chamber, and an intermediate door is provided between the two chambers so that the intermediate door can be freely opened and closed, the supply of enrichment gas is stopped when the workpiece is carried into and out of the heating chamber through the intermediate door. A non-oxidizing quenching method characterized in that the amount of protective gas supplied is increased. 2. A quenching furnace with a front chamber equipped with a quenching tank and a heating chamber installed side by side, an intermediate door that can be opened and closed between the two chambers, and a quenching furnace that supplies exothermic gas to the heating chamber of the quenching furnace. 1 gas supply pipe, a second gas supply pipe that supplies enrichment gas, a third gas supply pipe that supplies exothermic transformed gas to the front chamber of the quenching furnace, and an intermediate gas supply pipe that is provided in the second gas supply pipe and Consisting of a normally open solenoid valve that closes the pipeline when the door opens, and a normally closed solenoid valve that is installed on the third gas supply pipe and opens the pipeline when the intermediate door opens. A quenching device featuring:
JP933384A 1984-01-20 1984-01-20 Method and device for hardening without oxidation Granted JPS60152621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP933384A JPS60152621A (en) 1984-01-20 1984-01-20 Method and device for hardening without oxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP933384A JPS60152621A (en) 1984-01-20 1984-01-20 Method and device for hardening without oxidation

Publications (2)

Publication Number Publication Date
JPS60152621A JPS60152621A (en) 1985-08-10
JPS6411685B2 true JPS6411685B2 (en) 1989-02-27

Family

ID=11717541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP933384A Granted JPS60152621A (en) 1984-01-20 1984-01-20 Method and device for hardening without oxidation

Country Status (1)

Country Link
JP (1) JPS60152621A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3639052A1 (en) * 1986-11-14 1988-05-19 Ipsen Ind Int Gmbh METHOD AND DEVICE FOR HEAT TREATMENT OF SMALL PARTS
JP2683908B2 (en) * 1988-03-31 1997-12-03 同和鉱業株式会社 Atmosphere oxidation prevention method
JP5330651B2 (en) * 2007-02-26 2013-10-30 Dowaサーモテック株式会社 Heat treatment method
JP5317709B2 (en) * 2009-01-07 2013-10-16 光洋サーモシステム株式会社 Quenching method
CN105441647A (en) * 2014-09-29 2016-03-30 苏州国琳机械制造有限公司 Continuous mesh belt-type quenching furnace production line with oil fume burner
CN110669912B (en) * 2019-10-18 2021-06-08 甘肃酒钢集团宏兴钢铁股份有限公司 Operation method of nitrogen interlocking control system of hot galvanizing vertical annealing furnace
CN111349761B (en) * 2020-05-11 2021-09-21 南京红宝机械刀具有限公司 High-frequency heat treatment process for cutter

Also Published As

Publication number Publication date
JPS60152621A (en) 1985-08-10

Similar Documents

Publication Publication Date Title
US4124199A (en) Process and apparatus for case hardening of ferrous metal work pieces
JPS6411685B2 (en)
US8465603B2 (en) Method and device for controlling process gases for heat treatments of metallic materials/workpieces in industrial furnaces
RU2159819C2 (en) Method and unit for decarbonization of steel melts
Małdziński et al. Concept of an economical and ecological process of gas nitriding of steel
US8317939B2 (en) Method of gas carburizing
US7931854B2 (en) Unit for catalytic gas nitrogenation of steels and alloys
US3666253A (en) Fluidized bed furnace
US2275133A (en) Method of carburizing
JPH0649923B2 (en) Vacuum carburizing method
US5741371A (en) Method and device for controlling the CO contents of a furnace atmosphere for carburization and carbonitriding of metallic work pieces
JPH0232682Y2 (en)
AR013587A1 (en) METHOD FOR PRODUCING STEEL IN AN ELECTRIC OVEN LOADED WITH FIXED ARRABIO.
EP1661852B1 (en) Hydrogen closed-cycle hardening unit
US2502284A (en) Decarburization of steel
JP2019135332A (en) Manufacturing method and manufacturing apparatus for metallic spring
JPS60100625A (en) Method for annealing entire part of pressure vessel
JP2019189942A (en) Annealing method of metal
JPH04354821A (en) Method for non-oxidative induction hardening and device therefor
JP2002292643A (en) Method and apparatus for filling deburring chamber installed in apparatus for deburring work by thermal deburring
JPS6345358A (en) Gas carburizing method
US3531333A (en) Method of heat treating steel strip or the like
JPS5597414A (en) Method and apparatus for reducing iron ore or the like
US1789187A (en) Furnace
CA1036912A (en) Heat treatment of ferrous metals in controlled gas atmospheres