JPS6411291B2 - - Google Patents

Info

Publication number
JPS6411291B2
JPS6411291B2 JP56145102A JP14510281A JPS6411291B2 JP S6411291 B2 JPS6411291 B2 JP S6411291B2 JP 56145102 A JP56145102 A JP 56145102A JP 14510281 A JP14510281 A JP 14510281A JP S6411291 B2 JPS6411291 B2 JP S6411291B2
Authority
JP
Japan
Prior art keywords
spring
stress
displacement
contact line
acetabulum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56145102A
Other languages
Japanese (ja)
Other versions
JPS5846945A (en
Inventor
Tadahiko Kawai
Shinkichi Himeno
Norio Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56145102A priority Critical patent/JPS5846945A/en
Publication of JPS5846945A publication Critical patent/JPS5846945A/en
Publication of JPS6411291B2 publication Critical patent/JPS6411291B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は股関節の脱臼診断装置に関する。 股関節外科における主要な目標の一つは、失な
われた股関節の求心性を回復させ維持させること
にある。このための多くの治療法が、試みられて
いるが、何れも客観的、定量的に行なうものでな
く、過去の経験あるいは勘に頼るものであつて、
その治療効果も、不充分であつた。 特に股関節脱臼の手術は、小児あるいは幼児に
なされる場合が多く、手術の結果治療効果が不充
分な場合は、再手術を行なう等幼児あるいは小児
にとつて酷な場合が多く、客観的かつ定量的な股
関節の脱臼力表示方法あるいは装置が望まれてい
た。 本発明は、かかる要求に応えるものであつて、
定量的かつ客観的に股関節の脱臼診断を行なうこ
とができる装置を提供することを目的とする。 また、この発明は、股関節脱臼の手術における
治療効果のバロメータである求心性の程度、股関
節接触面での接触圧力分布の状態、内反骨切や骨
盤骨切等の治療を行なつた場合、その脱臼力の大
きさや接触圧力分布の変化の状態を定量的に把握
できるようにした股関節の脱臼診断装置を提供す
ることを目的とする。 この発明は剛体ばねモデルを用いて股関節の力
学解析を行なうことによつて上記目的を達成する
ものである。具体的には、本願発明者の一人であ
る川井忠彦の発明である剛体バネモデルによる固
体力学非線形問題の解析方法(特公昭61−10771
号)を股関節の診断に用いたものである。 またこの発明は、大腿骨軸方向の縦断面におけ
る股関節の骨盤側臼蓋および大腿骨側の骨頭との
接触線を含む断面画像から、該接触線の位置デー
タを取得する手段と;この手段により得られる接
触線の位置データおよび前記骨頭にかかる荷重の
合力のデータをもとに、股関節における骨盤側の
臼蓋および大腿骨側の骨頭を応力によつて歪を生
じない剛体、また関節包靭帯を脱臼防止ばね、の
要素モデルにそれぞれ置換し、該要素モデルの前
記断面において、前記臼蓋と骨頭の、これらの接
触線に沿う領域を有限の平面要素をもつて分割す
るとともに、該分割した各平面要素境界辺上で、
垂直に抵抗するばねを仮定し、前記境界辺に沿う
要素間摩擦が零、前記臼蓋の変位が零、前記骨頭
側平面要素の変位が該平面内の2方向のみの条件
で、前記平面要素の重心の変位パラメータを利用
して前記2方向の相対変位から前記ばねに貯えら
れる等価歪エネルギーを算出する手段と;該エネ
ルギーから前記各ばねにかかる応力を求め、これ
らばねのうち最大引張力を生じているばねを検出
する手段と;かつ該ばねの切断を仮定し、再度、
前記平面要素の重心のパラメータを利用して、前
記2方向相対変位から残りのばねに貯えられる等
価歪エネルギーを算出する手段と;該エネルギー
から該残りのばねにかかる応力を求める計算ルー
プを、引張力のかかるばねがなくなるまでもしく
は、所定の回数まで繰返し、前記各ばねの最終的
応力を求める手段と;上記各手段による計算過程
もしくは前記接触線におけるばねの応力分布を表
示する表示手段と;により上記目的を達成するも
のである。 またこの発明は、大腿骨軸方向の縦断面におけ
る股関節の骨盤側臼蓋および大腿骨側の骨頭との
接触線を含む断面画像から、該接触線の位置デー
タを取得する手段と;この手段により得られる接
触線の位置データおよび前記骨頭にかかる荷重の
合力のデータをもとに、股関節における骨盤側の
臼蓋および大腿骨側の骨頭を応力によつて歪を生
じない剛体、また関節包靭帯を股関節における骨
盤側の臼蓋および大腿骨側の骨頭を応力によつて
歪を生じない剛体または関節包靭帯脱臼防止ば
ね、の要素モデルにそれぞれ置換し、該要素モデ
ルの前記縦断面において、前記臼蓋と骨頭の、こ
れらの接触線に沿う領域を有限の平面要素をもつ
て分割するとともに、該分割した各平面要素境界
辺上で、垂直に抵抗するばねを仮定し、前記境界
辺に沿う要素間摩擦が零、前記臼蓋の変位が零、
前記骨頭側平面要素の変位が該平面内の2方向の
みの条件で、前記平面要素の重心の変位パラメー
タを利用して前記2方向の相対変位から前記ばね
に貯えられる等価歪エネルギーを算出する手段
と;該エネルギーから前記各ばねにかかる応力を
求め、これらばねのうち最大引張力を生じている
ばねを検出し、かつ該ばねの切断を仮定し、再
度、前記平面要素の重心のパラメータを利用し
て、前記2方向相対変位から残りのばねに貯えら
れる等価歪エネルギーを算出し、該エネルギーか
ら該残りのばねにかかる応力を求める計算ループ
を、引張力のかかるばねがなくなるまでもしく
は、所定の回数まで繰返し、前記各ばねの最終的
応力を求める手段と;前記各手段による計算過程
もしくは前記接触線におけるばねの応力分布を表
示する表示手段と;により上記目的を達成するも
のである。 以下本発明の実施例を図面を参照して説明す
る。 まず本発明にかかる股関節の脱臼診断装置に利
用する前述の剛体ばねモデルによる一般的力学解
析方法について説明する。 まず、第1図および第2図に示されるように、
新しい平面要素として、垂直力とせん断力に抵抗
する2種類のスプリングKd,Ksと、2つの剛三
角形板1および2を仮定する。 これら剛三角形板1,2は応力によつて要素内
変形を生じないものと仮定され、またこの2つの
三角形板1,2は接触境界面上53に連続的に分
布した垂直応力とせん断応力に抵抗する2種のば
ねKd,Ksによつて連結されている。三角形板上
の任意点P(x,y)の変位は重心点の変位、即
ち、平行変位成分(UV)および回転変位成分
(Θ)の3成分によつて表わされる。今、三角形
板上の任意点Pの変位を〓U〓V〓;U〓V〓〓tとし、
重心点の変位を〓U〓V〓ΘI;U2V2Θ2tとすると、
次のような関係式が得られる。 U=Q・Ui (1) 一方、P点の変形後における相対変位ベクトル
P′P″―――→は次式で与えられる。 δ=M・ (2) ここで、上付きの−は要素境界辺上にとつた局
所座標系の成分であることを示している。 今、全体座標系と局所座標系における座標変換
マトリツクスをRとするととUとの間に次の関
係が成立する。 U=R・U (3) ここで、l35は辺35間の長さである。 以上の式をまとめると、P点の変形後における
相対変位ベクトルδは重心点の変位Uiを用いて次
のように表わされる。 δ=M・R・Q・Ui =B・Ui(B=M・R・Q) (4) 次に、ばね定数を決定するため相対変位成分に
対応する仮想歪成分を以下のように定義する。 ここにh1h2は三角形板要素の重心G1G2からそ
れぞれの要素境界面上に下した垂線の長さを示し
ている。(第3図参照) ε={εd γs}=1/h1+h2{δd δs}=1/hδ (5) さて、各要素境界辺上の単位面積当りの表面力
(応力)を次のように仮定する。 以上の結果から、それぞれ次のようにばね定数
が決定される。 (i) 平面ひずみ状態のばね定数 今、次のようにばねを仮定する。 σo=Kd・δd τS=KS・δS (9) 従つて、以下のようにばね定数が得られる。 (ii) 平面応力状態のばね定数 平面ひずみの場合とまつたく同様に以下のごと
く得ることができる。 なお、ここで示したばね定数はあくまでも便宜
上のものであり厳密な意味での数学的理由を持つ
ていない。変位を正確に知るためにはばね定数を
実験値、実測値時から推定することが望ましい。 さて、いま表面力(応力)と相対変位の関係を
簡単に次のように書いておく。 σ=D・δ (12) σ=σoτSt (応力) δ=δoδSt (相対変位) D=〔Ka O O Ks〕 (ばねマトリツクス) 以上から、変形後に二要素間の分布ばね系に蓄
えられるポテンシヤルエネルギーは次式で与えら
れる。 V=1/2∫l35tDδds =1/2Ut il35(BtDB)dsUi (13) 従つて、最小ポテンシヤルエネルギーの定理か
ら各スプリング要素に関する剛性行列Kが得られ
る。
The present invention relates to a hip dislocation diagnostic device. One of the major goals in hip surgery is to restore and maintain lost hip joint afferentity. Many treatments have been tried for this purpose, but none of them are objective or quantitative, and rely on past experience or intuition.
The therapeutic effect was also insufficient. In particular, surgery for hip dislocation is often performed on children or young children, and if the treatment effect is insufficient as a result of the surgery, it is often difficult for the infant or child to undergo reoperation. A method or device for displaying the dislocation force of the hip joint is desired. The present invention meets such demands, and includes:
The purpose of the present invention is to provide a device that can quantitatively and objectively diagnose hip joint dislocation. This invention also examines the degree of afferentity, which is a barometer of the therapeutic effect in hip dislocation surgery, the state of contact pressure distribution on the contact surface of the hip joint, and when performing treatments such as varus osteotomy and pelvic osteotomy. It is an object of the present invention to provide a hip dislocation diagnostic device that can quantitatively grasp the magnitude of dislocation force and the state of change in contact pressure distribution. This invention achieves the above object by performing mechanical analysis of the hip joint using a rigid spring model. Specifically, the method for analyzing nonlinear problems in solid mechanics using a rigid spring model, which was invented by Tadahiko Kawai, one of the inventors of this application,
No.) was used to diagnose hip joints. The present invention also provides means for acquiring positional data of a contact line between the pelvic acetabulum of the hip joint and the femoral head from a cross-sectional image in a longitudinal section in the femoral axial direction; Based on the obtained contact line position data and data on the resultant force of the load applied to the femoral head, the acetabulum on the pelvic side of the hip joint and the femoral head on the femoral side are made into rigid bodies that do not distort due to stress, and the capsular ligament. are respectively replaced with an element model of a dislocation prevention spring, and in the cross section of the element model, the area of the acetabulum and the femoral head along their contact line is divided by finite plane elements, and the divided On each planar element boundary,
Assuming a vertically resisting spring, the friction between the elements along the boundary is zero, the displacement of the acetabulum is zero, and the displacement of the head-side plane element is only in two directions within the plane. means for calculating the equivalent strain energy stored in the spring from the relative displacement in the two directions using the displacement parameter of the center of gravity; calculating the stress applied to each of the springs from the energy; means for detecting a spring being generated; and assuming the disconnection of said spring, again;
means for calculating equivalent strain energy stored in the remaining spring from the relative displacement in the two directions using parameters of the center of gravity of the planar element; and a calculation loop for calculating the stress applied to the remaining spring from the energy; A means for obtaining the final stress of each spring by repeating the process until no spring is applied with force or a predetermined number of times; and a display means for displaying the calculation process by each of the above means or the stress distribution of the spring at the contact line. This aims to achieve the above objectives. The present invention also provides means for acquiring positional data of a contact line between the pelvic acetabulum of the hip joint and the femoral head from a cross-sectional image in a longitudinal section in the femoral axial direction; Based on the obtained contact line position data and data on the resultant force of the load applied to the femoral head, the acetabulum on the pelvic side of the hip joint and the femoral head on the femoral side are made into rigid bodies that do not distort due to stress, and the capsular ligament. are respectively replaced with element models of a rigid body or a joint capsular ligament dislocation prevention spring that does not cause distortion due to stress on the acetabulum on the pelvic side and the femoral head on the pelvic side of the hip joint, and in the longitudinal section of the element model, the Divide the area along the contact line between the acetabulum and the femoral head using finite plane elements, and assume a spring that resists vertically on the boundary edge of each of the divided plane elements, and friction between the elements is zero, displacement of the acetabulum is zero,
Means for calculating the equivalent strain energy stored in the spring from the relative displacement in the two directions using a displacement parameter of the center of gravity of the planar element under the condition that the displacement of the femoral head side planar element is only in two directions within the plane. Calculate the stress applied to each of the springs from the energy, detect the spring that generates the maximum tensile force among these springs, assume that the spring is cut, and use the parameters of the center of gravity of the planar element again. Then, the equivalent strain energy stored in the remaining spring is calculated from the relative displacement in the two directions, and the calculation loop for calculating the stress applied to the remaining spring from this energy is continued until the tension is no longer applied to the spring, or until a predetermined value is reached. The above object is achieved by: means for repeatedly determining the final stress of each spring; and display means for displaying the calculation process by each means or the stress distribution of the spring at the contact line. Embodiments of the present invention will be described below with reference to the drawings. First, a general mechanical analysis method using the above-mentioned rigid spring model used in the hip joint dislocation diagnosis device according to the present invention will be explained. First, as shown in Figures 1 and 2,
As new planar elements, two types of springs Kd and Ks that resist normal force and shear force, and two rigid triangular plates 1 and 2 are assumed. It is assumed that these rigid triangular plates 1 and 2 do not undergo internal deformation due to stress, and these two triangular plates 1 and 2 are subject to normal stress and shear stress that are continuously distributed on the contact interface 53. They are connected by two types of resisting springs Kd and Ks. The displacement of an arbitrary point P (x, y) on the triangular plate is expressed by the displacement of the center of gravity, that is, three components: a parallel displacement component (UV) and a rotational displacement component (Θ). Now, let the displacement of any point P on the triangular plate be 〓U〓 V〓 ;U〓V〓〓 t ,
Letting the displacement of the center of gravity be 〓U〓V〓Θ I ; U 2 V 2 Θ 2t ,
The following relational expression is obtained. U=Q・U i (1) On the other hand, the relative displacement vector P'P'' ---→ after the deformation of point P is given by the following formula: δ=M・ (2) Here, the superscript - indicates a component of the local coordinate system set on the element boundary side. Now, let R be the coordinate transformation matrix in the global coordinate system and the local coordinate system, and the following relationship holds true between R and U. U=R・U (3) Here, l 35 is the length between sides 35. To summarize the above equation, the relative displacement vector δ of point P after deformation is expressed as follows using the displacement U i of the center of gravity. δ=M・R・Q・U i =B・U i (B=M・R・Q) (4) Next, in order to determine the spring constant, a virtual strain component corresponding to the relative displacement component is defined as follows. Here, h 1 h 2 indicates the length of a perpendicular line drawn from the center of gravity G 1 G 2 of the triangular plate element to the boundary surface of each element. (See Figure 3) ε={ε d γ s }=1/h 1 +h 2d δ s }=1/hδ (5) Now, the surface force (stress) per unit area on each element boundary ) as follows. From the above results, the spring constants are determined as follows. (i) Spring constant in plane strain state Now, assume a spring as follows. σ o =K d・δ d τ S =K S・δ S (9) Therefore, the spring constant can be obtained as follows. (ii) Spring constant in plane stress state It can be obtained as follows in the same way as in the case of plane strain. Note that the spring constant shown here is for convenience only and has no mathematical reason in a strict sense. In order to accurately know the displacement, it is desirable to estimate the spring constant from experimental values and actual measured values. Now, let us briefly write the relationship between surface force (stress) and relative displacement as follows. σ=D・δ (12) σ=σ o τ St (stress) δ=δ o δ St (relative displacement) D=[K a O O K s ] (spring matrix) From the above, after deformation The potential energy stored in the distributed spring system between two elements is given by the following equation. V=1/2∫ l35t Dδds = 1/2U t il35 (B t DB) dsU i (13) Therefore, the stiffness matrix K for each spring element is obtained from the minimum potential energy theorem.

【表】 次に上記手法を股関節の脱臼診断装置による診
断に適用する場合につき説明する。 第4図に示されるように、股関節3における骨
盤側の臼蓋4および大腿骨5側の骨頭6を第5図
に示されるように、応力によつて歪を生じない剛
体4Aおよび6A、また関節包靭帯7を脱臼防止
ばね7Aの要素モデルにそれぞれ置換し、該要素
モデルの大腿骨5の軸方向の縦断面において、前
記剛体4Aと6Aの、これらの接触線に沿う領域
を第1図に示されるような有限の平面要素をもつ
て分割するとともに、該分割した平面要素境界辺
上で垂直に抵抗するばねKdを仮定し、前記境界
辺に沿う要素間摩擦が零すなわちばねKsのばね
定数が零であつて剛体4A,6A間にローラ8が
存在し、また剛体4Aの変位が零、剛体6A側の
変位が前記縦断面内の2方向のみ、の条件で、前
記接触線の形状および骨頭6にかかる荷重P(全
荷重の合力)を既知数とし、前記平面要素の重心
の変位パラメータを利用して前記2方向の相対変
位から前記ばねKdに貯えられる等価歪エネルギ
ーを算出し、該エネルギーから前記各ばねKdに
かかる応力を求め;これらのばねのうち最大引張
力を生じているばねを検出し、かつ該ばねの切断
を仮定し、再度、前記平面要素の重心のパラメー
タを利用して、前記2方向相対変位から残りの他
のばねに貯えられる等価歪エネルギーを算出し、
該エネルギーから該残りのばねにかかる応力を求
める計算ループを、引張力のかかるばねがなくな
るまでもしくは、所定の回数まで繰返し、前記各
ばねKdの最終的応力を求めるものである。 前記のように、剛体4側の変位を零とすると、
前記(14)式のu2,v2,θ2はそれぞれ零となり、
またM1も零となるので、各平面要素にかかる前
記荷重PのX方向およびY方向の成分は、(15)
式のようになる。 PX1=K11u1+K12v1 (15) PY1=K12u1+K22v1 従つて各要素におけるPX1およびPY1を重ね合せ
た値は、前記荷重PのX方向およびY方向成分と
等しくなる。これは次式のように示される。 X1=K11+K11+…)u1 +(K12+K12+…)v1 Y1=K12+K12+…)u1 +(K22+K22+…)v1 (16) (上つきの,…は各要素における剛性であ
ることを示す。) ここで前記K11,K12およびK22は第1表から、
またX1Y1は荷重PのX方向およびY方向成
分であり、ともに既知数であるので変位u1,v1
(16)式から求められる。 この求められたu1およびv1を前記(12)式に代入す
れば、各ばねKdの応力σがそれぞれ求められる。 臼蓋4と骨頭6の接触面においては、圧縮力の
み存在し、引張力は存在しないはずであるから、
前記ばねのうち引張力を生じているばねがある場
合は、最大引張力を生じているばねを検出し、該
ばねの切断すなわち該ばねの部分は臼蓋4と骨頭
6が非接触と仮定し、この新たな条件で、再び第
1表に示されるばねの剛性マトリツクスを作成
し、これから前記と同様に(16)式から変位u1
v1を求め、次いで(12)式から各ばねの応力を求め
る。求められた応力のうち、引張力が存在する場
合は、再度前記計算ループを繰返して、引張力の
かかるばねがなくなるまで、もしくは所定の回数
まで繰返し、前記各ばねの最終的応力を求める。 前記計算ループを所定の回数まで繰返し、ここ
で打切るのは、計算機でこの計算を行なう場合
に、プログラムの暴走を防止するものであり、例
えば100回程度の計算の繰返し回数に達した場合
は、現実にこのような股関節は存在しないもので
ある。 実際の手順は、第6図および第10図に示され
るように、股関節3のレントゲン写真(断面画
像)から、デジタイザー8を利用して該股関節3
の断面形状を、すなわち各要素の周縁形状のx,
y座標を計算機9に読みとり、次に計算機9に前
記断面における臼蓋4および骨頭6の接触線に沿
つて積分点(ローラ8および脱臼防止ばね7Aの
接触個所)を入力し、さらに荷重Pをデジタイザ
ー8から入力する。前記計算機9は、デジタイザ
ー8により得られる接触線の位置データおよび前
記荷重Pをもとに、股関節3における骨盤側の臼
蓋4および大腿骨側の骨頭6を応力によつて歪を
生じない剛体4A,6A、また関節包靭帯7を脱
臼防止ばね7A、の要素モデルにそれぞれ置換
し、該要素モデルの縦断面において、前記臼蓋と
骨頭の、これらの接触線に沿う領域を有限の平面
要素をもつて分割するとともに、該分割した各平
面要素境界辺上で、垂直に抵抗するばねKdを仮
定し、前記境界辺に沿う要素間摩擦が零、前記臼
蓋4の変位が零、前記骨頭側平面要素の変位が該
平面内の2方向のみの条件で前記平面要素の重心
の変位パラメータを利用して前記2方向の相対変
位から前記ばねKdに貯えられる等価歪エネルギ
ーを算出する手段と;該エネルギーから前記各ば
ねKdにかかる応力を求め、これらばねのうち最
大引張力を生じているばねを検出する手段と;該
ばねの切断を仮定し、再度、前記平面要素の重心
のパラメータを利用して、前記2方向粗体変位か
ら残りのばねに貯えられる等価歪エネルギーを算
出する手段と;該エネルギーから該残りのばねに
かかる応力を求める計算ループを引張力のかかる
ばねがなくなるまでもしくは、所定の回数まで繰
返し、前記各ばねの最終的応力を求める手段と;
を備えている。計算機9は(14)式、もしくは
(15)式の各ばねに関する剛性行列を、計算、作
成し、(16)式から変位u1,v1を求め、さらにこ
の変位から(12)式にもとづき各ばねの応力を求め
る。前記引張力の有無の判断…ばねの切断、計算
の繰返しを前記コンピユータ9により行ない、計
算が収束したときの各ばねの圧縮応力を、例えば
第7図のように、グラフイツクデイスプレー10
に表示する。 ここで本発明のねらいは股関節接触面における
圧力分布の形状を決定することにあるから各ばね
のばね定数は、相互の比率が一定に保たれている
なら任意でよいので、単位接触面長さあたり適当
な数値、例えば計算に便利な数値「1」を割りつ
ける。 第7図の矢印Fは、脱臼力の大きさを示し、こ
れが一定以上であれば、脱臼が生じると診断され
る。また、符号Nで示される範囲は、ばねが切断
されたことを示す。 実際の手術に際しては、上記グラフイツクデイ
スプレー10に示された結果にもとづき、該デイ
スプレー上で剛体4Aおよび5Aの接触面形状を
少しづつ修正し、かつ修正断面の各ばねの応力を
前記と同様に求め、脱臼が生じない形状を決定す
る。すなわち、要素モデルによりシユミレーシヨ
ンを行なう。 したがつて、従来のように、勘にたより、現物
合せに近いような手術は不要となり、コンピユー
タおよびデイスプレイの助けにより、予め股関節
接触面の理想的形状を決定して、手術をすること
ができる。 次に本発明に係る股関節の脱臼診断装置の第2
実施例につき説明する。 この実施例の計算機は、平面要素の重心の変位
パラメータを利用して2方向の相対変位からばね
に貯えられる等価歪エネルギーを算出し、該エネ
ルギーから前記各ばねにかかる応力を求める点で
は前記第1実施例と同じであるが、最大引張応力
を生じたばねを切断し、この切断による解放力を
残りのばねに負担させ、これによるばねの増分応
力を求める点で第1実施例と異なる。 すなわち第8図に示されるように、剛性行列を
作成した後に増分変位(第1回目の計算では前回
分の変位を零とする)を求め、この増分変位に基
づくばねの増分応力を求め、前回の応力(第1回
目は前回分を零とする)に加え合せ、残つた各ば
ねの応力を求めるものである。 求められた応力のうち引張力がある場合は、そ
のうちの最大引張力を生じているばねおよびその
値を検出し、前回と同様に引張ばねの受け持つ最
大解放力の計算、最大引張力が生じたばねの切
断、解放力を新たな荷重としてばねの剛性行列を
求めるという計算ループを繰返し、引張力が生じ
ているばねがなくなるまでこれを行なう。 この実施例の場合は、前記第1実施例に比較し
て、ばねの応力をより精密に算出することができ
るという利点があるが、計算のための計算機が高
価になり、かつ計算時間が第1実施例に比較して
長くなる。 次に第9図に示される本発明にかかる股関節の
脱臼診断装置の第3実施例について説明する。 この第3実施例は、まず股関節3の複数の縦断
面を連続X線写真撮影システムにより撮影し、各
断面写真からデジタイザー8によつて形状データ
を入力し、これに基づいて前記第1実施例もしく
は第2実施例におけると同様に各断面の応力分布
を求め、次にこれらの断面の中から、最厳応力分
布断面を決定し、該最厳応力分布断面における応
力分布が許容できない場合は該断面形状を修正
し、修正した形状を再度デイジタイザーを介して
入力し、再び前記第1もしくは第2実施例と同様
の計算ループを繰返し、最厳応力分布断面におけ
る応力分布が許容し得るまでこれを繰返し、応力
分布が許容し得る状態になつた時、該形状修正に
よる他の断面における応力分布の変化を解析し、
該変化を含めた修正応力分布が許容し得える場合
は計算が収束され、許容できない場合は構造モデ
ルの三次元的形状修正を行ない、再度デイジタイ
ザー8による入力を行なつて前記計算ループを繰
返し、修正応力分布が許容されるまで行なうもの
である。 これらの計算過程または結果は、図に示される
ようにグラフイツクデイスプレイ10によつて表
示されるものである。 この実施例の場合は、股関節の修正形状を、三
次元的に求めることができるので、より正確な治
療を行なうことができるという利点がある。 本発明は上記のように構成したので、股関節に
おける臼蓋と大腿骨骨頭9間の接触圧力すなわち
応力の分布形状を正確に求め、かつ表示できるの
で、これに基づき股関節の理想的な形状修正をモ
デルによつて行なうことができ、従つて治療効果
を飛躍的に増大させることができるという優れた
効果を有する。 本発明者等による過去の股関節脱臼の治療手術
の前後における股関節断面形状を本発明方法およ
び装置によつて分析した結果、全症例が、本発明
装置による表示結果と一致し、手術の不成功の原
因も解明できた。
[Table] Next, the case where the above method is applied to diagnosis using a hip dislocation diagnosis device will be explained. As shown in FIG. 4, the acetabulum 4 on the pelvis side of the hip joint 3 and the femoral head 6 on the femur 5 side are connected to rigid bodies 4A and 6A that do not cause distortion due to stress, as shown in FIG. The joint capsular ligament 7 is replaced with an element model of a dislocation prevention spring 7A, and in the axial longitudinal section of the femur 5 of the element model, the area along the contact line of the rigid bodies 4A and 6A is shown in FIG. Assume that the element is divided into finite plane elements as shown in , and there is a spring Kd that resists vertically on the boundary edge of the divided plane element, and the friction between the elements along the boundary edge is zero, that is, the spring Ks. The shape of the contact line is determined under the conditions that the constant is zero, the roller 8 exists between the rigid bodies 4A and 6A, the displacement of the rigid body 4A is zero, and the displacement of the rigid body 6A side is only in two directions within the longitudinal section. and the load P (resultant force of all loads) applied to the femoral head 6 as a known number, calculate the equivalent strain energy stored in the spring Kd from the relative displacement in the two directions using the displacement parameter of the center of gravity of the planar element, Find the stress applied to each spring Kd from the energy; detect the spring that generates the maximum tensile force among these springs, assume that the spring is cut, and use the parameters of the center of gravity of the planar element again. Then, calculate the equivalent strain energy stored in the remaining other springs from the relative displacement in the two directions,
The calculation loop for determining the stress applied to the remaining springs from the energy is repeated until there are no more springs under tension or a predetermined number of times to determine the final stress of each spring Kd. As mentioned above, if the displacement on the rigid body 4 side is zero,
u 2 , v 2 , and θ 2 in equation (14) are each zero,
Also, since M 1 is also zero, the components of the load P applied to each plane element in the X direction and Y direction are (15)
It becomes like the expression. P X1 = K 11 u 1 + K 12 v 1 (15) P Y1 = K 12 u 1 + K 22 v 1 Therefore, the value of P equal to the directional component. This is shown as the following equation. X1 =K 11 +K 11 +…)u 1 +(K 12 +K 12 +…)v 1 Y1 =K 12 +K 12 +…)u 1 +(K 22 +K 22 +…)v 1 (16) (Superscript ,... indicates the stiffness of each element.) Here, the above K 11 , K 12 and K 22 are from Table 1,
Also, X1 and Y1 are the X-direction and Y-direction components of the load P, and since both are known quantities, the displacements u1 and v1 can be found from equation (16). By substituting the obtained u 1 and v 1 into the above equation (12), the stress σ of each spring Kd can be obtained. At the contact surface between the acetabulum 4 and the femoral head 6, there should be only compressive force and no tensile force, so
If there is a spring that is generating a tensile force among the springs, the spring that is generating the maximum tensile force is detected, and it is assumed that the acetabulum 4 and the femoral head 6 are not in contact when the spring is cut, that is, the spring is cut. , Under these new conditions, create the spring stiffness matrix shown in Table 1 again, and use equation (16) as before to calculate the displacement u 1 ,
Find v 1 , then find the stress of each spring from equation (12). If a tensile force is present among the determined stresses, the calculation loop is repeated again until there are no more springs to which the tensile force is applied, or until a predetermined number of times, and the final stress of each spring is determined. The calculation loop is repeated up to a predetermined number of times and then terminated to prevent the program from running out of control when the calculation is performed on a computer. In reality, such a hip joint does not exist. In the actual procedure, as shown in FIGS. 6 and 10, from an X-ray photograph (cross-sectional image) of the hip joint 3, a digitizer 8 is used to examine the hip joint 3.
, that is, the peripheral shape of each element x,
Read the y coordinate into the computer 9, then input the integration point (the contact point between the roller 8 and the dislocation prevention spring 7A) into the computer 9 along the line of contact between the acetabulum 4 and the femoral head 6 in the cross section, and then calculate the load P. Input from digitizer 8. The calculator 9 calculates, based on the positional data of the contact line obtained by the digitizer 8 and the load P, the acetabulum 4 on the pelvis side and the femoral head 6 on the femoral side of the hip joint 3 into a rigid body that does not cause distortion due to stress. 4A, 6A, and the joint capsular ligament 7 are replaced with element models of the dislocation prevention spring 7A, respectively, and in the longitudinal section of the element model, the area along the contact line of the acetabulum and the femoral head is transformed into a finite plane element. Assuming that there is a spring Kd that resists vertically on the boundary side of each divided planar element, the friction between the elements along the boundary side is zero, the displacement of the acetabulum 4 is zero, and the femoral head Means for calculating the equivalent strain energy stored in the spring Kd from the relative displacement in the two directions using the displacement parameter of the center of gravity of the plane element under the condition that the displacement of the side plane element is only in two directions within the plane; A means for determining the stress applied to each of the springs Kd from the energy and detecting the spring producing the maximum tensile force among these springs; assuming that the spring is cut, and again using the parameters of the center of gravity of the planar element; and means for calculating the equivalent strain energy stored in the remaining spring from the gross body displacement in the two directions; and a calculation loop for calculating the stress applied to the remaining spring from the energy until no spring is under tension, or means for determining the final stress of each spring by repeating it a predetermined number of times;
It is equipped with The calculator 9 calculates and creates a stiffness matrix for each spring according to equation (14) or (15), obtains displacement u 1 and v 1 from equation (16), and then calculates the displacement u 1 and v 1 from equation (16) based on equation (12). Find the stress in each spring. Judgment of the presence or absence of the tensile force...The computer 9 repeats the cutting of the spring and the calculation, and when the calculation converges, the compressive stress of each spring is displayed on the graphic display 10 as shown in FIG. 7, for example.
to be displayed. Here, since the aim of the present invention is to determine the shape of the pressure distribution on the contact surface of the hip joint, the spring constant of each spring may be arbitrary as long as the mutual ratio is kept constant, so the unit contact surface length Assign an appropriate number, such as ``1'', which is convenient for calculations. Arrow F in FIG. 7 indicates the magnitude of the dislocation force, and if this is above a certain level, it is diagnosed that dislocation has occurred. Further, the range indicated by the symbol N indicates that the spring has been cut. During the actual surgery, based on the results shown on the graphic display 10, the shape of the contact surfaces of the rigid bodies 4A and 5A is corrected little by little on the display, and the stress of each spring in the corrected cross section is adjusted as described above. Similarly, determine the shape that will not cause dislocation. That is, simulation is performed using an element model. Therefore, it is no longer necessary to perform a surgery that relies on intuition and closely matches the actual joint, as in the past, and with the help of a computer and display, the ideal shape of the hip joint contact surface can be determined in advance and the surgery performed. . Next, the second part of the hip joint dislocation diagnosis device according to the present invention
An example will be explained. The calculator of this embodiment calculates the equivalent strain energy stored in the spring from the relative displacement in two directions using the displacement parameter of the center of gravity of the plane element, and calculates the stress applied to each spring from the calculated energy. This embodiment is the same as the first embodiment, but differs from the first embodiment in that the spring that has generated the maximum tensile stress is cut, the release force caused by this cutting is borne by the remaining springs, and the resulting incremental stress in the springs is determined. In other words, as shown in Figure 8, after creating the stiffness matrix, calculate the incremental displacement (in the first calculation, the previous displacement is set to zero), calculate the incremental stress of the spring based on this incremental displacement, and calculate the (the previous stress is set to zero for the first time), and the remaining stress of each spring is determined. If there is a tensile force among the calculated stresses, detect the spring that produces the maximum tensile force and its value, calculate the maximum release force of the tension spring as before, and calculate the spring that produces the maximum tensile force. The calculation loop of determining the stiffness matrix of the spring is repeated using the cutting and releasing force as a new load until there are no more springs that are under tension. This embodiment has the advantage that the stress of the spring can be calculated more precisely than the first embodiment, but the calculator for calculation is expensive and the calculation time is slow. It is longer than the first embodiment. Next, a third embodiment of the hip joint dislocation diagnostic apparatus according to the present invention shown in FIG. 9 will be described. In this third embodiment, first, a plurality of longitudinal sections of the hip joint 3 are photographed using a continuous X-ray photographing system, shape data is input from each cross-sectional photograph by a digitizer 8, and based on this, the Alternatively, calculate the stress distribution of each cross section in the same manner as in the second embodiment, then determine the most severe stress distribution cross section from among these cross sections, and if the stress distribution in the most severe stress distribution cross section is unacceptable, The cross-sectional shape is corrected, the corrected shape is input again via the digitizer, and the same calculation loop as in the first or second embodiment is repeated until the stress distribution in the severest stress distribution cross section is acceptable. Repeat this process, and when the stress distribution reaches an acceptable state, analyze the changes in stress distribution in other cross sections due to the shape modification,
If the modified stress distribution including this change is acceptable, the calculation is converged; if it is not, the three-dimensional shape of the structural model is corrected, input is made again by the digitizer 8, and the calculation loop is repeated. , until the modified stress distribution is acceptable. These calculation processes or results are displayed on a graphic display 10 as shown in the figure. In the case of this embodiment, since the corrected shape of the hip joint can be obtained three-dimensionally, there is an advantage that more accurate treatment can be performed. Since the present invention is configured as described above, the contact pressure between the acetabulum and the femoral head 9 in the hip joint, that is, the distribution shape of the stress, can be accurately determined and displayed, and based on this, the ideal shape of the hip joint can be corrected. It has the excellent effect of being able to be carried out using a model and therefore dramatically increasing the therapeutic effect. As a result of analyzing the cross-sectional shapes of hip joints before and after previous hip dislocation treatment surgery by the present inventors using the method and device of the present invention, all cases were consistent with the display results by the device of the present invention, indicating that the surgery was unsuccessful. I was able to find out the cause.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明にかかる股関節の
脱臼診断装置の基礎となる原理を説明するための
剛体ばねモデルを示す平面図、第3図は同原理の
計算における要素上の数値を示す平面図、第4図
は股関節の形状を示す略示断面図、第5図は第4
図の股関節を要素モデルに置換えた断面図、第6
図は本発明に係る股関節の脱臼診断装置の第1実
施例のフローチヤート、第7図は計算結果をグラ
フイツクデイスプレーに示した一例を示す説明
図、第8図および第9図は同第2および第3実施
例の作用を示すフローチヤート、第10図は本発
明にかかる股関節の脱臼診断装置を示すブロツク
図である。 1,2……平面要素、3……股関節、4……臼
蓋、4A,6A……剛体、5……大腿骨、6……
骨頭、7……関節包靭帯、7A……脱臼防止ば
ね、8……デジタイザー、9……計算機、10…
…グラフイツクデイスプレイ、kd……ばね。
Figures 1 and 2 are plan views showing a rigid spring model for explaining the underlying principle of the hip dislocation diagnostic device according to the present invention, and Figure 3 shows numerical values on elements in calculations based on the same principle. A plan view, FIG. 4 is a schematic sectional view showing the shape of the hip joint, and FIG.
Cross-sectional view of the hip joint shown in the figure replaced with an element model, No. 6
The figure is a flowchart of the first embodiment of the hip dislocation diagnosis device according to the present invention, Figure 7 is an explanatory diagram showing an example of calculation results shown on a graphic display, and Figures 8 and 9 are the same. FIG. 10 is a flowchart showing the operation of the second and third embodiments, and a block diagram showing the hip dislocation diagnostic apparatus according to the present invention. 1, 2...plane element, 3...hip joint, 4...acetabulum, 4A, 6A...rigid body, 5...femur, 6...
Bony head, 7... Joint capsular ligament, 7A... Dislocation prevention spring, 8... Digitizer, 9... Calculator, 10...
...Graphic display, kd...spring.

Claims (1)

【特許請求の範囲】 1 大腿骨軸方向の縦断面における股関節の骨盤
側臼蓋および大腿骨側の骨頭との接触線を含む断
面画像から、該接触線の位置データを取得する手
段と;この手段により得られる接触線の位置デー
タおよび前記骨頭にかかる荷重の合力のデータを
もとに、股関節における骨盤側の臼蓋および大腿
骨側の骨頭を応力によつて歪を生じない剛体、ま
た関節包靭帯を脱臼防止ばね、の要素モデルにそ
れぞれ置換し、該要素モデルの前記縦断面におい
て、前記臼蓋と骨頭の、これらの接触線に沿う領
域を有限の平面要素をもつて分割するとともに、
該分割した各平面要素境界辺上で、垂直に抵抗す
るばねを仮定し、前記境界辺に沿う要素間摩擦が
零、前記臼蓋の変位が零、前記骨頭側平面要素の
変位が該平面内の2方向のみの条件で、前記平面
要素の重心の変位パラメータを利用して前記2方
向の相対変位から前記ばねに貯えられる等価歪エ
ネルギーを算出する手段と;該エネルギーから前
記各ばねにかかる応力を求め、これらばねのうち
最大引張力を生じているばねを検出する手段と;
該ばねの切断を仮定し、再度、前記平面要素の重
心のパラメータを利用して、前記2方向相対変位
から残りのばねに貯えられる等価歪エネルギーを
算出する手段と;該エネルギーから該残りのばね
にかかる応力を求める計算ループを引張力のかか
るばねがなくなるまでもしくは、所定の回数まで
繰返し、前記各ばねの最終的応力を求める手段
と;上記各手段による計算過程もしくは前記接触
線におけるばねの応力分布を表示する表示装置
と;を有してなる股関節の脱臼診断装置。 2 大腿骨軸方向の縦断面における股関節の骨盤
側臼蓋および大腿骨側の骨頭との接触線を含む断
面画像から、該接触線の位置データを取得する手
段と;この手段により得られる接触線の位置デー
タおよび前記骨頭にかかる荷重の合力のデータを
もとに、股関節における骨盤側の臼蓋および大腿
骨側の骨頭を応力によつて歪を生じない剛体、ま
た関節包靭帯を脱臼防止ばね、の要素モデルにそ
れぞれ置換し、該要素モデルの前記縦断面におい
て、前記臼蓋と骨頭の、これらの接触線に沿う領
域を有限の平面要素をもつて分割するとともに、
該分割した各平面要素境界辺上で、垂直に抵抗す
るばねを仮定し、前記境界辺に沿う要素間摩擦が
零、前記臼蓋の変位が零、前記骨頭側平面要素の
変位が該平面内の2方向のみの条件で、前記平面
要素の重心の変位パラメータを利用して前記2方
向の相対変位から前記ばねに貯えられる等価歪エ
ネルギーを算出する手段と;該エネルギーから前
記各ばねにかかる応力を求め、これらのばねのう
ち最大引張力を生じているものの引張力を求める
とともにこれから該ばねの受けもつ最大解放力を
算出する手段と;該引張力ばねの切断を仮定し
て、前記最大解放力を前記骨頭に加わる新たな荷
重とし、この荷重による前記平面要素の増分変位
およびこれから前記切断された以外の各ばねにか
かる増分応力を前記と同様に求める手段と;該応
力を前回計算による応力に加算して、各ばね応力
を求め、さらに、前記と同様に最大引張力を生じ
ているばねの切断、この切断による他のばねの増
分応力を求める計算ループを、引張力のかかるば
ねがなくなるまでもしくは、所定の回数まで繰返
し、前記各ばねの最終的応力を求める手段と;前
記各手段による計算過程もしくは前記接触線にお
けるばねの応力分布を表示する表示装置と;を有
してなる股関節の脱臼診断装置。
[Scope of Claims] 1. Means for acquiring positional data of a contact line between the pelvic acetabulum of the hip joint and the femoral head from a cross-sectional image in a longitudinal section in the axial direction of the femur; Based on the data on the position of the contact line and the resultant force of the load applied to the femoral head obtained by the method, the acetabulum on the pelvic side of the hip joint and the femoral head on the femoral side are made into rigid bodies that do not cause distortion due to stress, and joints. Replace the capsular ligament with an element model of a dislocation prevention spring, and in the longitudinal section of the element model, divide the area of the acetabulum and the femoral head along their contact line with finite plane elements,
Assuming a spring that resists vertically on the boundary edge of each of the divided planar elements, the friction between the elements along the boundary edge is zero, the displacement of the acetabulum is zero, and the displacement of the cephalic plane element is within the plane. means for calculating equivalent strain energy stored in the spring from the relative displacement in the two directions using displacement parameters of the center of gravity of the planar element under the conditions of only two directions; and a stress applied to each of the springs from the energy. means for determining which spring is producing the maximum tensile force among these springs;
Assuming that the spring is cut, calculating the equivalent strain energy stored in the remaining spring from the relative displacement in the two directions, again using the parameters of the center of gravity of the planar element; means for calculating the final stress of each of the springs by repeating a calculation loop for calculating the stress applied to the springs until there are no more tensioned springs or a predetermined number of times; calculation process by each of the above means or the stress of the spring at the contact line; A dislocation diagnostic device for a hip joint, comprising: a display device for displaying distribution; 2. Means for acquiring position data of a contact line from a cross-sectional image including a contact line between the pelvic acetabulum of the hip joint and the femoral head in a longitudinal section in the axial direction of the femur; and the contact line obtained by this means. Based on the data on the position of , and in the longitudinal section of the element model, divide the region of the acetabulum and the femoral head along their contact line with finite plane elements, and
Assuming a spring that resists vertically on the boundary edge of each of the divided planar elements, the friction between the elements along the boundary edge is zero, the displacement of the acetabulum is zero, and the displacement of the cephalic plane element is within the plane. means for calculating equivalent strain energy stored in the spring from the relative displacement in the two directions using displacement parameters of the center of gravity of the planar element under the conditions of only two directions; and a stress applied to each of the springs from the energy. means for determining the tensile force of the spring producing the maximum tensile force among these springs, and calculating from this the maximum releasing force that the spring has; assuming that the tensile force spring is cut, the maximum releasing force is a new load applied to the femoral head, and means for determining the incremental displacement of the planar element due to this load and the incremental stress applied to each spring other than the cut spring in the same manner as above; In addition, we calculate the stress of each spring by adding it to or a predetermined number of times to obtain the final stress of each spring; and a display device that displays the calculation process by each of the means or the stress distribution of the spring at the contact line. Dislocation diagnostic device.
JP56145102A 1981-09-14 1981-09-14 Method and apparatus for diagnosis of dislocation of crotch joint Granted JPS5846945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56145102A JPS5846945A (en) 1981-09-14 1981-09-14 Method and apparatus for diagnosis of dislocation of crotch joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56145102A JPS5846945A (en) 1981-09-14 1981-09-14 Method and apparatus for diagnosis of dislocation of crotch joint

Publications (2)

Publication Number Publication Date
JPS5846945A JPS5846945A (en) 1983-03-18
JPS6411291B2 true JPS6411291B2 (en) 1989-02-23

Family

ID=15377413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56145102A Granted JPS5846945A (en) 1981-09-14 1981-09-14 Method and apparatus for diagnosis of dislocation of crotch joint

Country Status (1)

Country Link
JP (1) JPS5846945A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143496U (en) * 1989-05-09 1990-12-05

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1382297B1 (en) * 2001-04-26 2012-01-04 Teijin Limited Three-dimensional joint structure measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143496U (en) * 1989-05-09 1990-12-05

Also Published As

Publication number Publication date
JPS5846945A (en) 1983-03-18

Similar Documents

Publication Publication Date Title
Mantovani et al. How different marker sets affect joint angles in inverse kinematics framework
Anderson et al. Validation of finite element predictions of cartilage contact pressure in the human hip joint
Zhang et al. Development and validation of a C0–C7 FE complex for biomechanical study
Gray et al. Experimental validation of a finite element model of a human cadaveric tibia
Trabelsi et al. Patient-specific finite-element analyses of the proximal femur with orthotropic material properties validated by experiments
Fougeron et al. Combining freehand ultrasound-based indentation and inverse finite element modeling for the identification of hyperelastic material properties of thigh soft tissues
Malicky et al. Total strain fields of the antero-inferior shoulder capsule under subluxation: a stereoradiogrammetric study
Lewis et al. In vitro assessment of a motion-based optimization method for locating the talocrural and subtalar joint axes
Marchal et al. Towards a framework for assessing deformable models in medical simulation
Dejtiar et al. Development and evaluation of a subject-specific lower limb model with an eleven-degrees-of-freedom natural knee model using magnetic resonance and biplanar X-ray imaging during a quasi-static lunge
Elias et al. Effect of loading rate on the compressive mechanics of the immature baboon cervical spine
Hutchinson et al. Operator bias errors are reduced using standing marker alignment device for repeated visit studies
US5871352A (en) Apparatus for analyzing distribution of contact pressure in temporomandibular joint
JPS6411291B2 (en)
Sheets et al. An automated image-based method of 3D subject-specific body segment parameter estimation for kinetic analyses of rapid movements
Paixão et al. Motion control of a robotic lumbar spine model
Díaz-Rodríguez et al. Dynamic parameter identification of subject-specific body segment parameters using robotics formalism: case study head complex
Ochoa-Cabrero et al. A two-experiment approach to scaling in biomechanics
Lee et al. Statistical calibration of a finite element model for human middle ear
US20230181169A1 (en) A medical device for applying force to the body of a subject during examination, treatment or diagnosis
Rouhani et al. Sensitivity of intersegmental angles of the spinal column to errors due to marker misplacement
Dabnichki Biomechanical testing and sport equipment design
Quarrington et al. Investigating the effect of axial compression and distraction on cervical facet mechanics during supraphysiologic anterior shear
Mital et al. Dynamic characteristics of the human spine during-Gx acceleration
Tahmid et al. Upper Extremity Muscle Activation Pattern Prediction Through Synergy Extrapolation and Electromyography-Driven Modeling