JPS5846945A - Method and apparatus for diagnosis of dislocation of crotch joint - Google Patents

Method and apparatus for diagnosis of dislocation of crotch joint

Info

Publication number
JPS5846945A
JPS5846945A JP56145102A JP14510281A JPS5846945A JP S5846945 A JPS5846945 A JP S5846945A JP 56145102 A JP56145102 A JP 56145102A JP 14510281 A JP14510281 A JP 14510281A JP S5846945 A JPS5846945 A JP S5846945A
Authority
JP
Japan
Prior art keywords
spring
stress
displacement
hip joint
springs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56145102A
Other languages
Japanese (ja)
Other versions
JPS6411291B2 (en
Inventor
忠彦 川井
信吉 姫野
竹内 則雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56145102A priority Critical patent/JPS5846945A/en
Publication of JPS5846945A publication Critical patent/JPS5846945A/en
Publication of JPS6411291B2 publication Critical patent/JPS6411291B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は股関節の脱臼診断方法および装置に関する。[Detailed description of the invention] The present invention relates to a method and device for diagnosing dislocation of a hip joint.

股関節外科における主要な目標の一つは、失なわれた股
関節の求心性を回復させ維持させることにある。このた
めの多くの治療法が、試みられているが、何れも客観的
、定量的に行なうものでなく、過去の経験あるいは勘に
頼るものであって、その治療効果も、不充分であった。
One of the major goals in hip surgery is to restore and maintain lost hip joint afferentity. Many treatments have been tried for this purpose, but none of them are objective or quantitative, relying on past experience or intuition, and their therapeutic effects have been insufficient. .

特に股関節脱臼の手術は、小児あるいは幼児になされる
場合が多く、手術の結果治療効果が不充分な場合は、再
手術を行なう等幼児あるいは小児にとって酷な場合が多
く、客観的かつ定量的な股関節の脱臼診断方法あるいは
手術方法が望まれていた。
In particular, surgery for hip dislocation is often performed on children or young children, and if the treatment effect is insufficient as a result of the surgery, it is often difficult for the infant or child to undergo reoperation. A method for diagnosing or surgically dislocating the hip joint has been desired.

本発明は、かかる要求に応えるものであって、定着的か
つ客観的に股関節の脱臼診断を行なうことができる方法
および装置を提供することを目的とする。
It is an object of the present invention to provide a method and a device that can meet these demands and can consistently and objectively diagnose dislocation of a hip joint.

また、この発明は、股関節脱臼の手術における治!効果
のバロメータである求心性の程度、股関節接触面での接
触圧力分布の状態、内反骨切や骨盤骨切婢の治療を行な
った場合、その、脱臼力の大きさや接触圧力分布の変化
の状態を定量的に把握できるようにした股関節の脱臼診
断方法および装置を提供することを目的とする。
In addition, this invention can be used to treat hip dislocation during surgery! The degree of centripetality, which is a barometer of effectiveness, the state of contact pressure distribution on the contact surface of the hip joint, the magnitude of dislocation force and the state of change in contact pressure distribution when varus osteotomy or pelvic osteotomy is treated. The purpose of the present invention is to provide a method and device for diagnosing dislocation of the hip joint, which enables quantitative understanding of dislocation of the hip joint.

この発明は剛体ばねモデルを用いて股関節の力学解析を
行なうことKよって上記目的を達成するものである。
The present invention achieves the above object by performing mechanical analysis of the hip joint using a rigid spring model.

すなわちこの発明は、股関節における骨盤側の臼蓋およ
び大腿骨側の骨頭を応力によって歪を生じない剛体、ま
た関節包靭帯を脱臼防止ばね、の要素モデルにそれぞれ
置換し、該要素モデルの縦断面において、前記臼蓋と骨
頭の、これらの接触線に沿う領域を有限の平面要素をも
って分割するとともに、核分割した各平面要素境界辺上
で、垂直に抵抗するばねを仮定し;前記境界辺に沿う要
素間摩擦が零、前記臼蓋の変位が零、前記骨頭側平面要
素の変位が該平面内の2方向のみの条件で、前記接触線
の形状および前記骨頭にかかる荷重を既知数とし、前記
平面要素の重心の変位パラメータを利用して前記2方向
の相対変位から前記ばねに貯えられる等価歪エネルギー
を算出し、該エネルギーから前記各ばねにかかる応力を
求め;これらばねのうち最大引張力を生じているばねを
検出し、かつ該ばねの切断を仮定し、再度、前記平面要
素の重心のパラメータを利用して、前記2方向相対変位
から残りのばねに貯えられる等価歪エネルギーを算出し
、該エネルギーから該残りのばねにかかる応力を求める
計算ループを、引張力のかかるばねがなくなるまでもし
くは、所定の回数まで繰返し、前記各ばねの最終的応力
を求めることによって上記目的を達成するものである。
That is, this invention replaces the acetabulum on the pelvis side of the hip joint and the femoral head on the femoral side with element models that do not cause distortion due to stress, and the joint capsular ligament with a dislocation prevention spring. , the area along the contact line between the acetabulum and the femoral head is divided by finite plane elements, and a spring is assumed to resist vertically on the boundary edge of each plane element divided; The shape of the contact line and the load applied to the femoral head are known numbers under the conditions that the friction between the elements along is zero, the displacement of the acetabulum is zero, and the displacement of the head-side plane element is only in two directions within the plane, Calculate the equivalent strain energy stored in the spring from the relative displacement in the two directions using the displacement parameter of the center of gravity of the planar element, and determine the stress applied to each spring from the energy; the maximum tensile force of these springs. Detect the spring that is causing this, and assuming that the spring is cut, calculate the equivalent strain energy stored in the remaining spring from the relative displacement in the two directions, again using the parameters of the center of gravity of the plane element. The above objective is achieved by repeating a calculation loop for calculating the stress applied to the remaining springs from the energy until there are no more springs under tension or a predetermined number of times to calculate the final stress of each spring. It is.

またこの発明は、前記検出された最大引張力を生じてい
るばねの引i力を求めるとともに、これから核ばねの受
けもつ最大解放力を算出し;次いでし引張ばねの切断を
仮定して、前記最大解放力を前記骨頭に加わる新たな荷
重とし、この荷重による前記平面要素の増分変位および
これから前記切断された以外の各ばねにかかる増分応力
を前記と同様に求め、#応力を前回計算による応力に加
算して、各ばねの応力を求め;さらに、前記と同様に最
大引張力を生じているばねの切断、この切断による他の
ばねの増分応力を求める計算ループを、引張力のかかる
ばねがなくなるまでもしくは、を求めるようにすること
によって上記目的を達成するものである。
Further, the present invention calculates the attractive force of the spring producing the detected maximum tensile force, and calculates the maximum releasing force that the core spring can receive from this; and then, assuming that the tension spring is cut, Let the maximum release force be the new load applied to the femoral head, and calculate the incremental displacement of the planar element due to this load and the incremental stress applied to each spring other than the cut spring in the same manner as above, and let #stress be the stress from the previous calculation. The stress in each spring is determined by adding the stress in each spring; The above purpose is achieved by searching for until or until it runs out.

またこの発明は前記各ばねの最終的応力を求める計算を
、股関節の複数の縦断面について行ない、そのうちの最
厳応力分布断面の形状修正による他側面の応力分布変化
を前記計算ループを経て求めることKよって上記目的を
達成するものである。
Further, the present invention performs calculations for determining the final stress of each spring on a plurality of longitudinal sections of the hip joint, and calculates changes in stress distribution on other sides due to shape modification of the most severe stress distribution section among them through the calculation loop. K thus achieves the above objective.

またこの発明は、股関節の骨盤側口蓋および大腿骨側の
骨頭との接触線を含む断面形状を読みとるディジタイザ
−と;このディジタイザ−により得られる断面形状デー
タおよび前記骨頭にかかる荷重データをもとに、股関節
における骨盤側の臼愉および大腿骨側の骨頭を応力によ
って歪を生じない剛体、また関節包靭帯を脱臼防止ばね
、の要素モデルにそれぞれ置換し、駿要素モデルの縦断
面において、前記臼蓋と骨頭の、これらの接触線に沿う
領域を有限の平面゛要素をもって分割するとともに、該
分割した各平面要素境界辺上で、垂直に抵抗するばねを
仮定し;前記境界辺に沿う要素間摩擦軟゛零、前記臼蓋
の変位が零、前記骨頭側平面要素の変位が該平面内の2
方向のみの条件で。
This invention also includes a digitizer that reads the cross-sectional shape of the hip joint, including the contact line between the pelvic palate and the femoral head; , the abutment on the pelvis side of the hip joint and the femoral head on the femoral side are replaced with element models that do not cause distortion due to stress, and the capsular ligament is replaced with an element model of a dislocation prevention spring. The region along the contact line between the lid and the femoral head is divided into finite plane elements, and a spring is assumed to resist vertically on the boundary edge of each of the divided plane elements; The frictional softness is zero, the displacement of the acetabulum is zero, and the displacement of the cephalic plane element is 2 within the plane.
Conditional only on direction.

前記平面要素の重心の変位パラメータを利用して前記2
方向の相対変位から前記ばねに貯えられる等価歪エネル
ギーを算出し、該エネルギーから前記各ばねにかかる応
力を求め(これらばねのうち最大引張力を生じているば
ねを検出し、かつ該ばねの切断を仮定し、再電、前記平
面要素の重心のパラメータを利用して、前記2方向相対
変位から残りのばねに貯えられる等価歪エネルギーを算
出し、該エネルギーから跋残9のばねにかかる応力を求
める計算ループを、引張力のかかるばねがなくなるまで
もしくは、所定の回数まで繰返し、前記各ばねの最終的
応力を求める計算轡と1この計算機により計算過程もし
くは結果を表示する表示装置と;により上記目的を達成
するものである。
Using the displacement parameter of the center of gravity of the plane element,
The equivalent strain energy stored in the spring is calculated from the relative displacement in the direction, and the stress applied to each of the springs is determined from this energy. Assuming that, using the parameters of the center of gravity of the planar element, calculate the equivalent strain energy stored in the remaining spring from the relative displacement in the two directions, and calculate the stress applied to the remaining spring 9 from this energy. Repeat the calculation loop to obtain the final stress of each spring by repeating the calculation loop until there are no more springs under tension or a predetermined number of times, and (1) a display device for displaying the calculation process or result by this calculator; It accomplishes its purpose.

またこの発明は、股関節の骨盤側臼蓋および大腿骨側の
骨頭との接触線を含む断面形状を読みとるディジタイザ
−と;このディジタイザ−により得られる断面形状デー
タおよび前記骨頭にかかる荷重データをもとに、股関節
における骨盤伸の臼蓋および大腿骨側の骨頭を応力によ
って歪を生じない剛体、また関節包靭帯を股関節におけ
る骨盤傭の臼蓋および大腿骨側の骨頭を応力によって歪
を生じない剛体まfcは関節包靭帯脱臼防止ばね、1縦
断面において、前記臼蓋と骨頭の、これらの接触線に沿
う領域を有限の平面要素をもって分割するとともに、該
分割した各平面要素境界辺上で、i&直に抵抗するばね
を仮定しく前記境界辺に沿う要素間摩擦が零、前記臼1
の変位が零、前記骨頭側平面要嬌の変位が1平面内の2
方向のみの条件で、前記平@要素の重心の変位パラメー
タを利用゛ して前記2方回の相対変位から前記ばねに
貯えられる等価歪エネルギーを算出し、該エネルギーか
ら前記各ばねにかかる応力を求め4これらばねのうち最
大引張力を生じているばねを検出し、かつ該ばねの切断
を仮定し、再度、前記平面要素の重心のパラメータを利
用して、bit Me 2方向相対変位から残りのばね
に貯えられる等価φエネルギーを算出し、該エネルギー
から該残りのばねにかかる応力を求める計算ループを、
引張力のかかるばねがなくなるまでもしくは、所定の回
数まで繰返し、前記各ばねの最終的応力を求める計算機
と9この゛計算機によう計算過程もしくは結果を表示す
る表示装置と;により上記目的を達成するものである。
This invention also includes a digitizer that reads the cross-sectional shape of the hip joint, including the contact line between the acetabulum on the pelvic side and the femoral head; In addition, the acetabulum and femoral head of the pelvic extension in the hip joint are rigid bodies that do not cause distortion due to stress, and the capsular ligaments are rigid bodies that do not cause distortion due to stress of the acetabulum and femoral head of the pelvis in the hip joint. Mafc is a joint capsular ligament dislocation prevention spring, in which the area of the acetabulum and the femoral head along the contact line thereof is divided into finite plane elements in a longitudinal section, and on the boundary side of each divided plane element, Assuming a spring that directly resists i&, the friction between the elements along the boundary side is zero, and the die 1
The displacement of 0 is zero, and the displacement of the femoral head side plane is 2 within one plane.
Under the condition of direction only, the equivalent strain energy stored in the spring is calculated from the relative displacement of the two directions using the displacement parameter of the center of gravity of the flat element, and the stress applied to each spring is calculated from the energy. Calculation 4: Detect the spring that produces the maximum tensile force among these springs, and assume that the spring is cut. Again, using the parameters of the center of gravity of the plane element, calculate the remaining bit Me from the relative displacement in two directions. A calculation loop that calculates the equivalent φ energy stored in the spring and calculates the stress applied to the remaining spring from this energy,
The above purpose is achieved by: a calculator that calculates the final stress of each spring by repeating the process until no spring is left under tension or a predetermined number of times; and a display device that displays the calculation process or result on the computer. It is something.

以下本発明の実施例を図面を参照して訳明する。Embodiments of the present invention will be explained below with reference to the drawings.

まず本発明にかかみ股関節の脱臼診断方法および装置に
利用する前述の剛体ばねモデルによる一般的力学解析方
法について説明する。
First, a general mechanical analysis method using the above-mentioned rigid spring model used in the method and apparatus for diagnosing dislocation of a hip joint according to the present invention will be explained.

まず、第1図および第2図に示されるように。First, as shown in FIGS. 1 and 2.

新しい平面要素として、垂直力とせん断力に抵抗と、 する211MのスプリングKd%Ks 骨十→42つの
剛三角形板1および2を仮定する。
As new planar elements, assume two rigid triangular plates 1 and 2, which resist normal force and shear force, and have a spring of 211M.

これら剛三角形板1.2Fi応力によって要素内変形を
生じないものと仮定され、またこの2つの三角形板1.
2に接触境界面上53に連続的に分布した垂直応力とせ
ん断応力に抵抗する2種のばねKd%Ksによって連結
されている。三角形板上の任意点P(x、3F)の変位
は重心点の変位、即ち平行変位成分(Uv)および回転
変位成分(θ)の3成分によって表わされる、今、三角
形板上の任意点Pの変位を1−tTlvl :UIVn
Jt とし、重心点ノ変位f i、UIV181 :U
’2.V2 fj2 」* トス7) ト、次のような
関係式が得られる。
It is assumed that these rigid triangular plates 1.2Fi stress does not cause intra-element deformation, and that these two triangular plates 1.2Fi stress do not cause any intra-element deformation.
2 and 2 are connected by two types of springs Kd%Ks that resist vertical stress and shear stress, which are continuously distributed on the contact interface 53. The displacement of an arbitrary point P (x, 3F) on the triangular plate is expressed by the displacement of the center of gravity, that is, three components: a parallel displacement component (Uv) and a rotational displacement component (θ). The displacement of 1-tTlvl : UIVn
Jt, the displacement of the center of gravity f i, UIV181 :U
'2. V2 fj2 ''* Toss 7) The following relational expression is obtained.

U−Q・υl ’               (1
)υ−LUIVI SUivg*’ υ1=lUIV1θ1 : U2 V2θ2Jt一方、
P点の変形後における相対変位ベクトルp / p N
は次式で与えられる。
U-Q・υl' (1
) υ−LUIVI SUivg*' υ1=lUIV1θ1 : U2 V2θ2Jt On the other hand,
Relative displacement vector p / p N after deformation of point P
is given by the following equation.

δ=y−ty              (2)ここ
で、上付きの−は要素境界辺上にとった局所座標系の成
分であることを示している°。
δ=y-ty (2) Here, the superscript - indicates that it is a component of the local coordinate system taken on the element boundary side.

今、全体座標系と局所座標系における座標変換マトリッ
クスなRとすると0とUとの間に次の関係が成立する。
Now, if R is a coordinate transformation matrix between the global coordinate system and the local coordinate system, the following relationship holds between 0 and U.

U冨RCU                    
(3)ここで、135は辺35間の長さである。
UtomiRCU
(3) Here, 135 is the length between the sides 35.

以上の式t−まとめると、P点の変形後における相対変
位ベクトルδFi重心点の変位U1  を用い【次のよ
うに表わされる。
In summary, the above equation t is expressed as follows using the relative displacement vector δFi after the deformation of the point P and the displacement U1 of the center of gravity.

δ=M−RφQ−Ul=B−Ui (B=M−R−Q)
(4)次に、ばね定数を決定するため相対変位成分に対
応する仮想歪成分を以下のように定義する。
δ=M-RφQ-Ul=B-Ui (B=M-R-Q)
(4) Next, in order to determine the spring constant, a virtual strain component corresponding to the relative displacement component is defined as follows.

ここK hr htは三角形板要素の重心Gt Gyか
らそれぞれの要素境界面上に下した垂線の長さを示して
いる。(第3図参照) さて、各要素境界辺上の単位面積当りの表面力鴬(応力
)を次のように仮定する。
Here, K hr ht indicates the length of a perpendicular line drawn from the center of gravity Gt Gy of the triangular plate element to the boundary surface of each element. (See Figure 3) Now, assume that the surface force (stress) per unit area on each element boundary is as follows.

以上の結果から、それぞれ次のようにばね定数が決定さ
れる。
From the above results, the spring constants are determined as follows.

(1)平面ひずみ状態のばね定数 今、次のようKばね管仮定する。(1) Spring constant in plane strain state Now, assume the following K spring tube.

従って、以下のようKばね定数が得られる。Therefore, the K spring constant is obtained as follows.

(i)平面応力状態のばね定数 平面ひずみの場合とまったく同様に以下のごとく得るこ
とができる。
(i) Spring constant in plane stress state can be obtained as follows in exactly the same way as in the case of plane strain.

なお、ここで示したばね定数はあくまでも便宜上のもの
であり厳密な意味での数学的理由を持っていない。変位
を正確に知るためにはばね定数を実験値、実測値時から
推定することが望t1い。
Note that the spring constant shown here is for convenience only and has no mathematical reason in a strict sense. In order to accurately know the displacement, it is desirable to estimate the spring constant from experimental values and actually measured values.

さて1%/−hま表面力(応力)と相対変位の関係を簡
単に次のように書いておく。
Now, the relationship between 1%/-h surface force (stress) and relative displacement can be simply written as follows.

σユp 、 6              (12)
11’= (’n faJ  (応力)δ=δ、J、J
   (相対変位) 以上から、変形後に二要素間の分布ばね系に蓄えられる
ポテンシャルエネルギーは次式で与えられる。
σYup, 6 (12)
11'= ('n faJ (stress) δ=δ, J, J
(Relative displacement) From the above, the potential energy stored in the distributed spring system between two elements after deformation is given by the following equation.

■−2’lasδ’Dgds=居、/135(B5B)
dsUI CU)従って、最小ポテンシャルエネルギー
の定理力1′ら各スプリング要素に関する剛性行列に力
鷺得られる。
■-2'lasδ'Dgds=I, /135 (B5B)
dsUI CU) Therefore, the stiffness matrix for each spring element is obtained from the minimum potential energy theorem 1'.

第1表 合につき説明する。Table 1 I will explain the case.

すなわち、この方法は、第4図に示されるように、股関
節3における骨盤側の臼蓋4および大腿骨s側の骨頭6
を第5図に示されるように、応力によって歪を生じない
剛体4Aおよび6A、また関節包靭帯7を脱臼防止ばね
7Aの要素モデルにそれぞれ置換し、該要素モデルの縦
断面において、前記剛体4Aと6Aの、これらの接触線
に沿う領域を第1図に示されるような有限の平面要素を
も、って分割するとともに、該分割した平面要素境界辺
上で垂直に抵抗するばねKd を仮定し、前記境界辺に
沿う要素間摩擦が零すなわちばねに、のばね定数が零で
あって剛体4A、6人間にローラ8が存在し、また剛体
4Aの変位が零、剛体6A側の変位が前記縦断面内の2
方向のみ、の条件で、前記接触線の形状および骨1[6
にかかる荷重Pを既知数とし、前記平面要素の重心の変
位パラメータを利用して前記2方向の相対変位から前記
ばねKdに貯えられる等価歪エネルギーを算出し、#エ
ネルギーから前記各ばねKd Kかかる応力を求め;こ
ねらのばねのうち最大引張力を生じているばねを検出し
、かつ核ばねの切断を仮定し、再度、前記平面要素の重
心のパラメータを利用して、前記2方向相対変位から残
9の他のばqK貯えられる等価歪エネルギーを算出し、
該エネルギーから該残りのばねKかかる応力を求める計
算ループを、引張力のかかるはねがなくなるまでもしく
は、所定の回数まで繰返し、前記各ばねKdの最終的応
力を求めるものである。
That is, as shown in FIG.
As shown in FIG. 5, the rigid bodies 4A and 6A that do not cause distortion due to stress and the joint capsular ligament 7 are replaced with an element model of a dislocation prevention spring 7A, and in the longitudinal section of the element model, the rigid body 4A Assume that the area along the contact line of However, the friction between the elements along the boundary side is zero, that is, the spring constant of the spring is zero, and there are rigid bodies 4A, 6, and roller 8, and the displacement of the rigid body 4A is zero, and the displacement of the rigid body 6A side is zero. 2 in the longitudinal section
direction only, the shape of the contact line and bone 1 [6
Assuming that the load P applied to the plane element is a known value, calculate the equivalent strain energy stored in the spring Kd from the relative displacement in the two directions using the displacement parameter of the center of gravity of the planar element, and calculate the equivalent strain energy stored in the spring Kd from the #energy. Determine the stress: Detect the spring that produces the maximum tensile force among the core springs, assume that the core spring is cut, and again use the parameters of the center of gravity of the planar element to calculate the relative displacement in the two directions. Calculate the equivalent strain energy stored in the remaining 9 other bqK from
The calculation loop for determining the stress applied to the remaining springs K from the energy is repeated until there is no longer a spring under tension or a predetermined number of times to determine the final stress of each spring Kd.

前記のように、剛体4側の変位を零とすると、前記(1
4)式のut s ’It、θt/dそれぞれ零となり
、またM、も零となるので、各平面要素Kかかる前記荷
重PのX方向およびY方向の成分は、(15)式のよう
Kなる。
As mentioned above, if the displacement on the rigid body 4 side is zero, then the above (1
4) Since ut s 'It and θt/d in equation (15) are each zero, and M is also zero, the components in the X and Y directions of the load P applied to each plane element K are expressed as K as shown in equation (15). Become.

P yl = Klv u 1 +Ku v を従って
各要素におけるPxlおよびPYIを重ね合せた値は、
前記荷重PのX方向およびY方向成分と等しくなる。こ
れは次式のように示される。
P yl = Klv u 1 +Ku v Therefore, the value obtained by superimposing Pxl and PYI in each element is:
It becomes equal to the X-direction and Y-direction components of the load P. This is shown as the following equation.

Pxt=(KIp+に+P−1・・)u++(KJイに
+J’+・・・)v+PY1=(KI#+に−+−)u
l+(K#に#−)Vj(t6) (上つきの■、■・・・は各要素における剛性であるこ
とを示す。) ここで前記に、l、に饋およびKn は第1表から、ま
たPxl 、 PYIは荷重PのX方向およびY方向成
分であり、ともに既知数であるので変位u 1 、V 
1が(凰6)式から求められる。
Pxt=(KIp++P-1...)u++(KJ+J'+...)v+PY1=(KI#+-+-)u
l+(#- to K#)Vj(t6) (The superscripts ■, ■... indicate the stiffness of each element.) Here, as mentioned above, l, ni, and Kn are as follows from Table 1. In addition, Pxl and PYI are the X-direction and Y-direction components of the load P, and since both are known quantities, the displacements u 1 and V
1 can be obtained from the formula (凰6).

この求められたulおよびV、を前記(12)弐に代入
すれば、各ばねKdの応力ひがそれぞれ求められる。
By substituting the obtained ul and V into (12) 2, the stress of each spring Kd can be obtained.

臼蓋4と骨116の接触面においては、圧縮力のみ存在
し、引張力は存在しないはずであるから、前記ばねのう
ち引張力を生じているばねがある場合は、最大引張力を
生じているばねを検出し、該ばねの切断すなわち肢ばね
の部分は臼ft4と骨頭6が非接触と仮定し、こり新た
な条件で、再び第1表に示されるばねの剛性マトリック
スを作−し。
At the contact surface between the acetabulum 4 and the bone 116, only compressive force exists and there should be no tensile force, so if there is a spring that is generating a tensile force among the springs, the maximum tensile force is generated. After cutting the spring, i.e., assuming that the limb spring part is not in contact with the aceta ft4 and the femoral head 6, the spring stiffness matrix shown in Table 1 is again created under new conditions.

これから前記と同様に(16)式から変位u、 、vl
を求め1次いで(12)式から各ばねの応力を求める。
From now on, as before, from equation (16), the displacements u, , vl
Then, the stress of each spring is determined from equation (12).

求められた応力のうち、引張力が存在する場合は、再変
前記計算ループを繰返し、て、引張力のかかるばねがな
くなるまで、もしくは所定の回数まで繰返し、前記各ば
ねの最終的応力を求める。
Among the determined stresses, if there is a tensile force, repeat the above calculation loop until there are no more springs to which the tensile force is applied, or until a predetermined number of times, to obtain the final stress of each spring. .

前記計算ループを所定の回数まで繰返し、ここで打切る
のけ、計算機でこの計算を行なう場合に、プログラムの
暴走を防止するものであり、例えば100回程度の計算
の繰返し回数に達した場合は、節3のレントゲン写真か
ら、デジタイザー・8を利用して該股関節3の断面形状
を、すなわち各要素の周縁形状のX、7座標をコンピュ
ータ9に読みとや9次にコンピュータ9に前記断゛面に
おける臼蓋4および骨頭6の接触線に沿って積分点(ロ
ーラ8および脱臼防止ばね7Aの接触個所)を入力し、
さらに荷重Pをデジタイザー8から入力する。
Repeating the calculation loop up to a predetermined number of times and then aborting it will prevent the program from running out of control when performing this calculation on a computer. , from the X-ray photograph of node 3, use a digitizer 8 to read the cross-sectional shape of the hip joint 3, that is, the X and 7 coordinates of the circumferential shape of each element, to the computer 9; Input the integration point (the contact point of the roller 8 and the dislocation prevention spring 7A) along the contact line of the acetabulum 4 and the femoral head 6 in the plane,
Furthermore, the load P is input from the digitizer 8.

次に(14)式、もしくは(15)式の各ばねに関する
剛性行列を、コンピュータ9により計算、作成変位から
(12)弐にもとづき各ばねの応力を求める。前記引張
力の有無の判断・・・ばねの切断、計算の繰返しを前記
コンピュータ9により行ない、計算が収束したときの各
ばねの圧縮応力管、°例えば第7図のように、グラフィ
ックディスプレー10に表示する。
Next, the stiffness matrix for each spring in equation (14) or equation (15) is calculated by the computer 9, and the stress of each spring is determined based on (12) 2 from the created displacement. Determination of the presence or absence of the tensile force...The computer 9 repeats the cutting of the spring and the calculation, and when the calculation converges, the compressive stress tube of each spring is displayed on the graphic display 10 as shown in FIG. 7, for example. indicate.

こ°こで本発明のねらいは股関節接触面における圧力分
布の形状を決定することにあるから各ばねのばね定数は
、相互の比率が一定に保たれているなら任意でよいので
、単位接触面長さめた9適当な数値、例えば計算に便利
な数値「1」を割りつける。
Here, since the aim of the present invention is to determine the shape of the pressure distribution on the contact surface of the hip joint, the spring constant of each spring may be arbitrary as long as the mutual ratio is kept constant. 9 Assign an appropriate number, such as the number 1, which is convenient for calculations.

第7図の矢印Ftj、脱臼力の大きさを示し、これが一
定以上であれば、脱臼が生じると診断される。また、符
号Nで示される範囲は、ばねが切断されたことを示す。
The arrow Ftj in FIG. 7 indicates the magnitude of the dislocation force, and if this is above a certain level, it is diagnosed that dislocation has occurred. Further, the range indicated by the symbol N indicates that the spring has been cut.

実際の手術に際しては、上記グラフィックディスプレー
10に示された結果にもとづき、該ディスプレー上で剛
体4Aおよび5Aの接触面形状な少しづつ修正し、かつ
修正断面の各ばねの応力を前記と同様に求め、脱臼が生
じなi形状を決定する。すなわち、g!素モデルによ抄
シエミレーションを行なう。
During the actual surgery, based on the results shown on the graphic display 10, the shape of the contact surfaces of the rigid bodies 4A and 5A is corrected little by little on the display, and the stress of each spring in the corrected cross section is determined in the same way as above. , determine the i-shape that will not cause dislocation. In other words, g! Perform abstract simulation using the raw model.

したがって、従来のようK、勘に九より、現瞼合せに近
いような手術は不要となり、コンピュータおよびディス
プレイの助けにより、予め股関節接触面の理想的形状を
決定して、手術をすることができる。
Therefore, it is no longer necessary to perform a surgery that is similar to the actual eyelid alignment, rather than relying on intuition as in the past, and with the help of a computer and display, it is possible to determine the ideal shape of the hip joint contact surface in advance and perform the surgery. .

次に本発明に係る股関節の脱臼診断方法の第2実施例に
つき説明する。
Next, a second embodiment of the method for diagnosing dislocation of a hip joint according to the present invention will be described.

この実施例は、平面要素の重心の変位パラメータを利用
して2方向の相対変位からばねに貯えられる等価歪エネ
ルギーを算出し、該エネルギーから前記各ばねにかかる
応力を求める点では前記第1実施例と同じであるが、最
大引張応力を生じたばねを切断し、この切断による解放
力を残りのばねに負担させ、こ−11,によるばねの増
分応力を求める点で第1実施例と異なる。
This embodiment is similar to the first embodiment in that the equivalent strain energy stored in the spring is calculated from the relative displacement in two directions using the displacement parameter of the center of gravity of the plane element, and the stress applied to each spring is determined from the calculated energy. This example is the same as the first example, but differs from the first example in that the spring that has generated the maximum tensile stress is cut, the release force caused by this cutting is borne by the remaining springs, and the incremental stress of the spring due to this -11 is determined.

すなわち第8図に示されるように、剛性行列を作成し先
後に増分変位(第1回目の計算では前回分の変位を特と
する請求め、この増分費位に基づくばねの増分応力を求
め、前回の応力(第1回目ハ前回分を零とする)に加え
合せ、残った各ばねの応力を求めるものである。
In other words, as shown in Fig. 8, a stiffness matrix is created and the incremental displacement (in the first calculation, the previous displacement is specified), and the incremental stress of the spring is calculated based on this incremental cost. This is added to the previous stress (the previous stress is set to zero for the first time) to determine the remaining stress of each spring.

求められた応力のうち引張力がある場合は、そのうちの
最大引張力を生じているばねおよびその値を検出し、前
回と同様に引張ばねの受は持つ最大解放力の計算、最大
引張力が生じたばねの切断、解放力を新たな荷重として
ばねの剛性行列を求めるという計算ループを繰返し、引
張力が生じているばねがなくなるまでこれを行なう。
If there is a tensile force among the calculated stresses, detect the spring that produces the maximum tensile force and its value, calculate the maximum releasing force of the tension spring support, and calculate the maximum tensile force as before. A calculation loop is repeated in which the resulting spring is cut and the spring stiffness matrix is calculated using the release force as a new load, until there are no more springs that are under tension.

この実施例の場合は、前記第1実施例に比較して、ばね
の応力をより精密に算出することができるという利点が
あるが、計算のための計算機が高価になり、かつ計算時
間が第1!!J!施例に比較して長くなる。
This embodiment has the advantage that the stress of the spring can be calculated more precisely than the first embodiment, but the calculator for calculation is expensive and the calculation time is slow. 1! ! J! It is longer than the example.

次に第9図に示される本発明にかかる股関節の脱臼診断
方法の第3実施例について説明する。
Next, a third embodiment of the method for diagnosing hip joint dislocation according to the present invention shown in FIG. 9 will be described.

この第3実施例は、童ず股関節3の複数の縦断面を連続
X線写真撮影システム−によりパ撮影し、各断面写真か
らデジタイザー8によって形状データを入力し、これに
基づいて前記第1実施例もしくは第2実施例におけると
同様に各断面の応力分布を求め、次にこれらの断面の中
から、置載応力分布断面を決定し、該置載応力分布&I
r面における応力分布が許容できない場合Fi核断面形
状を修正し、修正した形状を再度ディジタイザ−を介し
て入力し、再び前記@lもしくはifg2実施例と同様
の計算ループを繰返し、置載応力分布断面における応力
分布が許容し得るまでこれを繰返し、応力分布が許容し
得る状態になった時、該形状修正による他の断面におけ
る応力分布の変化を解析し、該変化を含めた修正応力分
布が許容し得える場合は計算が収束され、許容できない
場合社構造モデルの三次元的形状修正を行なめ、再度デ
ィジタイザ−8による入力を行なって前記計算ループ゛
を繰返し。
In this third embodiment, a plurality of longitudinal sections of the child's hip joint 3 are photographed using a continuous X-ray photographing system, shape data is inputted from each cross-sectional photograph by a digitizer 8, and based on this, the first embodiment The stress distribution of each cross section is determined in the same manner as in the example or the second example, and then the placement stress distribution cross section is determined from among these sections, and the placement stress distribution &I
If the stress distribution in the r-plane is unacceptable, modify the Fi core cross-sectional shape, input the modified shape again via the digitizer, repeat the same calculation loop as in the @l or ifg2 example, and determine the stress distribution when placed. This process is repeated until the stress distribution in the cross section is acceptable, and when the stress distribution becomes acceptable, the changes in stress distribution in other cross sections due to the shape modification are analyzed, and the modified stress distribution including the changes is calculated. If it is acceptable, the calculation is converged; if it is not acceptable, the three-dimensional shape of the company structure model is corrected, input is made again by the digitizer 8, and the calculation loop is repeated.

修正応力分布が許容されるまで行なうものである。This process is repeated until the corrected stress distribution is acceptable.

これらの計算過程または結果は、図に示され石ようにグ
ラフィックディスプレイ1Gによって表この実鞄例の場
合は、股関節の修正形状を、□三次元的に求めることが
できるので、より正確な治療を行なうことができるとい
う利点がある。
These calculation processes or results are shown on the graphic display 1G as shown in the figure.In the case of this actual case, the corrected shape of the hip joint can be determined three-dimensionally, allowing for more accurate treatment. The advantage is that it can be done.

本発明は上記のように構成したので、股関節にこれに基
づき股関節の理想的な形状修正をモデルによって行なう
ことができ、従って治療効果を飛躍的に増大させること
ができる−という優れた効果を有する。
Since the present invention is configured as described above, it has the excellent effect that the ideal shape of the hip joint can be corrected based on the model, and the therapeutic effect can therefore be dramatically increased. .

本発明者等による過去の股関節脱臼の治療手術の前後に
おける股関節断面形状を本発明方法および装置によって
分析した結果、全症例が1本発明方法および装置による
診断結果と一致し、手術の不成功の原因も解明できえ。
As a result of analyzing the cross-sectional shape of the hip joint before and after previous hip dislocation treatment surgery by the present inventors using the method and device of the present invention, all cases were consistent with the diagnostic results obtained by the method and device of the present invention, indicating that the surgery was unsuccessful. I can't figure out the cause either.

【図面の簡単な説明】[Brief explanation of the drawing]

嬉1図および籐2図は本発明にかがる股関節の脱臼診断
方法の基礎となる原理を説明するための剛体ばねモデル
を示す平m図、第3図は同原理の計算における要素上の
数値を示す平面図、第4図は股関節の形状を示す略示断
面図、!5図Fi第4図の股関節を要素モデルに置換え
丸断面図、第6図は本発明に係る股関節の脱臼診断方法
のIIEI実施例のフ鍔−チ“ヤード、第7図は計算結
果をグラチャー)、第10図は本発明にかかる股関節の
脱ロ論断装Mt−示すブロック図である。 1.2・・・平面要素、3・・・股関節、4・・・臼蓋
、4A、6A・・・剛体、5・・・大腿骨、6・・・骨
頭、7・・・関節包靭帯、7A・・・脱臼防止ばね、8
・・・デジタイザー、9・・・コンピュータ、lo・・
・グラフィックディスプレイ、kd・・・ばね。 代理人  松 山 圭 佑 (#1か3名) 聾 瞭 第6図 第 7 図 Perthe5  PRE−OPE 手続補正、書 昭和56年10月12日 特許1i艮官  島  1) 春  樹  殿1、事件
の表示 昭和56年 特 許 願 第145102号2、発明の
名称 3、補正をする者 事件との関係   特許出願人 5、補正命令の日付 自    発 6、補i「の対象 願幽および明細−の発明の名称の欄、明細山の特許請求
の範囲の欄、発明の詳細な説明の−および図面の簡単な
説明の−。 7、補正の内容 (1、発明の名称を1股間節の脱〔1力表小/J法およ
び装置fJと改める。 (2)v1v#晶求の範1111を別紙のとおり改める
。。 (3)明細書第6頁第12行、!17Q第4行、1μm
第7行、同第15行、第13頁第311、第2514第
10行、第26頁第19行、第28頁第19行、第29
頁第4行、同第9行の「診断」を各々r力表不1と改め
る。 (4)明細−第7頁第4行の[手術り払1をr菰M1と
改める。 (5)明細lJ第11員第1″′1行および第134第
1行の「装置」を1手段」と改める。 (6)明細廁第2.0真第1行の[IIQ関節1B2臼
の診断」を「股関節の脱臼自表示1と改める。 (7)明細^第28自第15行の1参断1を、1表出」
と改める。            以、を特許請求の
範囲 (1)股関節にお番」る骨盤側の0蕎および大腿骨側の
骨頭を応力によって歪を生じない剛体、ま/:関節包靭
帯を脱〔1防1ばね、の斂木七ゲルG、°イれぞれW1
換し、該装本tfルの縦り面におい(、前記〔1益と骨
頭の、これらの接触線に沿う&I城を有限のψ面M本を
6って分割4るとともに、該分割した各平面斂^場界辺
」で、垂iに抵抗Jるばねを仮定し;前記境界辺に沿う
飲素閤摩擦が零、前記0酪の変位が零、前記骨頭側平面
p本の変位が該平面内の2方向のみの条件で、前記接触
線の形状および前記骨頭にかかる荷重を既知数とし、前
記平面!!素の重心の変位パラメータを利用して前記2
方向の相対変位から前記ばねに貯えられる等IIk歪エ
ネルギーを篩出し、該エネルギーから前記各ばねにかか
る応)Jを求め:これらばねのうら最大引張力を生じて
いるばねを検出し、かつ践ばねの切断を仮定し、再度、
前記平向要木?Φ心のパラメータを利用し
Figure 1 and Figure 2 are flat diagrams showing a rigid spring model for explaining the principle underlying the hip dislocation diagnosis method according to the present invention, and Figure 3 is a diagram showing the elements used in calculations based on the same principle. A plan view showing numerical values, and Figure 4 is a schematic sectional view showing the shape of the hip joint! Figure 5 is a circular cross-sectional view of the hip joint in Figure 4 replaced with an element model, Figure 6 is a front view of the IIII embodiment of the hip joint dislocation diagnosis method according to the present invention, and Figure 7 is a graph of the calculation results. ), FIG. 10 is a block diagram illustrating the derotation/disassembly Mt of the hip joint according to the present invention. 1.2... Planar element, 3... Hip joint, 4... Acetabular, 4A, 6A. ... rigid body, 5 ... femur, 6 ... femoral head, 7 ... joint capsular ligament, 7A ... dislocation prevention spring, 8
...digitizer, 9...computer, lo...
・Graphic display, kd...spring. Agent Keisuke Matsuyama (#1 or 3) Deaf Figure 6 Figure 7 Perthe5 PRE-OPE Procedure Amendment, Written October 12, 1981 Patent 1i Attorney Shima 1) Haruki Tono 1, of the case Indication 1982 Patent Application No. 145102 2. Title of the invention 3. Relationship with the case of the person making the amendment Patent applicant 5. Date of the amendment order 7. Contents of the amendment (1. Change the title of the invention to 1. Force table small/J method and device fJ. (2) v1v #Shokyu no Han 1111 is revised as shown in the attached sheet. (3) Specification, page 6, line 12, !17Q, line 4, 1 μm
Line 7, line 15, page 13, line 311, line 10, page 2514, line 19, page 26, line 19, page 28, line 29
``Diagnosis'' on the 4th line and 9th line of the page has been changed to ``Rikitafu 1.'' (4) Details - [Surgery 1 on page 7, line 4] is changed to r菰M1. (5) In the specification lJ, 11th member, 1''', line 1 and 134, line 1, ``apparatus'' is changed to ``1 means''. (6) [Diagnosis of IIQ joint 1B2 abutment] in the 1st line of Section 2.0 of the specification is changed to ``Dislocation of the hip joint 1. (7) 1 Reference 1 in the 28th line of the specification , 1 expression”
I'll change it to. Claims: (1) A rigid body that does not cause distortion due to stress on the pelvic side and the femoral head attached to the hip joint; Nogi Shichigel G, °I each W1
In other words, on the vertical plane of the bound tf file (, the &I castle along these contact lines of the 1 profit and femoral head is divided into 6 M finite ψ planes, and the divided Assume a spring with resistance J in the perpendicular i at each plane 'field boundary'; the drag friction along the boundary is zero, the displacement of the zero is zero, and the displacement of p on the head side plane is zero. Under the conditions of only two directions within the plane, the shape of the contact line and the load applied to the femoral head are known numbers, and the displacement parameter of the center of gravity of the plane!!
From the relative displacement in the direction, the strain energy stored in the springs is sieved out, and from this energy, the response J applied to each spring is determined: Detect the spring producing the maximum tensile force on the back of these springs, and Assuming the spring is cut, again,
Said Yogi Hiramuki? Using the parameters of Φ-center

【、前記2方
向相対変位から残りのばねに貯えられる等価歪−Lネル
ギーをD titし、該エネルギーから該残りのばねに
ががる応力を求める計算ループを、引張りのががるばね
がなくなるまでもしくは、所定の回教まで繰返し、前記
各ばねの最終的応力を求める過程を含む股関節の脱臼L
LK方沫。 (2)ail記検出された最大引張力を生じているばね
の引張力を求めるとともに、これから該ばねの受けもつ
最大解放りを粋出し:次いで該引張ばねの切断を仮定し
て、前記最大解放りを前記骨頭に加わる斬たな荷重とし
、この荷重による前記率i[!!索の増分変位およびこ
れから前記切断された以外の各ばねにかかる増分応力を
前記と同様に求め、該応力を前回計飾による応力に加算
して、各ばねの応力を求め;さらに、前記と同様に最大
引張力を生じているばねの切断、この切断による他のば
ねの増分応力を求める計算ループを、引張力のかかるば
ねがなくなるまでもしくは、所定の回数まで繰返し、前
記各ばねの最終的応力を求めることを特徴とする特許請
求の範囲第1項記載の股関節の説〔ll姐方法。 (3)前記各ばねの最終的応力を求める61粋を、股関
節の複数の縦断面について行ない、そのうらの最鎌応り
分布断面の形状修正による他断面の応力分布変化を前記
計梼ループを経て求める過程を含むことを特徴とする特
め請求の範囲第110よ!、は第2項記載の股関節の脱
臼力表示り法。 (4)股関節の骨盤側臼晶および大腿骨側の骨頭との接
触線を含む断面形状を繞みとるゲイジタイザーと;この
ディジタイザ−により得られる断面形状データおよび前
記骨頭にかかる荷重データをもとに、l!を関節におけ
る骨盤側の臼蓋および大腿骨側の骨頭を応力によって歪
を生じない剛体、また関節包靭帯を脱r」防止ばね、の
′tl!素モデルにぞれぞれlil換し、該要素モデル
のglli面にJ3いI、前記臼蓋と骨頭の、これらの
接触線に沿う領域を有限の平面要素をもって分割すると
ともに、該分−割した各平面!!要素界辺上で、11!
直に抵抗するばねを仮定し、前記鳩界辺に沿う!l#i
闘鰺擦が零、前記臼蓋の変位が零、前記骨頭側型1m要
素の変(Qが該平自内の2h向のみの条411′、前記
平向装本の重心の変位パラメータを利用して前記2方向
の相対変位から前記ばねに貯えられる等価歪エネルギー
を枠出し、該1ネルギーから前記各ばねにがかる応力を
求め、これらばねのうら最大引張力を住じているばねを
検出し、かつ該ばねの切断を仮定し、再度、前記平al
!素の重心のパラメータを利用して、前記2方向相対変
位から残りのばねに貯えられる等価歪エネルギーを算出
し、該エネルギーから該残りのばねにががる応りを求め
る計算ループを、引張力のかかるばねがなくなるまでも
しくは、所定の回数まで一繰返し、前記各ばねの最終的
応力を求める計算機と;この計算機により計算過程もし
くは結果を表示する表示LLと:を有してなる股mgi
の脱臼力表示装蹟。 (5)股関節の骨盤側臼蓋および大腿骨側の骨頭との接
触線を含む11m形状を読みとるディジタイザ−と:こ
のディジタイザ−により得られる断面形状データおよび
前記骨頭にががる有殻データをもとに股関節における骨
盤側の臼蓋および大腿骨側の1I11iを応力によって
歪を生じない剛体、また関節包靭帯を説〔]防止ばね、
の装本モデルにぞれぞれ置換し、該装本モデルのm断面
において、前記臼蓋と骨頭の、これらの接触線に沿う領
域を有限の平面要素をもって分割するとともk、該分割
した各平面鯰jk@S’i1辺上で、垂めに抵抗4るば
ねを仮定し、前に!境界辺に沿う愛本闇摩擦が官、前記
臼蓋の変位が零、前記舜顕側ψth!!本の変11/が
該平面内の2h向のみの条件で、前記平向斂本の重心の
変位パラメータを利用して前記2 lJ向の相t4v1
位から前記ばねに貯えられる等価歪エネルギーを篩出し
、鎮王ネルギーがら前記各ばねにがかる応力を求め、こ
れらのばねのうち最大引張力を生じ【いるものの引張力
を求めるとともにこれから該ばねの受けもつ最大解放力
を鐸出し、次いで該引張ばねの切断を仮定して、前記最
大解Mt力を前記骨頭に加わる新たな荷重とし、この荷
重による前記平面費秦の増分変位およびこれ、から前記
切断された以外の各ばねにかがる増分応力を前記と同様
に求め、該応りを前回計算による応ノ】に加算して、各
ばねの応力を求め、さらに、前記と同様に最大引張力を
生じているばねの切断、この切断による他のばねの増分
応力を求める計算ループを、引張力のかかるばねがなく
なるまでもしくは、所定の回数まで繰返し、前記各ばね
の最終的応力を求める引幹機と:この計算機により針線
過程もしくは結果を表示する表示11と;を有してなる
股関節の脱臼り瓦り装置。
[, Dtit the equivalent strain stored in the remaining spring from the relative displacement in the two directions - L energy, and perform a calculation loop to calculate the stress in the remaining spring from the energy. dislocation of the hip joint, including the process of determining the final stress of each spring by repeating the process up to or until a predetermined time.
LK. (2) Determine the tensile force of the spring that is generating the detected maximum tensile force, and calculate the maximum release of the spring from this: Next, assuming that the tension spring is cut, the maximum release Let be the constant load applied to the femoral head, and the rate i [! ! Determine the incremental displacement of the cable and the incremental stress applied to each spring other than the cut spring in the same manner as above, and add this stress to the stress due to the previous trim to determine the stress in each spring; The calculation loop of cutting the spring producing the maximum tensile force and calculating the incremental stress of other springs due to this cutting is repeated until there are no more springs under tension or a predetermined number of times, and the final stress of each spring is calculated. The hip joint theory (method) according to claim 1, characterized in that . (3) Perform the above 61 steps to determine the final stress of each spring on multiple longitudinal sections of the hip joint, and use the above calculation loop to calculate changes in stress distribution on other sections due to shape modification of the maximum sickle distribution section. Claim No. 110, characterized in that it includes a process of obtaining through the process! , is the method for expressing the dislocation force of the hip joint described in Section 2. (4) A gaugeizer that captures the cross-sectional shape of the hip joint, including the contact line with the acetabular crystal on the pelvic side and the femoral head; based on the cross-sectional shape data obtained by this digitizer and the load data on the femoral head. , l! The acetabulum on the pelvic side and the head on the femoral side in the joint are rigid bodies that do not cause distortion due to stress, and there is also a spring that prevents the capsular ligament from dislodging. Convert each element model to an elementary model, and divide the area of the acetabulum and femoral head along the contact line by using finite planar elements. Each plane! ! On the elemental plane, 11!
Assuming a spring that resists directly, follow the pigeon boundary! l#i
The acetabulum displacement is zero, the displacement of the acetabulum is zero, the change of the 1m element of the head side type (Q is the strip 411' in the 2h direction only in the flat plane, and the displacement parameter of the center of gravity of the flat book is used. Frame the equivalent strain energy stored in the spring from the relative displacement in the two directions, find the stress applied to each spring from the one energy, and detect the spring with the maximum tensile force on the back of these springs. , and assuming that the spring is cut, again the flat al
! Using the parameters of the elementary center of gravity, the equivalent strain energy stored in the remaining spring is calculated from the relative displacement in the two directions, and a calculation loop is performed to calculate the strain response of the remaining spring from this energy. A crotch mgi comprising: a calculator that calculates the final stress of each spring by repeating the process until the applied springs run out or a predetermined number of times; and a display LL that displays the calculation process or result by this calculator.
dislocation force display device. (5) A digitizer that reads the 11m shape including the contact line between the acetabulum on the pelvic side and the femoral head of the hip joint: This digitizer also reads the cross-sectional shape data obtained by this digitizer and the shell data that spans the femoral head. In addition, the acetabulum on the pelvic side and the 1I11i on the femoral side of the hip joint are rigid bodies that do not cause distortion due to stress, and the joint capsular ligament is a prevention spring.
In the m section of the bound model, the area of the acetabulum and the femoral head along the contact line is divided by finite plane elements, and each of the divided Assume a spring with resistance 4 hanging down on one side of the plane catfish jk@S'i, and forward! The love book and dark friction along the boundary is official, the displacement of the acetabular is zero, and the Shun xian side ψth! ! Under the condition that the displacement 11/ of the book is only in the 2h direction within the plane, the phase t4v1 in the 2lJ direction is calculated using the displacement parameter of the center of gravity of the horizontal book.
The equivalent strain energy stored in the springs is sieved out from the stress, and the stress applied to each spring is determined from the tension energy. Assuming that the tension spring is cut, the maximum solution Mt force is the new load applied to the femoral head, and the incremental displacement of the plane surface due to this load and this is determined by the cutting. Determine the incremental stress applied to each spring other than the one above in the same manner as above, add this response to the response calculated from the previous calculation to determine the stress on each spring, and then calculate the maximum tensile force in the same manner as above. The calculation loop of cutting the spring causing the tension and calculating the incremental stress of other springs due to this cutting is repeated until there are no more springs under tension or a predetermined number of times, and the final stress of each spring is calculated. A device for dislocating a hip joint, comprising: a display 11 for displaying the needle line process or result using the calculator;

Claims (5)

【特許請求の範囲】[Claims] (1)  股関節における骨盤側の臼蓋および大腿骨側
の骨頭を応力によって歪を生じない剛体、また関節包靭
帯を脱臼防止ばね、のJII嵩モデモデルれぞれ置換し
、該要素モデルの縦断面において、前記臼蓋と骨頭の、
仁れらの接触線に−沿う領域を有限の平面要素をもって
分割するとともに、該分割した各平面要素境界辺上で、
−直に抵抗するばねを仮定し;前記境界辺に沿う要素間
摩擦が零、前記臼蓋の変位が零、前記骨頭側平面要素の
変位が数千面内の2方向のみの条件で、前記接触線の形
状および前記骨頭にかかる荷重を既知数とし、前記平面
要素の重心の変位パラメータを利用して前記2方向の相
対変位から前記ばねに貯えられる等価歪エネルギーを算
出し、誼エネルギーから前記各ばねKかかる応力を求め
;これらばねのうち最大引張力を生じているばねを検出
し、かつ該ばねの切断を仮定し、再度、前記平面要素の
重心のノ(ラメータを利用して、前記2方向相対変位か
ら残りのばねに貯えられる等価歪エネルギーを算出し、
該エネルギーから骸残りのばねにかかる応力を求める計
算ループを、引張力のかかるばねがなくなるまでもしく
は、所定の回数まで繰返し、前記各ばねの最終的応力を
求める過程を含む股関節の脱臼診断方法。
(1) The acetabulum on the pelvis side of the hip joint and the femoral head on the femoral side are rigid bodies that do not cause distortion due to stress, and the joint capsular ligament is replaced with a JII bulk model model with a spring to prevent dislocation, and the longitudinal section of the element model is In, the acetabulum and the femoral head,
Divide the area along the contact line between the two using finite planar elements, and on the boundary edge of each divided planar element,
- Assuming a spring that resists directly; under the conditions that the friction between the elements along the boundary is zero, the displacement of the acetabulum is zero, and the displacement of the head-side plane element is only in two directions within a few thousand planes; Assuming that the shape of the contact line and the load applied to the femoral head are known, the equivalent strain energy stored in the spring is calculated from the relative displacement in the two directions using the displacement parameter of the center of gravity of the planar element, and the equivalent strain energy stored in the spring is calculated from the bend energy. Determine the stress applied to each spring K; detect the spring producing the maximum tensile force among these springs, assume that the spring is cut, and again use the center of gravity of the plane element (parameter) to calculate the Calculate the equivalent strain energy stored in the remaining spring from the relative displacement in two directions,
A method for diagnosing dislocation of a hip joint, comprising the step of calculating the final stress of each spring by repeating a calculation loop for calculating the stress applied to the springs of the remains of the corpse from the energy until there are no more springs under tension or a predetermined number of times.
(2)  前記検出された最大引張力を生じているばね
の引張力を求めるとともに、これから該ばねの受けもつ
最大解放力を算出し;次いで該引張ばねの切断を仮定し
て、前記最大解放力を前記骨頭に加わる新たな荷重とし
、この荷重による前記平面要素の増分変位およびこれか
ら前記切断された以外の各ばねにかかる増分応力を前記
を同様に求め、骸応力を前回計算による応力に加算して
、各ばねの応力を求め;さらに、前記と同様に最大引張
力を生じているばねの切断、この切断による他のばねの
増分応力を求める計算ループを、引張力のかかるばねが
なくなるまでもしくは、所定の回数まで繰返し、前6C
各ばねの最終的応力を求めることを特徴とする特許請求
の範囲第1項記載の股関節の脱臼診断方法。
(2) Determine the tensile force of the spring that is producing the detected maximum tensile force, and calculate from this the maximum releasing force that the spring has; then, assuming that the tension spring is cut, calculate the maximum releasing force. is a new load applied to the femoral head, the incremental displacement of the planar element due to this load and the incremental stress applied to each spring other than the cut spring are determined in the same manner as above, and the skeleton stress is added to the stress calculated previously. Then, the stress in each spring is determined by cutting the spring that produces the maximum tensile force in the same way as above, and the calculation loop is repeated to find the incremental stress in the other springs due to this cutting until no springs are under tensile force. , repeat up to the specified number of times, previous 6C
The method for diagnosing dislocation of a hip joint according to claim 1, characterized in that the final stress of each spring is determined.
(3)前記各ばねの最終的応力を求める計算を、股関節
の複数の縦断面について行ない、そのうちの最厳応力分
布断面の形状修正による他断面の応力分布変化を前記計
算ループを経て求める過程を含むことを特徴とする特許
請求の範囲第1項または第2M記載の股関節の脱臼診断
方法。
(3) Calculations to determine the final stress of each spring are performed on multiple longitudinal sections of the hip joint, and changes in stress distribution in other sections due to shape modification of the most severe stress distribution section are determined through the calculation loop. A method for diagnosing dislocation of a hip joint according to claim 1 or 2M.
(4)股関節の骨盤側口蓋および大腿骨側の骨頭との接
触線を含む断面形状を読みとるディジタイザ−と;この
ディジタイザ−により得られる断面形状データおよび前
記骨頭にかかる荷重データをもとに、股関節における骨
盤側の臼蓋および大腿骨側の骨頭含応力によって歪を生
じない剛体、また関節包靭帯を脱臼防止ばね、の要素モ
デルにそれぞれ置換し、該要素モデルの縦断面において
、前記臼蓋と骨頭の、これらの接触線に沿う領域を有限
の平面要素をもって分割するとともに、該分割した各平
面要素境界辺上で、垂直に抵抗するば前記臼蓋の変位が
零、前記骨頭側平面要素の変位が核子面内の2方向のみ
の条件で、前記平面要素の重心の変位パラメータを利用
して前記2方向の相対変位から前記ばねに貯えられる等
価歪工革ルギーを算出し、該エネルギーから前記各ばね
にかかる応力を求め;これらばねのうち最大引張力を生
じているばねを検出し、かっ肢ばねの切断を仮定し、再
度、前記平面要素の重心のパラメータを利用して、前記
2方向相対変位から残りのばねに貯えられる等価歪エネ
ルギーを算出し、該エネルギーから該残9のばねKかか
る応力を求める計算ループを引張力のかかるばねがなく
なるまでもしくは、所定の回数まで繰返し、前記各ばね
の最終的応力を求める計算機と;この計算機にょ9計算
過程もしくは結果を表示する表示装置と;を有してなる
股関節の脱臼診断装置。
(4) A digitizer that reads the cross-sectional shape of the hip joint, including the contact line between the pelvic palate and the femoral head; Based on the cross-sectional shape data obtained by this digitizer and the load data on the femoral head, the hip joint The acetabulum on the pelvis side and the femoral head on the femoral side are rigid bodies that do not cause distortion due to stress, and the capsular ligament is replaced with an element model of a dislocation prevention spring, and in the longitudinal section of the element model, the acetabulum and the If the region of the femoral head along these contact lines is divided into finite planar elements, and vertical resistance is applied on the boundary edge of each of the divided planar elements, the displacement of the acetabulum becomes zero and the displacement of the femoral head side planar element becomes zero. Under the condition that the displacement is only in two directions in the nucleon plane, the equivalent strain energy stored in the spring is calculated from the relative displacement in the two directions using the displacement parameter of the center of gravity of the planar element, and the Find the stress applied to each spring; detect the spring that produces the maximum tensile force among these springs, assume that the heel spring is cut, and then use the parameters of the center of gravity of the planar element again to calculate the stress in the two directions. The equivalent strain energy stored in the remaining springs is calculated from the relative displacement, and the calculation loop for determining the stress applied to the remaining 9 springs from this energy is repeated until there are no more springs under tension or a predetermined number of times. A dislocation diagnostic device for a hip joint, comprising: a calculator for determining the final stress of a spring; and a display device for displaying the calculation process or result of the computer.
(5)  股関節の骨盤側口蓋および大腿骨側の骨頭と
の接触線を含む断面形状を読みとるディジタイザ−と;
このディジタイザ−により得られる断面形状データおよ
び前記骨頭にかかる荷重データをもとに、股関節におけ
る骨盤側の臼蓋および大腿骨側の脅顧を応力によって歪
を生じない剛体、また関節包靭帯を脱臼防止はね、の要
素モデルにそれぞれ置換し、該要素モデルの縦断面にお
いて、前記臼蓋と骨頭の、これらの接触縁に沿う領域を
有限の平面要素をもって分割するとともに、該分割した
各平面要素境界辺上で、垂直に抵抗するばねを仮定し、
前記境界辺に沿う要素間摩擦が零。 前記臼蓋の変位が零、前記骨頭側平面要素の変位が該平
面内の2方回のみの条件で、前記平面要素の重心の変位
パラメータを利用して前記2方向の相対変位から前記ば
ねに貯えられる等価歪エネルギーを算出し、該エネルギ
ーから前記各ばねにかかる応力を求め、これらのばねの
うち最大引張力を生じているものの引張力を求めるとと
もにこれから該ばねの受けもつ最大解放力を算出し、次
いで該引張ばねの切断を仮定して、前記最大解放力を前
記骨頭に加わる新たな荷重とし、この荷重による前記平
面要素の増分変位およびこれから前記切断された以外の
各ばねKかかる増分応力を前記と同様に求め、該応力を
前回計算による応力に加算し【、各ばねの応力を求め(
さらに、前記と同様に最大引張力を生じているばねの切
断、この切断による他のばねの増分応力を求める計算ル
ープを、引張力のかかるばねがなくなるまでもしくは、
所定の回数まで繰返し、前記各ばねの最終的応力を求め
る計算機と;この計算機による計算過程もしくは結果を
表示する表示装置と;を有してなる股関節の脱臼診断装
置。
(5) a digitizer that reads the cross-sectional shape of the hip joint, including the contact line between the pelvic palate and the femoral head;
Based on the cross-sectional shape data obtained by this digitizer and the load data applied to the femoral head, the acetabulum on the pelvic side of the hip joint and the femoral side are made into rigid bodies that do not cause distortion due to stress, and the capsular ligaments are dislocated. In the longitudinal section of the element model, the area along the contact edge of the acetabulum and the femoral head is divided into finite plane elements, and each of the divided plane elements Assume a vertically resisting spring on the boundary,
The friction between the elements along the boundary side is zero. Under the conditions that the displacement of the acetabulum is zero and the displacement of the cephalic plane element is only twice in the plane, the displacement parameter of the center of gravity of the plane element is used to calculate the relative displacement in the two directions to the spring. Calculate the equivalent strain energy that can be stored, determine the stress applied to each of the springs from this energy, determine the tensile force of the spring that is generating the maximum tensile force among these springs, and calculate the maximum release force that the spring has from this. Then, assuming cutting of the tension spring, the maximum release force is a new load applied to the head, and the incremental displacement of the planar element due to this load and the incremental stress exerted from this on each spring K other than the cut spring are is obtained in the same way as above, and this stress is added to the stress calculated previously, [and the stress of each spring is obtained (
Furthermore, in the same way as above, a calculation loop is performed in which the spring producing the maximum tensile force is cut and the incremental stress of other springs due to this cutting is calculated until there is no longer a spring that is subject to the tensile force, or
A dislocation diagnostic device for a hip joint, comprising: a calculator that calculates the final stress of each spring by repeating the process up to a predetermined number of times; and a display device that displays the calculation process or result of the computer.
JP56145102A 1981-09-14 1981-09-14 Method and apparatus for diagnosis of dislocation of crotch joint Granted JPS5846945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56145102A JPS5846945A (en) 1981-09-14 1981-09-14 Method and apparatus for diagnosis of dislocation of crotch joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56145102A JPS5846945A (en) 1981-09-14 1981-09-14 Method and apparatus for diagnosis of dislocation of crotch joint

Publications (2)

Publication Number Publication Date
JPS5846945A true JPS5846945A (en) 1983-03-18
JPS6411291B2 JPS6411291B2 (en) 1989-02-23

Family

ID=15377413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56145102A Granted JPS5846945A (en) 1981-09-14 1981-09-14 Method and apparatus for diagnosis of dislocation of crotch joint

Country Status (1)

Country Link
JP (1) JPS5846945A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002087444A1 (en) * 2001-04-26 2002-11-07 Teijin Limited Three-dimensional joint structure measuring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143496U (en) * 1989-05-09 1990-12-05

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002087444A1 (en) * 2001-04-26 2002-11-07 Teijin Limited Three-dimensional joint structure measuring method
AU2002251559B2 (en) * 2001-04-26 2006-05-18 Teijin Limited Three-dimensional joint structure measuring method
AU2002251559B9 (en) * 2001-04-26 2006-06-29 Teijin Limited Three-dimensional joint structure measuring method
US7664297B2 (en) 2001-04-26 2010-02-16 Teijin Limited Three-dimensional joint structure measuring method

Also Published As

Publication number Publication date
JPS6411291B2 (en) 1989-02-23

Similar Documents

Publication Publication Date Title
Skipper Andersen et al. Introduction to force-dependent kinematics: theory and application to mandible modeling
Gefen et al. Biomechanical analysis of the three-dimensional foot structure during gait: a basic tool for clinical applications
Hefzy et al. Review of knee models
US10789858B2 (en) Method for creating a computer model of a joint for treatment planning
Carey et al. Subject-specific finite element modeling of the tibiofemoral joint based on CT, magnetic resonance imaging and dynamic stereo-radiography data in vivo
Kia et al. A multibody knee model corroborates subject-specific experimental measurements of low ligament forces and kinematic coupling during passive flexion
Hosseini et al. Experimental validation of finite element analysis of human vertebral collapse under large compressive strains
Napadow et al. A biomechanical model of sagittal tongue bending
Malicky et al. Total strain fields of the antero-inferior shoulder capsule under subluxation: a stereoradiogrammetric study
Balwan et al. Development of patient specific knee joint implant
Andersen et al. A methodology to evaluate the effects of kinematic measurement uncertainties on knee ligament properties estimated from laxity measurements
Dejtiar et al. Development and evaluation of a subject-specific lower limb model with an eleven-degrees-of-freedom natural knee model using magnetic resonance and biplanar X-ray imaging during a quasi-static lunge
Gupta et al. Modal damping ratio and optimal elastic moduli of human body segments for anthropometric vibratory model of standing subjects
Vafaeian et al. Hip joint contact pressure distribution during Pavlik harness treatment of an infant hip: a patient-specific finite element model
McDonald et al. Measuring dynamic in-vivo elbow kinematics: description of technique and estimation of accuracy
JPS5846945A (en) Method and apparatus for diagnosis of dislocation of crotch joint
Devaraj et al. Comparison of biomechanical parameters between medial and lateral compartments of human knee joints
Stelletta et al. Modeling of the thigh: a 3d deformable approach considering muscle interactions
Choi Mechanical characterization of biological tissues: Experimental methods based on mathematical modeling
Yoon et al. Rapid determination of internal strains in soft tissues using an experimentally calibrated finite element model derived from magnetic resonance imaging
Chui et al. A component-oriented software toolkit for patient-specific finite element model generation
Márquez-Flórez et al. A comparison of the contact force distributions on the acetabular surface due to orthopedic treatments for developmental hip dysplasia
Reich et al. A rigid body model of the forearm
Granados Two-dimensional dynamics model of the lower limb to include viscoelastic knee ligaments
US20190015161A1 (en) System for simulation for the development and optimization of person specific surgical methods and materials: thorax simulation apparatus, system and process