JPS6410530B2 - - Google Patents

Info

Publication number
JPS6410530B2
JPS6410530B2 JP15008080A JP15008080A JPS6410530B2 JP S6410530 B2 JPS6410530 B2 JP S6410530B2 JP 15008080 A JP15008080 A JP 15008080A JP 15008080 A JP15008080 A JP 15008080A JP S6410530 B2 JPS6410530 B2 JP S6410530B2
Authority
JP
Japan
Prior art keywords
polypropylene
compound
phosphorus
catalyst
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15008080A
Other languages
Japanese (ja)
Other versions
JPS5774304A (en
Inventor
Yoshio Tajima
Mitsuharu Myoshi
Kazuo Matsura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP15008080A priority Critical patent/JPS5774304A/en
Priority to GB8132371A priority patent/GB2088391B/en
Priority to DE19813142771 priority patent/DE3142771A1/en
Publication of JPS5774304A publication Critical patent/JPS5774304A/en
Publication of JPS6410530B2 publication Critical patent/JPS6410530B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】 本発明は新規な触媒を用いて、高活性にα―オ
レフインを立体規則性よく重合または共重合する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for highly active polymerization or copolymerization of α-olefins with good stereoregularity using a novel catalyst.

α―オレフインの高立体規則性重合触媒とし
て、従来よりチタンハロゲン化物と有機アルミニ
ウム化合物からなる触媒が知られている。しか
し、この触媒系を用いた重合では高立体規則性の
重合体は得られるものの触媒活性が低いため生成
重合体中の触媒残渣を除去する必要がある。
Catalysts consisting of titanium halides and organoaluminum compounds have been known as highly stereoregular polymerization catalysts for α-olefins. However, in polymerization using this catalyst system, although a highly stereoregular polymer can be obtained, the catalyst activity is low, so it is necessary to remove catalyst residues from the produced polymer.

近年、触媒の活性を改善するための多くの提案
がなされてきている。これらの提案によれば
MgCl2などの無機固体担体に四塩化チタンを担持
させた触媒成分を用いた場合に高活性触媒となる
ことが示されている。
In recent years, many proposals have been made to improve the activity of catalysts. According to these proposals
It has been shown that a highly active catalyst can be obtained by using a catalyst component in which titanium tetrachloride is supported on an inorganic solid support such as MgCl 2 .

しかしながら、ポリオレフインの製造上、触媒
活性はできるだけ大きいことが好ましく、さら
に、重合体中のアタクチツク部分の生成量ができ
るだけ少ないことも重要である。
However, in the production of polyolefins, it is preferable that the catalyst activity be as high as possible, and it is also important that the amount of atactic moieties produced in the polymer be as small as possible.

本発明者らは、これらの点について鋭意研究し
た結果、ここに新規な触媒を見いだしたものであ
る。すなわち、本発明は新規な触媒を用いて、き
わめて高活性に高立体規則性のポリオレフインを
製造する方法に関するものであり、本発明の触媒
を用いることにより、重合時のモノマー分圧は低
く、かつ短時間の重合で生成重合体中の触媒残渣
量はきわめて少量となり、したがつてポリオレフ
イン製造プロセスにおいて触媒除去工程が省略で
き、かつ生成重合体中のアタクチツク部分の生成
量もきわめて少ないなどの多くの効果が得られ
る。
As a result of intensive research on these points, the present inventors have discovered a novel catalyst here. That is, the present invention relates to a method for producing extremely highly active and highly stereoregular polyolefin using a novel catalyst. By using the catalyst of the present invention, the monomer partial pressure during polymerization is low and Due to the short polymerization time, the amount of catalyst residue in the produced polymer is extremely small, so the catalyst removal step can be omitted in the polyolefin manufacturing process, and the amount of attic moieties produced in the produced polymer is also extremely small. Effects can be obtained.

また本発明で用いる触媒系は、MgCl2を担体と
して用いる触媒系に比べ、生成ポリマー中に含ま
れるハロゲン量がきわめて少ないという効果を有
する。
Furthermore, the catalyst system used in the present invention has the effect that the amount of halogen contained in the produced polymer is extremely small compared to a catalyst system that uses MgCl 2 as a carrier.

本発明は一般式MgX(Xはハロゲン原子を示
す)で示されるモノハロゲン化マグネシウムとハ
ロゲン化リンおよびオキシハロゲン化リンから選
ばれるリン化合物を共粉砕して得られる固体物質
に、テトラハロゲン化チタンおよび/またはテト
ラハロゲン化チタン(以下チタン化合物と略記す
る)と有機酸エステルとの付加化合物を担持せし
めて得られる固体触媒成分、および有機アルミニ
ウム化合物(以下有機金属化合物と略記する)と
有機酸エステルとの混合物あるいは付加化合物を
組み合わせてなる触媒を用いて、炭素数3〜8の
α―オレフインの重合あるいは共重合を行うこと
により、著しく高活性に高立体規則性のポリオレ
フインの製造する方法に関する。
In the present invention, titanium tetrahalide is added to a solid material obtained by co-pulverizing magnesium monohalide represented by the general formula MgX (X represents a halogen atom) and a phosphorus compound selected from phosphorus halides and phosphorus oxyhalides. and/or a solid catalyst component obtained by supporting an addition compound of titanium tetrahalide (hereinafter abbreviated as a titanium compound) and an organic acid ester, and an organic aluminum compound (hereinafter abbreviated as an organometallic compound) and an organic acid ester This invention relates to a method for producing polyolefins with extremely high activity and stereoregularity by polymerizing or copolymerizing α-olefins having 3 to 8 carbon atoms using a catalyst formed by combining a mixture with or an addition compound.

本発明においては、モノハロゲン化マグネシウ
ムとハロゲン化リンおよびオキシハロゲン化リン
から選ばれるリン化合物を共粉砕して得られる固
体物質を担体として用いることを本質とする。共
粉砕は不活性ガス雰囲気下に実質的に溶媒の不存
在下に行われる。
The essence of the present invention is to use a solid material obtained by co-pulverizing magnesium monohalide and a phosphorus compound selected from phosphorus halides and phosphorus oxyhalides as a carrier. Co-milling is carried out under an inert gas atmosphere and substantially in the absence of solvent.

この時のモノハロゲン化マグネシウムとリン化
合物の使用割合は、モノハロゲン化マグネシウム
1モルに対して、リン化合物0.01〜100モル、特
に0.1〜10モルが好ましい。
The ratio of magnesium monohalide and phosphorus compound used at this time is preferably 0.01 to 100 mol, particularly 0.1 to 10 mol, of the phosphorus compound per 1 mol of magnesium monohalide.

共粉砕に用いる装置はとくに限定はされないが
通常ボールミル、振動ミル、ロツドミル、衝撃ミ
ルなどが使用され、その粉砕方式に応じて紛砕温
度、紛砕時間などの条件は当業者にとつて容易に
定められるものである。一般的には紛砕温度は0
℃〜50℃程度でよく、粉砕時間は0.5〜50時間、
好ましくは1〜30時間である。
The equipment used for co-grinding is not particularly limited, but ball mills, vibration mills, rod mills, impact mills, etc. are usually used, and those skilled in the art can easily determine the conditions such as the grinding temperature and grinding time depending on the grinding method. It is determined. Generally, the crushing temperature is 0
The temperature is about ℃~50℃, and the grinding time is 0.5~50 hours.
Preferably it is 1 to 30 hours.

かくして得られる固体担体に、チタン化合物お
よび/またはチタン化合物と有機酸エステルとの
付加化合物を担持させることにより固体触媒成分
を得る。
A solid catalyst component is obtained by supporting a titanium compound and/or an addition compound of a titanium compound and an organic acid ester on the thus obtained solid support.

担体にチタン化合物および/またはチタン化合
物と有機酸エステルとの付加化合物を担持させる
方法としては公知の方法を用いることができる。
A known method can be used to support the titanium compound and/or the addition compound of the titanium compound and the organic acid ester on the carrier.

たとえば、固体担体を不活性な溶媒の存在下ま
たは不存在下に、過剰のチタン化合物および/ま
たはチタン化合物と有機酸エステルとの付加化合
物と加熱下に接触させることにより行なうことが
でき、好ましくは、n―ヘキサン等の不活性溶媒
の不存在下に両者を、50〜300℃、好ましくは100
〜150℃に加熱することにより行なうのが便利で
ある。反応時間はとくに限定はされないが通常は
5分以上であり、必要ではないが長時間接触させ
ることは差支えない。たとえば5分ないし10時間
の処理時間をあげることができる。もちろん、こ
の処理は酸素、および水分を絶つた不活性ガス雰
囲気下で行なわれるべきである。反応終了後未反
応のチタン化合物および/またはチタン化合物と
有機酸エステルとの付加化合物を取り除く手段は
とくに限定されるものではなく、チグラー触媒に
不活性な溶媒で数回洗浄し洗液を減圧条件下で蒸
発させ固体粉末を得ることができる。他の好まし
い方法としては、固体担体と必要量のチタン化合
物および/またはチタン化合物と有機酸エステル
との付加化合物とを共粉砕する方法を挙げること
ができる。共粉砕に用いる装置はとくに限定はさ
れないが通常ボールミル、振動ミル、ロツドミ
ル、衝撃ミルなどが使用され、通常0℃〜200℃、
好ましくは20℃〜100℃の温度で0.5時間〜30時間
共粉砕することにより本発明の触媒成分を製造す
ることができる。もちろん共粉砕操作は不活性ガ
ス雰囲気中で行なうべきであり、また湿気はでき
る限り避けるべきである。
For example, this can be carried out by bringing the solid support into contact with an excess of a titanium compound and/or an addition compound of a titanium compound and an organic acid ester under heating in the presence or absence of an inert solvent. , in the absence of an inert solvent such as n-hexane, at 50 to 300°C, preferably at 100°C.
This is conveniently done by heating to ~150°C. Although the reaction time is not particularly limited, it is usually 5 minutes or more, and long-term contact may be allowed, although it is not necessary. For example, processing times can range from 5 minutes to 10 hours. Of course, this treatment should be carried out under an inert gas atmosphere free of oxygen and moisture. After the completion of the reaction, the method for removing unreacted titanium compounds and/or adducts of titanium compounds and organic acid esters is not particularly limited, and the method of removing the unreacted titanium compound and/or the adduct of the titanium compound and the organic acid ester is not particularly limited. A solid powder can be obtained by evaporation under Another preferred method includes a method of co-pulverizing a solid support and a required amount of a titanium compound and/or an addition compound of a titanium compound and an organic acid ester. The equipment used for co-pulverization is not particularly limited, but ball mills, vibration mills, rod mills, impact mills, etc. are usually used.
The catalyst component of the present invention can be produced by co-milling preferably at a temperature of 20°C to 100°C for 0.5 to 30 hours. Of course, the co-grinding operation should be carried out in an inert gas atmosphere and moisture should be avoided as much as possible.

本発明においては、必要量のチタン化合物およ
び/またはチタン化合物と有機酸エステルとの付
加化合物を添加することにより、洗浄除去工程を
省略することができる共粉砕による方法が特に好
ましく用いられる。
In the present invention, a co-pulverization method is particularly preferably used in which the washing and removal step can be omitted by adding a required amount of a titanium compound and/or an addition compound of a titanium compound and an organic acid ester.

本発明に用いられるモノハロゲン化マグネシウ
ムとしては、モノ塩化マグネシウム、モノ臭化マ
グネシウム、モノヨウ化マグネシウムを挙げるこ
とができ、特にモノ塩化マグネシウムが好まし
い。
Examples of the magnesium monohalide used in the present invention include monomagnesium chloride, monomagnesium bromide, and monomagnesium iodide, with monomagnesium chloride being particularly preferred.

モノハロゲン化マグネシウムの製造方法として
は種々の方法が公知である。たとえばマグネシウ
ムのグリニヤール化合物(RMgX)を300℃程度
の真空下におくことによつて得られる。
Various methods are known for producing magnesium monohalide. For example, it can be obtained by subjecting a Grignard compound of magnesium (RMgX) to a vacuum of about 300°C.

2RMgX→2MgX+R2 この反応は例えばChemische Berichte 85
(1952)、593及び598〜599頁に記載されている。
本発明においてはこれらに制限されない。
2RMgX → 2MgX + R 2This reaction is e.g. Chemische Berichte 85
(1952), pp. 593 and 598-599.
The present invention is not limited to these.

本発明に用いるハロゲン化リンおよびオキシハ
ロゲン化リンから選ばれるリン化合物としては、
五塩化リン、五臭化リン、五ヨウ化リン、三塩化
リン、三臭化リン、三ヨウ化リン、オキシ三塩化
リン、オキシ三臭化リン等が挙げられるが、特に
五塩化リン、三塩化リン、オキシ三塩化リンが好
ましい。
The phosphorus compound selected from phosphorus halides and phosphorus oxyhalides used in the present invention includes:
Examples include phosphorus pentachloride, phosphorus pentabromide, phosphorus pentaiodide, phosphorus trichloride, phosphorus tribromide, phosphorus triiodide, phosphorus oxytrichloride, phosphorus oxytribromide, etc. Preferred are phosphorus chloride and phosphorus oxytrichloride.

本発明に使用されるチタン化合物としては、四
塩化チタン、四臭化チタン、四ヨウ化チタンが好
ましい。また一般式Ti(OR)nX4-n(ここでRは炭
素数1〜20のアルキル基、アリール基またはアラ
ルキル基を示し、Xはハロゲン原子を示す。mは
0<m<4である。)で示される4価のハロゲン
化アルコキシチタンを周期律表〜族金属の有
機金属化合物により還元して得られる3価のチタ
ン化合物が挙げられる。
As the titanium compound used in the present invention, titanium tetrachloride, titanium tetrabromide, and titanium tetraiodide are preferable. Also, the general formula Ti(OR ) n A trivalent titanium compound obtained by reducing a tetravalent alkoxy titanium halide represented by .

チタン化合物と有機酸エステルとの付加化合物
としては、チタン化合物:有機酸エステルのモル
比が2:1〜1:2のものが好ましい。これらの
付加化合物としてはTiCl4・C6H5COOC2H5
TiCl4・2C6H5COOC2H5、TiCl4・P―
CH3OC6H5COOC2H5、等を例示することができ
る。
The addition compound of a titanium compound and an organic acid ester preferably has a molar ratio of titanium compound:organic acid ester of 2:1 to 1:2. These addition compounds include TiCl 4・C 6 H 5 COOC 2 H 5 ,
TiCl 4・2C 6 H 5 COOC 2 H 5 , TiCl 4・P—
Examples include CH 3 OC 6 H 5 COOC 2 H 5 .

本発明において、チタン化合物の使用量は特に
制限されないが、通常固体生成物中に含まれるチ
タン化合物の量が0.5〜20重量%、好ましくは1
〜10重量%となるよう調節するのが好ましい。
In the present invention, the amount of the titanium compound used is not particularly limited, but the amount of the titanium compound contained in the solid product is usually 0.5 to 20% by weight, preferably 1% by weight.
It is preferable to adjust the amount to 10% by weight.

本発明に用いる有機金属化合物の例としては一
般式R3Al、R2AlX、RAlX2、R2AlOR、RAl
(OR)XおよびR3Al2X3の有機アルミニウム化合
物(ただしRは炭素数1〜20のアルキル基または
アリール基、Xはハロゲン原子を示し、Rは同一
でもまた異なつてもよい)があり、具体的には、
トリエチルアルミニウム、トリイソプロピルアル
ミニウム、トリイソブチルアルミニウム、トリ
sec―ブチルアルミニウム、トリtert―ブチルア
ルミニウム、トリヘキシルアルミニウム、トリオ
クチルアルミニウム、ジエチルアルミニウムクロ
リド、ジイソプロピルアルミニウムクロリド、エ
チルアルミニウムセスキクロリドおよびこれらの
混合物等があげられる。
Examples of organometallic compounds used in the present invention include general formulas R 3 Al, R 2 AlX, RAlX 2 , R 2 AlOR, RAl
There is an organoaluminum compound of (OR)X and R 3 Al 2 ,in particular,
Triethylaluminum, triisopropylaluminium, triisobutylaluminum, tri-
Examples include sec-butylaluminum, tri-tert-butylaluminum, trihexylaluminum, trioctylaluminum, diethylaluminium chloride, diisopropylaluminum chloride, ethylaluminum sesquichloride, and mixtures thereof.

本発明においては、有機金属化合物成分を、前
記有機金属化合物と有機酸エステルとの混合物あ
るいは付加化合物として用いることも特徴の1つ
である。
One of the features of the present invention is that the organometallic compound component is used as a mixture or addition compound of the organometallic compound and the organic acid ester.

この時有機金属化合物と有機酸エステルを混合
物として用いる場合には、有機金属化合物1モル
に対して、有機酸エステルを通常0.1〜1モル、
好ましくは0.2〜0.5モル使用する。また、有機金
属化合物と有機酸エステルとの付加化合物として
用いる場合は、有機金属化合物:有機酸エステル
のモル比が2:1〜1:2のものが好ましい。
At this time, when the organometallic compound and the organic acid ester are used as a mixture, the organic acid ester is usually 0.1 to 1 mole per 1 mole of the organometallic compound.
Preferably 0.2 to 0.5 mol is used. When used as an addition compound of an organometallic compound and an organic acid ester, the molar ratio of organometallic compound:organic acid ester is preferably 2:1 to 1:2.

本発明において有機金属化合物の使用量につい
ては特に制限されないが、通常チタン化合物に対
して0.1〜1000モル倍使用することができる。
In the present invention, the amount of the organometallic compound to be used is not particularly limited, but it can usually be used in an amount of 0.1 to 1000 times the amount of the titanium compound.

本発明に用いられる有機酸エステルとは、炭素
数が1〜24の飽和もしくは不飽和の一塩基性ない
し二塩基性の有機カルボン酸と炭素数1〜30のア
ルコールとのエステルである。具体的には、ギ酸
メチル、酢酸エチル、酢酸アミル、酢酸フエニ
ル、酢酸オクチル、メタクリル酸メチル、ステア
リン酸エチル、安息香酸メチル、安息香酸エチ
ル、安息香酸n―プロピル、安息香酸ジ―プロピ
ル、安息香酸、ブチル、安息香酸ヘキシル、安息
香酸シクロペンチル、安息香酸シクロヘキシル、
安息香酸フエニル、安息香酸―4―トリル、サリ
チル酸メチル、サリチル酸エチル、p―オキシ安
息香酸メチル、p―安息香酸エチル、サリチル酸
フエニル、p―オキシ安息香酸シクロヘキシル、
サリチル酸ベンジル、α―レゾルシル酸エチル、
アニス酸メチル、アニス酸エチル、アニス酸フエ
ニル、アニス酸ベンジル、o―メトキシ安息香酸
エチル、p―エトキシ安息香酸メチル、p―トル
イル酸メチル、p―トルイル酸エチル、p―トル
イル酸フエニル、o―トルイル酸エチル、m―ト
ルイル酸エチル、p―アミノ安息香酸メチル、p
―アミノ安息香酸エチル、安息香酸ビニル、安息
香酸アリル、安息香酸ベンジル、ナフトエ酸エチ
ルなどを挙げることができる。
The organic acid ester used in the present invention is an ester of a saturated or unsaturated monobasic or dibasic organic carboxylic acid having 1 to 24 carbon atoms and an alcohol having 1 to 30 carbon atoms. Specifically, methyl formate, ethyl acetate, amyl acetate, phenyl acetate, octyl acetate, methyl methacrylate, ethyl stearate, methyl benzoate, ethyl benzoate, n-propyl benzoate, di-propyl benzoate, benzoic acid. , butyl, hexyl benzoate, cyclopentyl benzoate, cyclohexyl benzoate,
Phenyl benzoate, 4-tolyl benzoate, methyl salicylate, ethyl salicylate, methyl p-oxybenzoate, ethyl p-benzoate, phenyl salicylate, cyclohexyl p-oxybenzoate,
Benzyl salicylate, ethyl α-resorcylate,
Methyl anisate, ethyl anisate, phenyl anisate, benzyl anisate, ethyl o-methoxybenzoate, methyl p-ethoxybenzoate, methyl p-toluate, ethyl p-toluate, phenyl p-toluate, o- Ethyl toluate, m-ethyl toluate, methyl p-aminobenzoate, p
- Examples include ethyl aminobenzoate, vinyl benzoate, allyl benzoate, benzyl benzoate, and ethyl naphthoate.

これらの中でも特に好ましいのは安息香酸、o
―またはp―トルイル酸またはp―アニス酸のア
ルキルエステルであり、とくにこれらのメチルエ
ステル、エチルエステルが好ましい。
Among these, benzoic acid, o
- or alkyl esters of p-toluic acid or p-anisic acid, and methyl esters and ethyl esters thereof are particularly preferred.

本発明の触媒を使用してのオレフインの重合反
応は通常のチグラー型触媒によるオレフイン重合
反応と同様にして行われる。すなわち反応はすべ
て実質的に酸素、水などを絶つた状態で、気相
で、または不活性溶媒の存在下でまたはモノマー
自体を溶媒として行われる。オレフインの重合条
件は温度は20ないし300℃、好ましくは40ないし
180℃であり、圧力は常圧ないし70Kg/cm2・G、
好ましくは2ないし60Kg/cm2・Gである。分子量
の調節は重合温度、触媒のモル比などの重合条件
を変えることによつてもある程度調節できるが、
重合系中に水素を添加することにより効果的に行
われる。もちろん、本発明の触媒を用いて、水素
濃度、重合温度など重合条件の異なつた2段階な
いしそれ以上の多段階の重合反応も何ら支障なく
実施できる。
The olefin polymerization reaction using the catalyst of the present invention is carried out in the same manner as the olefin polymerization reaction using a conventional Ziegler type catalyst. That is, all reactions are carried out substantially in the absence of oxygen, water, etc., in the gas phase, in the presence of an inert solvent, or using the monomer itself as a solvent. The polymerization conditions for olefins include a temperature of 20 to 300°C, preferably 40 to 300°C.
The temperature is 180℃, the pressure is normal pressure to 70Kg/ cm2・G,
Preferably it is 2 to 60 kg/cm 2 ·G. Molecular weight can be adjusted to some extent by changing polymerization conditions such as polymerization temperature and catalyst molar ratio.
This is effectively carried out by adding hydrogen into the polymerization system. Of course, using the catalyst of the present invention, a two-step or more multi-step polymerization reaction with different polymerization conditions such as hydrogen concentration and polymerization temperature can be carried out without any problem.

本発明においては、特に炭素数3〜8のα―オ
レフイン類を立体規則性よく重合または共重合さ
せるのに有効に用いることができる。このような
α―オレフインとしてはプロピレン、1―ブテ
ン、4―メチルペンテン―1等がある。これらの
α―オレフインにエチレン等の他のオレフインや
ジエン等を共重合することもできる。
In the present invention, it can be particularly effectively used to polymerize or copolymerize α-olefins having 3 to 8 carbon atoms with good stereoregularity. Such α-olefins include propylene, 1-butene, 4-methylpentene-1, and the like. Other olefins such as ethylene, dienes, etc. can also be copolymerized with these α-olefins.

以下に実施例をのべるが、これらは本発明を実
施するための説明用のものであつて本発明はこれ
らに制限されるものではない。
Examples will be described below, but these are for illustrative purposes to carry out the present invention, and the present invention is not limited thereto.

実施例 1 (1) 触媒成分の合成 モノ塩化マグネシウム5gと五塩化リン13.9g
を1/2インチ直径を有するステンレス製スチ
ールボールが25個入つた内容積400mlのステン
レス製ポツトに入れ、窒素雰囲気下、室温で16
時間ボールミリングを行なつた後、さらに四塩
化チタンと安息香酸エチルの1:1(モル比)
の付加化合物7.5gを添加し窒素雰囲気下、室温
で16時間ボールミリングを行なつた。ボールミ
リング後得られた固体粉末1gには37mgのチタ
ンが含まれていた。
Example 1 (1) Synthesis of catalyst components Magnesium monochloride 5g and phosphorus pentachloride 13.9g
was placed in a stainless steel pot with an internal volume of 400 ml containing 25 stainless steel balls with a diameter of 1/2 inch, and heated at room temperature under a nitrogen atmosphere for 16 hours.
After ball milling for an hour, titanium tetrachloride and ethyl benzoate were added in a 1:1 (molar ratio)
7.5 g of the adduct compound was added and ball milling was performed at room temperature for 16 hours under a nitrogen atmosphere. 1 g of solid powder obtained after ball milling contained 37 mg of titanium.

(2) 重合 2のステンレススチール製誘導撹拌機付き
オートクレーブを窒素置換しヘキサン1000mlを
入れ、トリエチルアルミニウム3ミリモル、安
息香酸エチル1ミリモルおよび前記の固体粉末
80mgを加え、さらに水素を気相分圧で0.025
Kg/cm2となるよう装入した後、撹拌しながら50
℃に昇温した。ヘキサンの蒸気圧で系は0.5
Kg/cm2・Gになるがついでプロピレンを全圧が
7Kg/cm2・Gになるまで張り込んで重合を開始
した。全圧が7Kg/cm2・Gになるようにプロピ
レンを連続的に導入し1時間重合を行なつた。
(2) Polymerization The stainless steel autoclave equipped with an induction stirrer from step 2 was purged with nitrogen, and 1000 ml of hexane was added, followed by 3 mmol of triethylaluminum, 1 mmol of ethyl benzoate, and the above solid powder.
Add 80mg and further hydrogen at a gas phase partial pressure of 0.025
After charging so that the amount is 50 kg/cm 2 ,
The temperature was raised to ℃. The vapor pressure of hexane is 0.5
Kg/cm 2 ·G, then propylene was charged until the total pressure reached 7Kg/cm 2 ·G to start polymerization. Propylene was continuously introduced so that the total pressure was 7 kg/cm 2 ·G, and polymerization was carried out for 1 hour.

重合終了後、余剰のプロピレンを排出し、冷
却、内容物を取り出し乾燥し白色粉末状のポリ
プロピレン71gを得た。溶媒可溶性ポリプロピ
レンは2.7gであつた。
After the polymerization was completed, excess propylene was discharged, cooled, and the contents were taken out and dried to obtain 71 g of white powdery polypropylene. The solvent soluble polypropylene was 2.7g.

触媒活性は140gポリプロピレン/g固体・
hr・C3H6圧、3800gポリプロピレン/gTi・
hr・C3H6圧であり、この粉末状ポリプロピレ
ンの沸とうn―ヘプタン抽出残率は94.0%で、
溶媒可溶性重合体も含め沸とうn―ヘプタンに
よる全抽出残率は90.6%であつた。
Catalytic activity is 140g polypropylene/g solid.
hr・C 3 H 6 pressure, 3800g polypropylene/gTi・
hr・C 3 H 6 pressure, and the boiling n-heptane extraction residual rate of this powdered polypropylene was 94.0%.
The total extraction residue with boiling n-heptane, including the solvent-soluble polymer, was 90.6%.

実施例 2 実施例1の(1)において四塩化チタンと安息香酸
エチルの付加化合物の代わりに四塩化チタン2.0
ml用いた以外は実施例1と同様の方法で触媒成分
を合成した。
Example 2 In (1) of Example 1, titanium tetrachloride 2.0 was used instead of the addition compound of titanium tetrachloride and ethyl benzoate.
A catalyst component was synthesized in the same manner as in Example 1 except that ml was used.

上記の触媒成分80mgと、n―ヘキサン1000ml、
トリエチルアルミニウム1モルと安息香酸エチル
1モルの付加化合物1ミリモル、およびトリイソ
ブチルアルミニウム1ミリモルを使用し実施例1
と同様の方法でプロピレンの重合を行なつたとこ
ろ、白色ポリプロピレン93gを得た。溶媒可溶性
ポリプロピレンは3.7gであつた。触媒活性は190g
ポリプロピレン/gcat・hr・C3H6圧、5140gポリ
プロピレン/gTi・hr・C3H6圧であり、粉末状
ポリプロピレンの沸とうn―ヘプタン抽出残率は
91.5%、一方溶媒可溶性重合体も含も沸とうn―
ヘプタンによる全抽出残率は88.0%であつた。
80 mg of the above catalyst components, 1000 ml of n-hexane,
Example 1 Using 1 mmol of an addition compound of 1 mol of triethylaluminum and 1 mol of ethyl benzoate and 1 mmol of triisobutylaluminum
When propylene was polymerized in the same manner as above, 93 g of white polypropylene was obtained. The solvent soluble polypropylene was 3.7g. Catalyst activity is 190g
Polypropylene/gcat・hr・C 3 H 6 pressure, 5140g polypropylene/gTi・hr・C 3 H 6 pressure, and the boiling n-heptane extraction residual rate of powdered polypropylene is
91.5%, while solvent-soluble polymers also contain n-
The total extraction residue rate with heptane was 88.0%.

実施例 3 実施例1の(1)において五塩化リンの使用量を
1.7gに、四塩化チタンと安息香酸エチルの付加化
合物の使用量を2.6gに変えた以外は実施例1と同
様にして触媒成分を合成し、実施例1と同様の方
法でプロピレンの重合を行なつたところ白色ポリ
プロピレン67gを得た。溶媒可溶性ポリプロピレ
ンは2.7gであつた。
Example 3 In (1) of Example 1, the amount of phosphorus pentachloride used was
The catalyst component was synthesized in the same manner as in Example 1, except that the amount of the addition compound of titanium tetrachloride and ethyl benzoate was changed to 2.6 g, and the polymerization of propylene was carried out in the same manner as in Example 1. As a result, 67 g of white polypropylene was obtained. The solvent soluble polypropylene was 2.7g.

触媒活性は135gポプロピレン/g固体・hr・
C3H6圧、3720gポリプロピレン/gTi・hr・C3H6
圧であり、このポリプロピレンの沸とうn―ヘプ
タン抽出残の割合は93.8%、一方溶媒可溶性重合
体も含め沸とうn―ヘプタンによる全抽出残率は
90.2%であつた。
Catalytic activity is 135g polypropylene/g solid・hr・
C 3 H 6 pressure, 3720g polypropylene/gTi・hr・C 3 H 6
The percentage of this polypropylene extracted with boiling n-heptane is 93.8%, while the total percentage of residue extracted with boiling n-heptane, including the solvent-soluble polymer, is 93.8%.
It was 90.2%.

実施例 4 実施例1の(1)において五塩化リンの使用量を
26gに、四塩化チタンと安息香酸エチルの付加化
合物の使用量を12gに変えた以外は実施例1と同
様にして触媒成分を合成し、実施例1と同様の方
法でプロピレンの重合を行なつたところ白色ポリ
プロピレン77gを得た。溶媒可溶性ポリプロピレ
ンは3.0gであつた。
Example 4 In (1) of Example 1, the amount of phosphorus pentachloride used was
The catalyst component was synthesized in the same manner as in Example 1, except that the amount of the addition compound of titanium tetrachloride and ethyl benzoate was changed to 26 g and 12 g, and propylene was polymerized in the same manner as in Example 1. 77g of white polypropylene was obtained. The solvent-soluble polypropylene was 3.0 g.

触媒活性は150gポリプロピレン/g固体・
hr・C3H6圧、4530gポリプロピレン/gTi・hr・
C3H6圧であり、この粉末状ポリプロピレンの沸
とうn―ヘプタン抽出残率は93.0%、溶媒可溶性
重合体を含めた全抽出残率は89.5%であつた。
Catalytic activity is 150g polypropylene/g solid.
hr・C 3 H 6 pressure, 4530g polypropylene/gTi・hr・
The pressure was C3H6 , and the residual rate of this powdered polypropylene after extraction with boiling n-heptane was 93.0%, and the total residual rate of extraction including the solvent-soluble polymer was 89.5%.

比較例 1 実施例1の(1)において五塩化リンを用いないこ
とおよび四塩化チタンと安息香酸エチルの付加化
合物の使用量を2.0gとしたことを除いた以外は実
施例1と同様の方法で触媒成分を合成し、実施例
1と同様の方法でプロピレンの重合を行なつたと
ころ白色ポリプロピレン10gが得られた。
Comparative Example 1 The same method as Example 1 except that in (1) of Example 1, phosphorus pentachloride was not used and the amount of the addition compound of titanium tetrachloride and ethyl benzoate was 2.0 g. A catalyst component was synthesized, and propylene was polymerized in the same manner as in Example 1, yielding 10 g of white polypropylene.

触媒活性は20gポリプロピレン/g固体・hr・
C3H6圧、530gポリプロピレン/gTi・hr・C3H6
圧であり粉末状ポリプロピレンのn―ヘプタン抽
出残率は95.0%、全抽出残率は90%であつた。
Catalytic activity is 20g polypropylene/g solids・hr・
C 3 H 6 pressure, 530g polypropylene/gTi・hr・C 3 H 6
The n-heptane extraction residue of powdered polypropylene was 95.0%, and the total extraction residue was 90%.

比較例 2 実施例1の(2)において安息香酸エチルを使用し
ないことを除いた以外は実施例1と同様にプロピ
レンの重合を行なつたところ、相当量のアダクト
により溶媒が粘性を帯び、その中に白色ポリプロ
ピレンが含まれていた。得られた白色ポリプロピ
レンは110g、溶媒可溶性ポリプロピレンは24gで
あつた。このポリプロピレンの沸とうn―ヘプタ
ン抽出残率は69%、一方、溶媒可溶性重合体も含
め沸とうn―ヘプタンによる全抽出残率は56.5%
であつた。
Comparative Example 2 When propylene was polymerized in the same manner as in Example 1 except that ethyl benzoate was not used in (2) of Example 1, the solvent became viscous due to a considerable amount of adduct. It contained white polypropylene. The obtained white polypropylene was 110 g, and the solvent-soluble polypropylene was 24 g. The boiling n-heptane extraction residue of this polypropylene is 69%, while the total extraction residue with boiling n-heptane, including solvent-soluble polymers, is 56.5%.
It was hot.

触媒活性は260gポリプロピレン/g固体・
hr・C3H6圧、6800gポリプロピレン/gTi・hr・
C3H6圧であつた。
Catalytic activity is 260g polypropylene/g solid.
hr・C 3 H 6 pressure, 6800g polypropylene/gTi・hr・
The pressure was C 3 H 6 .

比較例 3 撹拌機、玉入れコンデンサー、および温度計を
備えた300ml三つ口フラスコを十分乾燥した後、
脱水されたn―ヘプタン100mlおよびモノ塩化マ
グネシウム5g、五塩化リン13gを入れ、3時間還
流下で反応させた。反応終了後n―ヘプタンを蒸
留により除去した後、乾燥して固体17.5gを得た。
この固体5gと四塩化チタンと安息香酸エチルの
1:1(モル比)の付加化合物2gを用いて実施例
1の(1)と同様の方法で触媒成分を合成し、実施例
1と同様の方法でプロピレンの重合を行なつたと
ころ白色ポリプロピレン15gを得た。溶媒可溶性
ポリプロピレンは0.5gであつた。
Comparative Example 3 After thoroughly drying a 300ml three-necked flask equipped with a stirrer, a ball condenser, and a thermometer,
100 ml of dehydrated n-heptane, 5 g of magnesium monochloride, and 13 g of phosphorus pentachloride were added, and the mixture was reacted under reflux for 3 hours. After the reaction was completed, n-heptane was removed by distillation and then dried to obtain 17.5 g of solid.
A catalyst component was synthesized in the same manner as in Example 1 (1) using 5 g of this solid and 2 g of a 1:1 (molar ratio) addition compound of titanium tetrachloride and ethyl benzoate. Polymerization of propylene was carried out using the same method, and 15 g of white polypropylene was obtained. Solvent soluble polypropylene was 0.5g.

触媒活性は30gポリプロピレン/g固体・hr・
C3H6圧、830gポリプロピレン/gTi・hr・C3H6
圧であり、粉末状のポリプロピレンのn―ヘプタ
ン抽出残率は93.1%、全抽出残率は90.0%であつ
た。
Catalytic activity is 30g polypropylene/g solids・hr・
C 3 H 6 pressure, 830g polypropylene/gTi・hr・C 3 H 6
The n-heptane extraction residue of powdered polypropylene was 93.1%, and the total extraction residue was 90.0%.

実施例 5 実施例1の(1)においてモノ塩化マグネシウムの
代わりにモノ臭化マグネシウム8.7gを用い、また
四塩化チタンと安息香酸エチルの付加化合物の使
用量を7.0gとした以外は実施例1と同様にして触
媒成分を合成し実施例1と同様の方法でプロピレ
ンの重合を行なつたところ白色ポリプロピレン
65gを得た。溶媒可溶性ポリプロピレンは2.2gで
あつた。
Example 5 Example 1 except that in (1) of Example 1, 8.7 g of magnesium monobromide was used instead of magnesium monochloride, and the amount of the addition compound of titanium tetrachloride and ethyl benzoate was 7.0 g. A catalyst component was synthesized in the same manner as in Example 1, and propylene was polymerized in the same manner as in Example 1. White polypropylene was obtained.
Got 65g. The solvent soluble polypropylene was 2.2g.

触媒活性は130gポリプロピレン/g固体・
hr・C3H6圧、3400gポリプロピレン/gTi・hr・
C3H6圧であり、この粉末状ポリプロピレンの沸
とうn―ヘプタン抽出残率は94.1%、溶媒可溶性
重合体を含めた全抽出残率は91.0%であつた。
Catalytic activity is 130g polypropylene/g solid.
hr・C 3 H 6 pressure, 3400g polypropylene/gTi・hr・
The pressure was C3H6 , and the residual rate of this powdered polypropylene after extraction with boiling n-heptane was 94.1%, and the total residual rate of extraction including the solvent-soluble polymer was 91.0%.

実施例 6 実施例1の(2)において安息香酸エチルの代わり
にo―トルイル酸エチルを用いた以外は実施例1
と同様にプロピレンの重合を行なつたところ白色
ポリプロピレン70gを得た。溶媒可溶性ポリプロ
ピレンは2.6gであつた。
Example 6 Example 1 except that ethyl o-toluate was used instead of ethyl benzoate in (2) of Example 1.
When propylene was polymerized in the same manner as above, 70 g of white polypropylene was obtained. The solvent soluble polypropylene was 2.6g.

触媒活性は140gポリプロピレン/g固体・
hr・C3H6圧、3770gポリプロピレン/gTi・hr・
C3H6圧であり、この粉末状ポリプロピレンの沸
とうn―ヘプタン抽出残率は94.6%、溶媒可溶性
重合体を含めた全抽出残率は91.0%であつた。
Catalytic activity is 140g polypropylene/g solid.
hr・C 3 H 6 pressure, 3770g polypropylene/gTi・hr・
The pressure was C3H6 , and the residual rate of this powdered polypropylene after extraction with boiling n-heptane was 94.6%, and the total residual rate of extraction including the solvent-soluble polymer was 91.0%.

実施例 7 実施例1の(1)において五塩化リンの代わりに三
塩化リン9.2gを用い、また四塩化チタンと安息香
酸エチルの付加化合物の使用量を2.3gとした以外
は実施例1と同様の方法で触媒成分を合成し、実
施例1と同様の方法でプロピレンの重合を行なつ
たところ白色ポリプロピレン35gを得た。溶媒可
溶性ポリプロピレンは1.1gであつた。
Example 7 Same as Example 1 except that in (1) of Example 1, 9.2 g of phosphorus trichloride was used instead of phosphorus pentachloride, and the amount of the addition compound of titanium tetrachloride and ethyl benzoate was 2.3 g. A catalyst component was synthesized in the same manner as in Example 1, and propylene was polymerized in the same manner as in Example 1 to obtain 35 g of white polypropylene. The solvent-soluble polypropylene was 1.1 g.

触媒活性は70gポリプロピレン/g固体・hr・
C3H6圧、3500gポリプロピレン/gTi・hr・C3H6
圧であり、このポリプロピレンの沸とうn―ヘプ
タン抽出残率は95.1%、溶媒可溶性重合体を含め
た全抽出残率は92.0%であつた。
Catalytic activity is 70g polypropylene/g solids・hr・
C 3 H 6 pressure, 3500g polypropylene/gTi・hr・C 3 H 6
The residual ratio of this polypropylene after extraction with boiling n-heptane was 95.1%, and the total extraction ratio including the solvent-soluble polymer was 92.0%.

実施例 8 実施例1の(1)において五塩化リンの代わりにオ
キシ塩化リン10.3gを用い、また四塩化チタンと
安息香酸エチルの付加化合物の使用量を6gとし
た以外は実施例1と同様にして触媒成分を合成し
実施例1と同様の方法でプロピレンの重合を行な
つたところ、白色ポリプロピレン68gを得た。溶
媒可溶性ポリプロピレンは2.6gであつた。
Example 8 Same as Example 1 except that in (1) of Example 1, 10.3 g of phosphorus oxychloride was used instead of phosphorus pentachloride, and the amount of the addition compound of titanium tetrachloride and ethyl benzoate was 6 g. A catalyst component was synthesized, and propylene was polymerized in the same manner as in Example 1, yielding 68 g of white polypropylene. The solvent soluble polypropylene was 2.6g.

触媒活性は135gポリプロピレン/g固体・
hr・C3H6圧、3600gポリプロピレン/gTi・hr・
C3H6圧であり、このポリプロピレンの沸とうn
―ヘプタン抽出残率は94.0%、溶媒可溶性重合体
を含めた全抽出残率は90.5%であつた。
Catalytic activity is 135g polypropylene/g solid.
hr・C 3 H 6 pressure, 3600g polypropylene/gTi・hr・
C 3 H 6 pressure and the boiling point n of this polypropylene
-The heptane extraction residue rate was 94.0%, and the total extraction residue rate including the solvent-soluble polymer was 90.5%.

実施例 9 2の電磁誘導撹拌機付ステンレス製オートク
レーブを充分乾燥し、窒素で置換した後、実施例
1で使用した固体粉末25mgとトリエチルアルミニ
ウム5.0ミリモル、安息香酸エチル2ミリモルと
液状プロピレン500gを仕込み、60℃で1時間重
合を行なつた。
The stainless steel autoclave equipped with an electromagnetic induction stirrer from Example 9 2 was thoroughly dried and purged with nitrogen, and then 25 mg of the solid powder used in Example 1, 5.0 mmol of triethylaluminum, 2 mmol of ethyl benzoate, and 500 g of liquid propylene were charged. The polymerization was carried out at 60°C for 1 hour.

重合終了後、プロピレンをパージし、生成物を
取り出し、ポリマーを減圧、乾燥したところ80g
のポリプロピレンが得られた。またポリプロピレ
ンの沸とうn―ヘプタン抽出残率は88.7%であつ
た。
After the polymerization was completed, the propylene was purged, the product was taken out, and the polymer was dried under reduced pressure, yielding 80 g.
of polypropylene was obtained. The residual rate of polypropylene extracted with boiling n-heptane was 88.7%.

触媒活性は145gポリプロピレン/g固体・
hr・C3H6圧、3800gポリプロピレン/gTi・hr・
C3H6圧であつた。
Catalytic activity is 145g polypropylene/g solid.
hr・C 3 H 6 pressure, 3800g polypropylene/gTi・hr・
The pressure was C 3 H 6 .

実施例 10 実施例9のプロピレンの重合において固体粉末
30mgを使用した以外は実施例9と同様の方法でプ
ロピレンの重合を3時間行なつた。その後過剰の
プロピレンを60℃で常圧まで排出した。次いでエ
チレン20gをガスで圧入し、30分間重合を行なつ
た。重合終了後、過剰のエチレンを放出し、生成
共重合体を乾燥して320gの白色粉末状プロピレ
ン共重合体を得た。
Example 10 Solid powder in the polymerization of propylene of Example 9
Polymerization of propylene was carried out for 3 hours in the same manner as in Example 9 except that 30 mg was used. Thereafter, excess propylene was discharged to normal pressure at 60°C. Next, 20 g of ethylene was pressurized with gas, and polymerization was carried out for 30 minutes. After the polymerization was completed, excess ethylene was released and the resulting copolymer was dried to obtain 320 g of white powdery propylene copolymer.

触媒活性は160gポリマー/g固体・hr・C3H6
圧、4200gポリマー/g固体・hr・C3H6圧であつ
た。得られたブロツク共重合体中のエチレン含量
は、9.9モル%で、沸とうn―ヘプタン抽出率は
86.0%であつた。
Catalytic activity is 160g polymer/g solid・hr・C 3 H 6
The pressure was 4200 g polymer/g solids.hr.C 3 H 6 pressure. The ethylene content in the obtained block copolymer was 9.9 mol%, and the boiling n-heptane extraction rate was
It was 86.0%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法で用いる触媒の調製工程を
示すフローチヤート図である。
FIG. 1 is a flowchart showing the steps for preparing a catalyst used in the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 一般式MgX(Xはハロゲン原子を示す)で示
されるモノハロゲン化マグネシウムとハロゲン化
リンおよびオキシハロゲン化リンから選ばれるリ
ン化合物を共粉砕して得られる固体物質に、テト
ラハロゲン化チタンおよび/またはテトラハロゲ
ン化チタンと有機酸エステルとの付加化合物を担
持せしめて得られる固体触媒成分、および有機ア
ルミニウム化合物と有機酸エステルとの混合物も
しくは付加化合物を組み合わせてなる触媒を用い
て炭素数3〜8のα―オレフインの重合あるいは
共重合を行うことを特徴とするポリオレフインの
製造方法。
1 A solid substance obtained by co-pulverizing magnesium monohalide represented by the general formula MgX (X represents a halogen atom) and a phosphorus compound selected from phosphorus halide and phosphorus oxyhalide is added with titanium tetrahalide and/or Alternatively, using a solid catalyst component obtained by supporting an addition compound of titanium tetrahalide and an organic acid ester, and a catalyst formed by combining a mixture or an addition compound of an organoaluminum compound and an organic acid ester, a catalyst having 3 to 8 carbon atoms can be used. A method for producing a polyolefin, which comprises polymerizing or copolymerizing an α-olefin.
JP15008080A 1980-10-28 1980-10-28 Production of polyolefin Granted JPS5774304A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP15008080A JPS5774304A (en) 1980-10-28 1980-10-28 Production of polyolefin
GB8132371A GB2088391B (en) 1980-10-28 1981-10-27 Catalyst for preparing polyolefins
DE19813142771 DE3142771A1 (en) 1980-10-28 1981-10-28 METHOD FOR PRODUCING POLYOLEFINES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15008080A JPS5774304A (en) 1980-10-28 1980-10-28 Production of polyolefin

Publications (2)

Publication Number Publication Date
JPS5774304A JPS5774304A (en) 1982-05-10
JPS6410530B2 true JPS6410530B2 (en) 1989-02-22

Family

ID=15489070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15008080A Granted JPS5774304A (en) 1980-10-28 1980-10-28 Production of polyolefin

Country Status (1)

Country Link
JP (1) JPS5774304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230029120A (en) * 2021-08-23 2023-03-03 연세대학교 산학협력단 Method and apparatus for estimating location of a moving object and generating map using fusion of point feature and surfel feature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230029120A (en) * 2021-08-23 2023-03-03 연세대학교 산학협력단 Method and apparatus for estimating location of a moving object and generating map using fusion of point feature and surfel feature

Also Published As

Publication number Publication date
JPS5774304A (en) 1982-05-10

Similar Documents

Publication Publication Date Title
JPS6247446B2 (en)
JPH0532403B2 (en)
JPS595202B2 (en) Method for producing a catalyst component for α-olefin polymerization
JPS6410530B2 (en)
JPH0149164B2 (en)
JPS6410531B2 (en)
JPS642122B2 (en)
US4288579A (en) Process for preparing polyolefins
JPH0149286B2 (en)
JPS647085B2 (en)
JPS642123B2 (en)
JPS643207B2 (en)
JPH0134249B2 (en)
GB2104531A (en) Process for preparing polyolefins
JPS643208B2 (en)
JPH0134450B2 (en)
JPH0532404B2 (en)
JPS643204B2 (en)
JP2710804B2 (en) Method for producing polyolefin resin molded article
JPS6410529B2 (en)
JP2710796B2 (en) Method for producing polyolefin resin composition
JPS643206B2 (en)
EP0076164A1 (en) Catalyst component and process for polymerization of olefins
JPS643205B2 (en)
JPH0134446B2 (en)