JPS6410035B2 - - Google Patents

Info

Publication number
JPS6410035B2
JPS6410035B2 JP21367384A JP21367384A JPS6410035B2 JP S6410035 B2 JPS6410035 B2 JP S6410035B2 JP 21367384 A JP21367384 A JP 21367384A JP 21367384 A JP21367384 A JP 21367384A JP S6410035 B2 JPS6410035 B2 JP S6410035B2
Authority
JP
Japan
Prior art keywords
distillation column
naphtha
pipe
fraction
splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21367384A
Other languages
Japanese (ja)
Other versions
JPS6191287A (en
Inventor
Michuki Myake
Hitoshi Maruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Engineering Co Ltd
Original Assignee
Niigata Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Engineering Co Ltd filed Critical Niigata Engineering Co Ltd
Priority to JP21367384A priority Critical patent/JPS6191287A/en
Publication of JPS6191287A publication Critical patent/JPS6191287A/en
Publication of JPS6410035B2 publication Critical patent/JPS6410035B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> この発明は、主蒸留塔と前蒸留塔とを有し、更
にはスタビライザおよびスプリツタからなるナフ
サ精留系を備えた石油類の蒸留装置に関するもの
である。 更に詳しくは、前蒸留塔の蒸留性能に応じた最
適な各種ナフサ精留系構成を適宜採用することが
できるようにした石油類の蒸留装置に関するもの
である。 この明細書中で石油類とは、代表的には原油を
意味するが、一般的に蒸留によりLPG、ナフサ
を得ることができる石油系の化合物を総称する。 <従来の技術> 原油を常圧で蒸留して各種留分を取出すための
装置としては、従来から各種のものが考えられて
いるが、その一つとして、主蒸留塔の前に前蒸留
塔を設置し、熱回収系で予熱された原油から
LPGとナフサ(軽質+重質)との混合留分の一
部を前蒸留塔で蒸留して、スタビライザおよびス
プリツタからなるナフサ精留系に直接この前蒸留
塔の塔頂留分を主蒸留塔の塔頂留分と共に送るよ
うにした原油常圧蒸留装置がある。この装置を第
10図および第11図の工程図に基づいて説明す
ると、まず第10図に示したように、原油は主蒸
留塔30の側線還流30a、各留分30c,30
d、および塔底残油30c等を熱源とする一つ以
上の熱交換器群E1,E2からなる熱回収系で予
熱された後、前蒸留塔20へ供給される。これら
各熱交換器群は、原油を1つ以上の熱源に対して
順次熱交換する方式(ワンスルー型)、熱源の数
に応じて分配し、各熱源と熱交換後に合流させる
方式(スプリツト型)またはそれらの組合せ方式
によつて配列された熱交換器の集まりである。前
蒸留塔20は、側線還流方式、塔頂外部還流方式
或いは両者の併用方式といつた還流機構を具備し
ている。側線還流方式を採用する場合には、図示
したように側線還流20aの熱を熱回収系熱源と
して利用することができる。前蒸留塔20におけ
る原油の精留に要する熱は、熱回収系における原
油予熱により原油によつて持ち込まれる熱で通常
は十分であり、前蒸留塔用のリボイラは特に必要
としない。図示していないが、前蒸留塔の精留効
果を高めるために、必要に応じてストリツピング
スチームが前蒸留塔塔底部に導入される。熱回収
系熱交換器群E1,E2で予熱された原油は、前
蒸留塔20で精留され、塔頂からLPG・ナフサ
混合留分の一部である前蒸留塔塔頂留分20fが
取出される一方、前蒸留塔塔底残油20eは熱回
収系熱交換器群E3を経て加熱炉70で更に加熱
された後、主蒸留塔30へ供給される。主蒸留塔
30においては、異なる沸点範囲を持つ各種留分
30c,30dに順次蒸留されて、主蒸留塔塔頂
からは前蒸留塔で取出されなかつたLPG・ナフ
サ留分の残部である主蒸留塔塔頂留分30fが取
出され、主蒸留塔塔底からは残油30eが得られ
る。 前蒸留塔20と主蒸留塔30の塔頂部機構はい
ずれも、コンデンサ21,31と塔頂受槽22,
32とを備えた塔頂還流系からなり、前蒸留塔と
主蒸留塔のそれぞれの塔頂部機構で凝縮された
LPG・ナフサ混合留分20f,30fは、第1
1図に示したように混合されてナフサ精留系へ送
られ、まずスタビライザ40でLPGとナフサに
分けられた後、ナフサ留分は更にスプリツタ50
に送られて軽質ナフサと重質ナフサに分けられ
る。第11図中、符号F1およびF2はそれぞれ
スタビライザ40およびスプリツタ50の塔頂還
流経路を示し、いずれもコンデンサ、塔頂受槽お
よびポンプを含んでいる。 また、図示していないが前蒸留塔、主蒸留塔、
スタビライザおよびスプリツタは、それぞれ受槽
の頂部に塔の運転圧力調整用ガス抜き配管や調整
弁が設けられている。 上記したごとき原油常圧蒸留装置においては、
前蒸留塔20へ供給される原油の予熱温度は、前
蒸留塔塔頂よりLPGとナフサ(軽質+重質)留
分の一部が得られ、且つその留分に混入する灯油
留分の量がナフサ精留系から得られる重質ナフサ
の製品仕様を損わない程度であるような精留が前
蒸留塔で達成できる温度とすることが前提とな
る。また、前蒸留塔20における運転圧力は、原
油の油種や予熱温度等で多少異なるが通常1〜5
Kg/cm2Gの範囲で運転される。 ところで、ナフサ精留系におけるスタビライザ
40およびスプリツタ50はいずれも、蒸留操作
に必要な熱の大部分を第11図に示したようにリ
ボイラー41,51による加熱により得ており、
リボイラーの熱源は第10図に示したように通常
主蒸留塔30の塔底残油30eあるいは側線還流
30bの一部が使用されている。第10図におい
ては、スタビライザ40のリボイラー41の熱源
を主蒸留塔塔底からの残油30eとし、スプリツ
タ50のリボイラー51の熱源を主蒸留塔の側線
還流30bとしているが、両者のリボイラー共に
主蒸留塔塔底残油30eを熱源とするように配置
したり、更には主蒸留塔の塔側からの留分30
c,30dをこれらリボイラーの熱源として利用
することもある。 しかしながら、ナフサ精留系におけるスタビラ
イザおよびスプリツタでの各リボイラーによる加
熱温度、換言すればリボイラーの所要熱量は、ス
タビライザやスプリツタへ供給されるLPG・ナ
フサ留分の処理量によつて変動し、必ずしも一定
でない。スタビライザやスプリツタでの処理量
は、主として前蒸留塔および主蒸留塔における蒸
留性能、特に前蒸留塔における塔頂収率および精
留度に依存し、これらの変動に伴つてスタビライ
ザやスプリツタで処理すべきLPG・ナフサ留分
の量も変動し、処理量が少なくなればスタビライ
ザやスプリツタのリボイラー所要熱量も少なくて
済むのである。 一方、前蒸留塔における精留度は、原油種や前
蒸留塔に供給される原油予熱温度によつて変化
し、この変化に伴つて前蒸留塔塔頂留分や主蒸留
塔塔頂留分の収量や組成も変化するため、第11
図に示したように両者を混合してナフサ精留系へ
送ることが必ずしもスタビライザおよびスプリツ
タでの処理量を低減させるために適切でない場合
もあり、両者を混合せずにそれぞれ別個にスタビ
ライザまたはスプリツタへ供給する方がスタビラ
イザやスプリツタでの処理量を低減させるために
望ましい場合も生じてくる。 前述した従来のナフサ精留系(第11図)は、
前蒸留塔塔頂留分と主蒸留塔塔頂留分とを混合し
た後スタビライザへ送る場合のみの構成となつて
おり、前蒸留塔の精留度の変化に応じてスタビラ
イザまたはスプリツタでの処理量を最小限にでき
るような最適なナフサ精留系の構成を選択するこ
とによつて、スタビライザやスプリツタのリボイ
ラー所要熱量を必要最小限に抑えることができな
いという欠点がある。 <発明が解決しようとする問題点> そこでこの発明は、前述した如き従来の原油常
圧蒸留装置において、前蒸留塔および主蒸留塔の
蒸留性能の変化に応じて、換言すればナフサ精留
系で処理するLPG・ナフサ留分の処理量やその
組成の変化に応じて、最適なナフサ精留系の構成
を選択すことによつて、スタビライザおよびスプ
リツタの処理量を調節すると共に、スタビライザ
およびスプリツタのリボイラー所要熱量を必要最
小限に抑えることができ、リボイラー熱源の余剰
熱量を他の熱回収系に振り向けて装置全体として
省エネルギ化を図ることのできる原油常圧蒸留装
置を提供することを目的としてなされたものであ
る。 <問題点を解決するための手段> 上記の目的を達成するために、本発明者等はま
ず、前蒸留塔において原油の油種や運転条件の変
化によつてその精留度が変動した場合のそれぞれ
について、スタビライザおよびスプリツタのリボ
イラー所要熱量を必要最小限に抑えることのでき
るナフサ精留系の最適構成を検討した。 ここで前蒸留塔の精留度について述べるなら
ば、前蒸留塔の精留度は一般にその蒸留塔のトレ
イ段数と内部還流量により左右されるものであ
り、このうちトレイ段数は塔建設時に決められて
しまうから、運転面で精留度に変化を及ぼす条件
は内部還流量であるといえる。この内部還流量は
(i)供給原油の持ち込み熱量(原油予熱系での予熱
量)、(ii)原油供給量に対する塔頂留分抜出し量の
割合、および(iii)コンデンサ、側線還流等の除熱量
の三つの要素により決められる。 この前蒸留塔の精留度を例を挙げて説明する
と、例えば第2図に示したような原油種A
(LPG・ナフサ留分は対原油19.9vol%)のLPG・
ナフサ留分の一部(対原油11vol%)をマイルド
に(粗く)精留して前蒸留塔塔頂留分として抜出
すべく設計された前蒸留塔を想定する。この場
合、前蒸留塔塔底残油中にはLPG留分が一部混
在することになる。かような前蒸留塔で第3図に
示したような原油種B(LPG・ナフサ留分は対原
油9.3vol%)を同量処理した場合には、LPG・ナ
フサ留分が少ないため塔頂抜出し量も少なく運転
することになり(塔頂留分:対原油5vol%)、コ
ンデンサ能力を同じに発揮させるとすれば相対的
に内部還流が増大し、精留度が向上して第3図の
ように前蒸留塔塔底残油中にLPG留分が存在し
ないような精留が可能となる。更に、第4図に示
したように塔頂抜出し量を減らせば(塔頂留分:
対原油3vol%)、精留度が一層向上し、塔頂留分
中に重質ナフサ留分を混在させないようにするこ
とも可能である。 本発明者等は上述したように前蒸留塔の精留度
が原油種や運転条件によつて変動した場合に、前
蒸留塔および主蒸留塔の塔頂留分や塔底残油の組
成がどのように変化するかを調べ、特定の前蒸留
塔精留度の場合には、それに応じた特定のナフサ
精留系の構成とすることによつて、スタビライザ
およびスプリツタのリボイラー所要熱量を低減さ
せうることを見出した。 以下に前蒸留塔の精留度とそれに対応した最適
なナフサ精留系構成を列挙する。なお、いずれの
場合にも前蒸留塔塔底残油は従来と同様に熱回収
系熱交換器および加熱炉を経て更に加熱された
後、主蒸留塔へ供給される。 (1) 前蒸留塔の精留度 塔頂よりLPG留分と軽質ナフサ留分の一部
とを得、塔底残油中にはLPG留分が比較的多
量に存在する場合。 ナフサ精留系構成60(第5図) 主蒸留塔塔頂留分30fを直接スプリツタ5
0へ供給し、スプリツタ塔底より重質ナフサ製
品を得る。スプリツタ塔頂より得られる軽質ナ
フサ留分中には、軽質ナフサ製品許容量を上回
るLPG留分を含んでいるためそのまま軽質ナ
フサ製品とすることはできないから、前蒸留塔
塔頂留分20fと合せてスタビライザ40へ供
給し、スタビライザ塔頂よりLPGを、塔底よ
り軽質ナフサ製品を得る。 この構成によりスプリツタおよびスタビライ
ザとも従来構成(第11図)に比べて処理量が
低減し、その結果、それぞれのリボイラー5
1,41(第5図には図示を省略)の所要熱量
を減少させることができる。 (2) 前蒸留塔の精留度 前記よりも良好な精留度となり、塔頂より
LPG留分と軽質ナフサ留分の一部とを得、塔
底残油中にはLPG留分が比較的少量しか存在
しない場合。 ナフサ精留系の構成60(第6図) 主蒸留塔塔頂留分30fを直接スプリツタ5
0へ供給し、スプリツタ塔底より重質ナフサ製
品を、塔頂より軽質ナフサ製品を得る。スプリ
ツタ塔頂よりの軽質ナフサ留分には、軽質ナフ
サ製品許容量を上回る程のLPG留分を含んで
いないため、これをそのまま軽質ナフサ製品と
することができるのである。一方、前蒸留塔塔
頂留分20fをスタビライザ40へ供給し、塔
頂よりLPGを得、塔底から得られる軽質ナフ
サ留分はスプリツタ塔頂からの軽質ナフサと合
せて軽質ナフサ製品とする。 この構成により、スプリツタおよびスタビラ
イザとも従来構成(第11図)に比べて処理量
が低減し、その結果、それぞれのリボイラー5
1,41(第6図には図示を省略)の所要熱量
を減少させることができる。 (3) 前蒸留塔の精留度 塔頂よりLPG留分と軽質ナフサ留分と重質
ナフサ留分の一部とを得、塔底残油中には軽質
ナフサ留分が比較的多量に存在する場合。 ナフサ精留系の構成60(第7図) 前蒸留塔塔頂留分20fをスタビライザ40
へ供給し、スタビライザ塔頂よりLPGを、塔
底よりナフサ(軽質+重質)留分を得る。主蒸
留塔塔頂より得られる重質ナフサ留分30f中
には、重質ナフサ製品許容量を上回る軽質ナフ
サ留分を含んでいるためそのまま重質ナフサ製
品とすることができないから、スタビライザ塔
底留分と合わせてスプリツタ50へ供給し、ス
プリツタ塔頂より軽質ナフサ製品を、塔底より
重質ナフサ製品を得る。 この構成によりスタビライザ40の処理量が
従来構成(第11図)に比べて低減し、その結
果スタビライザのリボイラー41(第7図には
図示を省略)の所要熱量を減少させることがで
きる。 (4) 前蒸留塔の精留度 前記よりも良好な精留度となり、塔頂より
LPG留分と軽質ナフサ留分と重質ナフサ留分
の一部とを得、塔底残油中には軽質ナフサ留分
が比較的少量しか存在しない場合。 ナフサ精留系の構成60(第8図) 前蒸留塔塔頂留分20fをスタビライザ40
へ供給し、スタビライザ塔頂よりLPGを、塔
底よりナフサ(軽質+重質)留分を得る。スタ
ビライザ塔底留分をスプリツタ50へ供給し、
塔頂より軽質ナフサ製品を、塔底より重質ナフ
サ製品を得る。主蒸留塔塔頂より得られる重質
ナフサ留分30f中には、重質ナフサ製品許容
量を上回る程の軽質ナフサ留分を含んでいない
ため、これをそのままスプリツタ塔底留分と合
わせて重質ナフサ製品とする。 この構成により、スプリツタおよびスタビラ
イザとも従来構成(第11図)に比べて処理量
が低減し、その結果、それぞれのリボイラー5
1,41(第8図には図示を省略)の所要熱量
を減少させることができる。 (5) 前蒸留塔の精留度 軽質ナフサ留分と重質ナフサ留分とを精留度
良く分離でき、従つて、塔頂よりLPG留分と
軽質ナフサ留分とを得、塔底残油中には軽質ナ
フサ留分が実質的に含まれない場合。 ナフサ精留系の構成60(第9図) 前蒸留塔塔頂留分20fをスタビライザ40
へ供給し、スタビライザ塔頂よりLPGを、塔
底より軽質ナフサ製品を得る。主蒸留塔塔頂留
分30fは実質的に重質ナフサ留分のみである
ため、これをそのまま重質ナフサ製品とする。 この構成により、スプリツタ50は不要とな
り、スプリツタのリボイラー51熱量は全く不
要となる。更に、スタビライザ40の処理量も
従来構成(第11図)に比べて低減し、その結
果、スタビライザのリボイラー41(第9図に
は図示を省略)の所要熱量を減少させることが
できる。 上記したナフサ精留系の構成〜のうち、現
在日本で処理されている原油の性状およびそれに
対応して設置されている既設前蒸留塔の能力を考
慮すると、既設蒸留装置を改造する等に際して
は、構成とを採用することは必ずしも必要で
ない場合がある。 しかしながらいずれにしろ、前記構成〜は
前蒸留塔の精留度のそれぞれに応じて採用される
個別のナフサ精留系構成であり、いずれか1つの
前蒸留塔の精留度を想定して、それに対応した最
適な一つのナフサ精留系構成を決めて装置設計し
た場合には、製品構成の異なる他油種の原油を処
理するときにはそれぞれの条件に最適なナフサ精
留系構成を選定することができない。 そこでこの発明は、前述したような前蒸留塔の
蒸留条件の変化に応じて最適なナフサ精留系構成
を選択採用することができるようになしたもので
ある。 すなわちこの発明は、前蒸留塔と主蒸留塔とス
タビライザおよびスプリツタを有するナフサ精留
系とを具備し、前蒸留塔の塔底残油を主蒸留塔で
蒸留し、前蒸留塔の塔頂留分および主蒸留塔の塔
頂留分をナフサ精留系で処理してLPG、軽質ナ
フサおよび重質ナフサを得る石油類の蒸留装置に
おいて、前記ナフサ精留系に、スタビライザへの
導入管と、スプリツタへの導入管と、スタビライ
ザ塔頂留分をLPG取出管へ導く配管と、スタビ
ライザ塔底留分を軽質ナフサ取出管または前記ス
プリツタ導入管へ選択的に導く配管と、スプリツ
タ塔頂留分を前記スタビライザ導入管または前記
軽質ナフサ取出管へ選択的に導く配管と、スプリ
ツタ塔底留分を重質ナフサ取出管へ導く配管と、
前記前蒸留塔塔頂留分を前記スタビライザ導入管
へ導く配管と、前記主蒸留塔塔頂留分を前記スプ
リツタ導入管に導く配管とを設けたことを特徴と
するものである。 上記したこの発明によれば、ナフサ精留系の構
成〜を選択採用できるようにしたものであ
り、構成とについては選択採用することはで
きない。構成ととを選択採用できるようにす
るには、上記した主蒸留塔塔頂留分をスプリツタ
導入管に導く配管を、主蒸留塔塔頂留分をスプリ
ツタ導入管または重質ナフサ取出管へ選択的に導
く配管とすればよい。 <実施例> 以下にこの発明の実施例を図面を参照して詳述
する。第1図は前蒸留塔20、主蒸留塔30、ス
タビライザ40とスプリツタ50とを有するナフ
サ精留系60からなるこの発明の蒸留装置を概念
的に示す図面であり、熱回収系熱交換器群、加熱
炉、スタビライザおよびスプリツタのリボイラ
ー、各蒸留塔の留出管や側線還流経路、およびそ
れらの配管等は第10図、第11図の従来装置と
実質的に同じであるため図示を省略し、あるいは
第10図、第11図と同じ参照符号を付すことに
より説明を省略する。 熱回収系熱交換器群(図示せず)で予熱された
原油は前蒸留塔20に導入され、前蒸留塔塔頂留
分と塔底残油に分けられ、前蒸留塔塔底残油は熱
交換器群と加熱炉(いずれも図示せず)を経て主
蒸留塔30へ供給される。 前蒸留塔20塔頂留分はコンデンサ21、塔頂
受槽22、ポンプ23を経て配管1によりスタビ
ライザ40へ導かれる。主蒸留塔30塔頂留分は
同様にコンデンサ31、塔頂受槽32、ポンプ3
3を経てバルブV2を有する配管2によりスプリ
ツタ50へ導かれる。スタビライザ塔頂留分は塔
頂還流経路F1を経て配管3からLPGとして取
出される。スプリツタ塔頂留分は塔頂還流系経路
F2を経て、バルブV4を有する配管4から軽質
ナフサ製品として取出されるか、あるいはバルブ
V4上流からバルブV5を有する配管5によつて
配管1へ合流される。スプリツタ塔底留分は配管
6から重質ナフサ製品として取出される。スタビ
ライザ塔底留分は、バルブV7を有する配管7に
よつて配管4のバルブV4の下流へ合流される
か、あるいはバルブV8を有する配管8によつて
配管2のバルブV2下流へ合流される。主蒸留塔
塔頂留分は、バルブV9を有する配管9によつて
配管2のバルブV2の上流から配管6へ導くこと
もできる。 なお、配管2のバルブV2の上流と配管1とを
バルブV10を介して結ぶ配管10は、第11図
に示した従来のナフサ精留系構成を与えるための
ものであり、この発明においては必ずしも必要で
はない。 上記したような配管系とバルブ切換によつて、
前述したナフサ精留系の構成〜を選択するこ
とができるのである。すなわち、 構成(第5図)とする場合 開にするバルブ:V2,V5,V7 閉にするバルブ:V4,V8,V9,V10 構成(第6図)とする場合 開にするバルブ:V2,V4,V7 閉にするバルブ:V5,V8,V9,V10 構成(第7図)とする場合 開にするバルブ:V2,V4,V8 閉にするバルブ:V5,V7,V9,V10 構成(第8図)とする場合 開にするバルブ:V4,V8,V9 閉にするバルブ:V2,V5,V7,V10 構成(第9図)とする場合 開にするバルブ:V7,V9、 閉にするバルブ:V2,V4,V5,V8,V
10 なお、第11図の如き従来のナフサ精留系構成
にする場合には、バルブV8,V10,V4を開
とし、バルブV2,V5,V7,V9を閉とすれ
ばよい。 上記のようにしてナフサ精留系の構成〜を
前蒸留塔の精留度に応じて選択採用することによ
つて、スタビライザおよびスプリツタにおける処
理量の低減およびリボイラー所要熱量の低減が図
れるのである。 スタビライザおよびスプリツタのリボイラー熱
源は、従来のナフサ精留系(第11図)における
と同様に主蒸留塔の側線還流や塔底残油から得ら
れるが、例えば第11図に示した三方弁42,5
2と温度コントロールTCのような構成により、
この発明の採用によつて得られるリボイラー熱源
低減に伴う余剰熱量を、熱回収系熱交換器群へ振
り向けることができる。 上記実施例では、ナフサ精留系の構成〜を
選択採用できるようにしたが、前述した理由か
ら、構成〜のみを選択採用できるようにして
もよく、この場合には第1図の配管9およびバル
ブV9は不要となる。 ここで主蒸留塔の塔頂部について述べると、第
1図に示した如く、主蒸留塔30塔頂より発生す
る蒸気はコンデンサ31でその一部または全部を
凝縮させた後、塔頂受槽32にて気液分離され、
その一部または全部が塔頂製品として抜出され
る。一般に、コンデンサ31における塔頂蒸気の
凝縮の度合は、蒸気の組成、温度、圧力、更には
コンデンサ能力により定まるが、圧力をパラメー
ターとすれば、圧力が高いほど塔頂蒸気の露点お
よび凝縮液の沸点温度は共に高くなり、塔頂蒸気
の一部のみを凝縮させる場合には、凝縮液量が増
加する。また、コンデンサ31に用いる冷媒は入
手し易く且つ安価な空気や冷却水を単独または併
用するのが一般的であるが、両冷媒とも供給温度
が夏場には30℃にも達するため、凝縮蒸気と冷媒
との有効温度差が減少する。 以上の観点から、塔頂受槽32を含めて主蒸留
塔30操作圧力は通常次の二つの要素を考慮して
決定される。 (i) 塔頂蒸気の一部のみを凝縮させる場合には、
塔頂液製品として回収されるべき留分の収量お
よび性状の確保。 (ii) コンデンサ用冷媒供給温度の季節変化により
生ずる凝縮蒸気側との有効温度差の変動に対す
るコンデンサ能力の確保。 しかるに前蒸留塔20を具備しない場合の主蒸
留塔30においては、主蒸留塔の塔内蒸気中に水
分を含み、これが塔内で凝縮を起すと塔内腐食の
原因となるため、上記一般的要素(i)、(ii)の他に水
分凝縮による塔内腐食防止も考慮して、主蒸留塔
操作圧力は塔頂部において0.5Kg/cm2G以上の加
圧下とするのが通例である。 しかしながら、上記実施例の装置におけるよう
に、主蒸留塔30の前段に前蒸留塔20を設置す
る場合には、原油中の軽質分の一部が前蒸留塔で
取除かれるため、前蒸留塔を設置しない場合にお
けるような上記した如き加圧下で主蒸留塔を操作
すると、主蒸留塔の塔頂蒸気の温度が相対的に高
くなる傾向が見られる。従つて前蒸留塔を設置す
るこの発明においては、主蒸留塔操作圧を比較的
低くしても、前蒸留塔を設置しない場合の主蒸留
塔塔頂蒸気の温度レベルと同程度にすることがで
きる。具体的にはコンデンサの圧力損失を考慮し
て塔頂圧にて最低0.1Kg/cm2Gまで主蒸留塔操作
圧を下げることが可能である。かような圧力であ
れば、主蒸留塔の塔内圧により塔頂留分を流出さ
せることができる。主蒸留塔操作圧の調整は、例
えば第1図の主蒸留塔30の塔頂受槽32とガス
抜き配管34のバルブ35との間の圧力調整手段
PCにより行なうことができる。 上記したごとく比較的低い操作圧で主蒸留塔を
運転することによつて、非揮発度が大きくなり蒸
留効果が高まるので、蒸留に要求される加熱量を
低減させることができ、従つて主蒸留塔の加熱炉
負荷を低減されることが可能となる。 <発明の効果> 以上説明したように、この発明によれば前蒸留
塔の精留度に応じてナフサ精留系のスタビライザ
およびスプリツタでの処理量を最小限にできるよ
うな最適なナフサ精留系の構成を選択することが
でき、それによりスタビライザやスプリツタのリ
ボイラー所要熱源を必要最小限に抑えることがで
きる。その結果、リボイラー熱源の余剰熱量を例
えば原油予熱に振り向けることが可能となり、そ
れにより主蒸留塔の加熱炉負荷を一層低減させる
ことができる。以下に実験例を挙げてこの発明の
効果を具体的に説明する。 実験例 前蒸留塔、主蒸留塔およびナフサ精留系を具備
した100000BPSD(バーレル/日)の原油常圧蒸
留装置において、100000BPSDで中東系原油を処
理し、ナフサ精留系として第1図の如きこの発明
の装置を用いて、前蒸留塔の精留度に応じて最適
なナフサ精留系構成〜を採用した場合と、従
来のナフサ精留系(第11図)を用いた場合とに
ついて、それぞれスタビライザおよびスプリツタ
の処理量、リボイラー熱量を比較し、リボイラー
熱量低減量とそれに伴う主蒸留塔加熱炉燃料低減
利益、原油予熱系回収熱量増加に伴う必要伝熱面
積増加による熱交換器建設コスト増を求めた。結
果を下表に示す。 この表から、この発明を採用して熱交換器建設
コストが最高4400万円増加し、主蒸留塔加熱炉燃
料低減による利益が最低の10100万円/年である
場合でも、装置コスト増に対する省エネルギ効果
が十分に発揮されることが認められる。
<Industrial Application Field> The present invention relates to a petroleum distillation apparatus that has a main distillation column and a pre-distillation column, and is further equipped with a naphtha rectification system consisting of a stabilizer and a splitter. More specifically, the present invention relates to a petroleum distillation apparatus that can appropriately adopt various naphtha rectification system configurations depending on the distillation performance of a pre-distillation column. In this specification, petroleum typically means crude oil, but generally refers to petroleum-based compounds from which LPG and naphtha can be obtained by distillation. <Prior art> Various types of equipment have been considered for distilling crude oil at normal pressure to extract various fractions. from crude oil preheated by a heat recovery system.
Part of the mixed fraction of LPG and naphtha (light + heavy) is distilled in a pre-distillation column, and the top fraction of the pre-distillation column is directly transferred to the naphtha rectification system consisting of a stabilizer and a splitter to the main distillation column. There is an atmospheric distillation unit for crude oil that is sent together with the overhead fraction. This apparatus will be explained based on the process diagrams of FIGS. 10 and 11. First, as shown in FIG.
After being preheated in a heat recovery system consisting of one or more heat exchanger groups E1 and E2 using the bottom oil 30c and the like as a heat source, it is supplied to the pre-distillation column 20. Each of these heat exchanger groups has a method in which crude oil is sequentially exchanged heat with one or more heat sources (one-through type), and a method in which crude oil is distributed according to the number of heat sources and merged with each heat source after heat exchange (split type). Alternatively, it is a collection of heat exchangers arranged in a combination manner. The pre-distillation column 20 is equipped with a reflux mechanism such as a side line reflux system, an external reflux system at the top, or a combination of both. When the side line reflux system is adopted, the heat of the side line reflux 20a can be used as a heat source for the heat recovery system, as shown in the figure. The heat required for the rectification of crude oil in the pre-distillation column 20 is normally the heat brought in by the crude oil by preheating the crude oil in the heat recovery system, and a reboiler for the pre-distillation column is not particularly required. Although not shown, stripping steam is introduced into the bottom of the pre-distillation column as needed in order to enhance the rectification effect of the pre-distillation column. The crude oil preheated by the heat recovery system heat exchanger groups E1 and E2 is rectified in the pre-distillation column 20, and the pre-distillation column top fraction 20f, which is a part of the LPG/naphtha mixed fraction, is taken out from the top of the column. On the other hand, the pre-distillation column bottom residual oil 20e is further heated in the heating furnace 70 via the heat recovery system heat exchanger group E3, and then supplied to the main distillation column 30. In the main distillation column 30, various fractions 30c and 30d having different boiling point ranges are sequentially distilled, and from the top of the main distillation column are the remaining LPG/naphtha fractions that were not taken out in the previous distillation column. A column overhead fraction 30f is removed, and a residual oil 30e is obtained from the main distillation column bottom. The top mechanisms of both the pre-distillation column 20 and the main distillation column 30 include condensers 21 and 31, a top receiving tank 22,
It consists of an overhead reflux system equipped with 32, and the condensed water is
The LPG/naphtha mixed fractions 20f and 30f are
As shown in Figure 1, they are mixed and sent to the naphtha rectification system, first separated into LPG and naphtha by a stabilizer 40, and then the naphtha fraction is further passed to a splitter 50.
The naphtha is then sent to the US and separated into light naphtha and heavy naphtha. In FIG. 11, symbols F1 and F2 indicate the top reflux paths of the stabilizer 40 and the splitter 50, respectively, and both include a condenser, a top receiving tank, and a pump. Although not shown, a pre-distillation column, a main distillation column,
The stabilizer and splitter are each provided with a gas vent pipe and a regulating valve for adjusting the operating pressure of the tower at the top of the receiving tank. In the crude oil atmospheric distillation equipment as described above,
The preheating temperature of the crude oil supplied to the pre-distillation column 20 is determined by the amount of LPG and naphtha (light + heavy) fractions obtained from the top of the pre-distillation column and the amount of kerosene fraction mixed into the fractions. The premise is that the temperature is such that rectification can be achieved in the pre-distillation column at a level that does not impair the product specifications of the heavy naphtha obtained from the naphtha rectification system. In addition, the operating pressure in the pre-distillation column 20 varies slightly depending on the type of crude oil, preheating temperature, etc., but is usually 1 to 5.
It is operated in the range of Kg/cm 2 G. By the way, in both the stabilizer 40 and the splitter 50 in the naphtha rectification system, most of the heat required for the distillation operation is obtained through heating by the reboilers 41 and 51, as shown in FIG.
As shown in FIG. 10, the heat source of the reboiler is usually the bottom residue 30e of the main distillation column 30 or a part of the side line reflux 30b. In FIG. 10, the heat source of the reboiler 41 of the stabilizer 40 is the residual oil 30e from the bottom of the main distillation column, and the heat source of the reboiler 51 of the splitter 50 is the side line reflux 30b of the main distillation column. The bottom oil 30e of the distillation column may be arranged as a heat source, or the distillation column 30e from the column side of the main distillation column may be used as a heat source.
c, 30d may be used as a heat source for these reboilers. However, the heating temperature by each reboiler in the stabilizer and splitter in a naphtha rectification system, in other words, the amount of heat required for the reboiler, varies depending on the throughput of LPG/naphtha fraction supplied to the stabilizer and splitter, and is not necessarily constant. Not. The throughput of the stabilizer or splitter depends mainly on the distillation performance of the pre-distillation column and the main distillation column, especially the top yield and fractionation degree of the pre-distillation column. The amount of LPG and naphtha fraction to be processed also changes, and if the amount to be processed is reduced, the amount of heat required for the stabilizer and splitter reboiler will also be reduced. On the other hand, the degree of rectification in the pre-distillation column changes depending on the crude oil type and the preheating temperature of the crude oil supplied to the pre-distillation column, and as a result of this change, the fraction at the top of the pre-distillation column and the top fraction of the main distillation column are Since the yield and composition of the
As shown in the figure, it is not always appropriate to mix the two and send them to the naphtha rectification system in order to reduce the throughput in the stabilizer and splitter. In some cases, it is desirable to supply the stabilizer to the stabilizer or splitter in order to reduce the throughput of the stabilizer or splitter. The conventional naphtha rectification system (Figure 11) described above is
It is configured only when the top fraction of the pre-distillation column and the top fraction of the main distillation column are mixed and then sent to the stabilizer, and depending on the change in the degree of rectification in the pre-distillation column, processing is performed in the stabilizer or splitter. There is a drawback in that it is not possible to minimize the amount of heat required for the reboiler of the stabilizer and splitter by selecting the optimal configuration of the naphtha rectification system that can minimize the amount of naphtha. <Problems to be Solved by the Invention> Therefore, the present invention aims to improve the naphtha rectification system in accordance with changes in the distillation performance of the pre-distillation column and the main distillation column in the conventional crude oil atmospheric distillation apparatus as described above. By selecting the optimal configuration of the naphtha rectification system according to the throughput of LPG/naphtha fraction to be processed and changes in its composition, the throughput of the stabilizer and splitter can be adjusted, and the throughput of the stabilizer and splitter can be adjusted. The purpose of the present invention is to provide a crude oil atmospheric distillation apparatus that can reduce the amount of heat required for the reboiler to the necessary minimum, and that can save energy as a whole by directing the surplus heat of the reboiler heat source to other heat recovery systems. This was done as a. <Means for Solving the Problems> In order to achieve the above object, the present inventors first solved the problem in the case where the degree of rectification in the pre-distillation column fluctuates due to changes in the type of crude oil or operating conditions. For each of these, we investigated the optimal configuration of a naphtha rectification system that can minimize the amount of heat required by the stabilizer and splitter reboilers. If we talk about the degree of rectification of the pre-distillation column here, the degree of rectification of the pre-distillation column is generally determined by the number of trays and internal reflux amount of the distillation column, and the number of trays is determined at the time of construction of the column. Therefore, it can be said that the internal recirculation amount is the operational condition that affects the degree of rectification. This internal reflux amount is
Three elements: (i) the amount of heat brought in by the supplied crude oil (the amount of preheating in the crude oil preheating system), (ii) the ratio of the amount of distillate extracted from the top to the amount of crude oil supplied, and (iii) the amount of heat removed by condensers, side wire reflux, etc. Determined by To explain the degree of rectification in the pre-distillation column using an example, for example, crude oil type A as shown in Figure 2.
(LPG/naphtha fraction is 19.9vol% of crude oil)
A pre-distillation column is assumed to be designed to mildly (coarsely) rectify a portion of the naphtha fraction (11 vol% relative to crude oil) and extract it as a pre-distillation column overhead fraction. In this case, a portion of the LPG fraction will be mixed in the pre-distillation tower bottom residual oil. When the same amount of crude oil type B (LPG/naphtha fraction is 9.3 vol% of crude oil) as shown in Fig. 3 is processed in such a pre-distillation column, the amount of LPG/naphtha fraction is small and the top of the column is The amount of extraction is also reduced (top fraction: 5 vol% of crude oil), and if the condenser capacity is maintained at the same level, the internal reflux will be relatively increased and the degree of rectification will be improved, as shown in Figure 3. This enables rectification in which no LPG fraction is present in the bottom oil of the pre-distillation column. Furthermore, as shown in Figure 4, if the amount withdrawn from the top of the tower is reduced (top fraction:
3 vol% relative to crude oil), the degree of rectification is further improved, and it is also possible to prevent heavy naphtha fraction from being mixed in the overhead fraction. As mentioned above, the present inventors have discovered that when the degree of rectification of the pre-distillation column changes depending on the crude oil type and operating conditions, the composition of the top fraction and bottom oil of the pre-distillation column and the main distillation column changes. In the case of a specific pre-distillation column fractionation degree, the required heat amount of the stabilizer and splitter reboiler can be reduced by configuring a specific naphtha rectification system accordingly. I found out that it works. The rectification degree of the pre-distillation column and the corresponding optimal naphtha rectification system configuration are listed below. In any case, the pre-distillation column bottom residue is further heated through a heat recovery system heat exchanger and a heating furnace as in the conventional case, and then supplied to the main distillation column. (1) Rectification degree of pre-distillation column When an LPG fraction and a part of light naphtha fraction are obtained from the top of the column, and a relatively large amount of LPG fraction is present in the bottom oil. Naphtha rectification system configuration 60 (Figure 5) Main distillation column overhead fraction 30f is directly fed to the splitter 5
A heavy naphtha product is obtained from the bottom of the splitter column. The light naphtha fraction obtained from the top of the splitter column contains an LPG fraction that exceeds the allowable amount of light naphtha products, so it cannot be used as a light naphtha product as it is, so it is combined with the top fraction of the pre-distillation column 20f. LPG is obtained from the top of the stabilizer column and a light naphtha product is obtained from the bottom of the column. This configuration reduces the throughput of both the splitter and stabilizer compared to the conventional configuration (Fig. 11), and as a result, each reboiler 5
1.41 (not shown in FIG. 5) can be reduced. (2) Rectification degree of pre-distillation column The rectification degree is better than the above, and from the top of the column
When an LPG fraction and a part of a light naphtha fraction are obtained, and only a relatively small amount of LPG fraction is present in the column bottom residue. Structure of naphtha rectification system 60 (Figure 6) Main distillation column top fraction 30f is directly fed to splitter 5
A heavy naphtha product is obtained from the bottom of the splitter column, and a light naphtha product is obtained from the top of the column. The light naphtha fraction from the top of the splitter column does not contain enough LPG fraction to exceed the allowable amount of light naphtha products, so it can be used as a light naphtha product as is. On the other hand, the pre-distillation column top fraction 20f is supplied to the stabilizer 40 to obtain LPG from the top of the column, and the light naphtha fraction obtained from the bottom of the column is combined with the light naphtha from the top of the splitter column to produce a light naphtha product. With this configuration, the throughput of both the splitter and stabilizer is reduced compared to the conventional configuration (Fig. 11), and as a result, each reboiler 5
1.41 (not shown in FIG. 6) can be reduced. (3) Rectification degree of pre-distillation column LPG fraction, light naphtha fraction, and part of heavy naphtha fraction are obtained from the top of the column, and a relatively large amount of light naphtha fraction is contained in the bottom oil. If there. Configuration 60 of naphtha rectification system (Figure 7) Pre-distillation column top fraction 20f is transferred to stabilizer 40
LPG is obtained from the top of the stabilizer column, and naphtha (light + heavy) fraction is obtained from the bottom of the column. The heavy naphtha fraction 30f obtained from the top of the main distillation column contains a light naphtha fraction that exceeds the allowable amount of heavy naphtha products, so it cannot be converted into a heavy naphtha product as it is. It is supplied together with the fraction to a splitter 50, and a light naphtha product is obtained from the top of the splitter column, and a heavy naphtha product is obtained from the bottom of the column. With this configuration, the throughput of the stabilizer 40 is reduced compared to the conventional configuration (FIG. 11), and as a result, the amount of heat required by the stabilizer reboiler 41 (not shown in FIG. 7) can be reduced. (4) Rectification degree of pre-distillation column The rectification degree is better than the above, and from the top of the column
When an LPG fraction, a light naphtha fraction, and a part of the heavy naphtha fraction are obtained, and only a relatively small amount of the light naphtha fraction is present in the column bottom residue. Configuration 60 of naphtha rectification system (Figure 8) Pre-distillation column top fraction 20f is transferred to stabilizer 40
LPG is obtained from the top of the stabilizer column, and naphtha (light + heavy) fraction is obtained from the bottom of the column. supplying the stabilizer tower bottom fraction to the splitter 50;
A light naphtha product is obtained from the top of the column, and a heavy naphtha product is obtained from the bottom of the column. The heavy naphtha fraction 30f obtained from the top of the main distillation column does not contain enough light naphtha fraction to exceed the allowable amount of heavy naphtha products, so it is directly combined with the splitter column bottom fraction to create a heavy naphtha fraction. It is a quality naphtha product. With this configuration, the throughput of both the splitter and stabilizer is reduced compared to the conventional configuration (Fig. 11), and as a result, each reboiler 5
1.41 (not shown in FIG. 8) can be reduced. (5) Rectification degree of the pre-distillation column The light naphtha fraction and the heavy naphtha fraction can be separated with a high degree of rectification. Therefore, the LPG fraction and the light naphtha fraction are obtained from the top of the column, and the residue at the bottom of the column is When the oil contains substantially no light naphtha fraction. Configuration 60 of the naphtha rectification system (Figure 9) Pre-distillation column top fraction 20f is transferred to the stabilizer 40
LPG is obtained from the top of the stabilizer column and light naphtha product is obtained from the bottom of the column. Since the main distillation column overhead fraction 30f is substantially only a heavy naphtha fraction, it is directly used as a heavy naphtha product. With this configuration, the splitter 50 becomes unnecessary, and the heat amount of the reboiler 51 of the splitter becomes completely unnecessary. Furthermore, the throughput of the stabilizer 40 is also reduced compared to the conventional configuration (FIG. 11), and as a result, the amount of heat required by the stabilizer reboiler 41 (not shown in FIG. 9) can be reduced. Among the above naphtha rectification system configurations, considering the properties of crude oil currently being processed in Japan and the capacity of the existing pre-distillation column installed in response to it, when modifying the existing distillation equipment, etc. , configuration may not necessarily be necessary. However, in any case, the above configurations ~ are individual naphtha rectification system configurations that are adopted depending on the rectification degree of each pre-distillation column, and assuming the rectification degree of any one pre-distillation column, If one optimal naphtha rectification system configuration corresponding to this is determined and the equipment is designed, when processing other types of crude oil with different product compositions, the optimal naphtha rectification system configuration should be selected for each condition. I can't. Therefore, the present invention makes it possible to select and adopt an optimal naphtha rectification system configuration in accordance with changes in the distillation conditions of the pre-distillation column as described above. That is, this invention comprises a naphtha rectification system having a pre-distillation column, a main distillation column, a stabilizer and a splitter, and distills the bottom residue of the pre-distillation column in the main distillation column, and distills the column top oil of the pre-distillation column. In a petroleum distillation apparatus for obtaining LPG, light naphtha, and heavy naphtha by treating the fraction and the top fraction of the main distillation column in a naphtha rectification system, an inlet pipe to the stabilizer is connected to the naphtha rectification system; An inlet pipe to the splitter, a pipe that leads the stabilizer top fraction to the LPG takeoff pipe, a pipe that selectively leads the stabilizer bottom fraction to the light naphtha takeoff pipe or the splitter inlet pipe, and a pipe that leads the stabilizer top fraction to the light naphtha takeoff pipe or the splitter inlet pipe, and Piping that selectively leads the stabilizer inlet pipe or the light naphtha take-out pipe; and piping that leads the splitter bottom fraction to the heavy naphtha take-out pipe;
The present invention is characterized in that a pipe for guiding the pre-distillation column top fraction to the stabilizer introduction pipe and a pipe for leading the main distillation column top fraction to the splitter introduction pipe are provided. According to the above-described invention, the configurations of the naphtha rectification system can be selectively adopted, but the configuration cannot be selectively adopted. In order to be able to selectively adopt the above-mentioned configurations, select the piping that leads the main distillation column overhead fraction to the splitter inlet pipe, and select the piping that leads the main distillation column overhead fraction to the splitter inlet pipe or the heavy naphtha take-off pipe. The piping may be designed to guide the <Examples> Examples of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a drawing conceptually showing a distillation apparatus of the present invention consisting of a naphtha rectification system 60 having a pre-distillation column 20, a main distillation column 30, a stabilizer 40 and a splitter 50, and a heat recovery system heat exchanger group. , the heating furnace, the stabilizer, the reboiler of the splitter, the distillation pipes and side line reflux routes of each distillation column, and their piping, etc., are substantially the same as the conventional apparatus shown in Figs. 10 and 11, so illustrations are omitted. , or the same reference numerals as in FIGS. 10 and 11 are used to omit the explanation. The crude oil preheated by a heat recovery system heat exchanger group (not shown) is introduced into the pre-distillation column 20 and is separated into a pre-distillation column top fraction and a column bottom residue, and the pre-distillation column bottom residue is It is supplied to the main distillation column 30 via a group of heat exchangers and a heating furnace (none of which are shown). The top fraction of the pre-distillation column 20 passes through a condenser 21, a top receiving tank 22, and a pump 23, and is led to a stabilizer 40 by a pipe 1. Similarly, the top fraction of the main distillation column 30 is handled by a condenser 31, a top receiving tank 32, and a pump 3.
3 and is led to a splitter 50 by a pipe 2 having a valve V2. The stabilizer tower top fraction is taken out as LPG from the pipe 3 via the tower top reflux path F1. The splitter top fraction is taken out as a light naphtha product through the top reflux system route F2 through a pipe 4 having a valve V4, or is merged into a pipe 1 from upstream of the valve V4 through a pipe 5 having a valve V5. Ru. The splitter bottom fraction is taken out from pipe 6 as a heavy naphtha product. The stabilizer bottom fraction is joined to the line 4 downstream of the valve V4 by a line 7 with a valve V7 or to the line 2 downstream of the valve V2 by a line 8 with a valve V8. The main distillation column overhead fraction can also be led from line 2 upstream of valve V2 to line 6 by line 9 with valve V9. Note that the pipe 10 that connects the upstream of the valve V2 of the pipe 2 and the pipe 1 via the valve V10 is for providing the conventional naphtha rectification system configuration shown in FIG. Not necessary. By using the piping system and valve switching as described above,
The configuration of the naphtha rectification system described above can be selected. That is, in the case of the configuration (Fig. 5) Valves to open: V2, V5, V7 Valves to close: V4, V8, V9, V10 In the case of the configuration (Fig. 6) Valves to open: V2, V4 , V7 Valve to close: V5, V8, V9, V10 configuration (Figure 7) Valve to open: V2, V4, V8 Valve to close: V5, V7, V9, V10 configuration (Figure 8) ) Valve to open: V4, V8, V9 Valve to close: V2, V5, V7, V10 In case of configuration (Figure 9) Valve to open: V7, V9, Valve to close: V2 ,V4,V5,V8,V
10. In the case of using the conventional naphtha rectification system configuration as shown in FIG. 11, valves V8, V10, and V4 may be opened, and valves V2, V5, V7, and V9 may be closed. By selecting and adopting the configuration of the naphtha rectification system according to the degree of rectification of the pre-distillation column as described above, it is possible to reduce the throughput in the stabilizer and splitter and the amount of heat required for the reboiler. The reboiler heat source for the stabilizer and splitter is obtained from the side line reflux of the main distillation column or the bottom oil, as in the conventional naphtha rectification system (FIG. 11). 5
2 and temperature control TC-like configuration,
By employing this invention, surplus heat resulting from reduction of the reboiler heat source can be directed to the heat recovery system heat exchanger group. In the above embodiment, configurations ~ of the naphtha rectification system can be selectively adopted, but for the reasons mentioned above, only configurations ~ can be selectively adopted. In this case, the piping 9 and Valve V9 becomes unnecessary. Now, regarding the top of the main distillation column, as shown in FIG. gas and liquid are separated,
Part or all of it is extracted as an overhead product. Generally, the degree of condensation of the top vapor in the condenser 31 is determined by the composition, temperature, pressure, and condenser capacity of the vapor, but if pressure is taken as a parameter, the higher the pressure, the higher the dew point of the top vapor and the condensate. Both boiling point temperatures become higher, and when only part of the top vapor is condensed, the amount of condensed liquid increases. In addition, the refrigerant used in the condenser 31 is generally air or cooling water, which are easily available and inexpensive, used alone or in combination. The effective temperature difference with the refrigerant is reduced. From the above viewpoint, the operating pressure of the main distillation column 30 including the column top receiving tank 32 is usually determined by considering the following two factors. (i) When condensing only a portion of the overhead vapor,
Ensuring the yield and properties of the fraction to be recovered as an overhead product. (ii) Ensuring condenser capacity against fluctuations in the effective temperature difference between the condensed steam side and the condensed steam side caused by seasonal changes in the refrigerant supply temperature for the condenser. However, in the case where the main distillation column 30 is not equipped with the pre-distillation column 20, the vapor in the main distillation column contains moisture, and if this condenses in the column, it causes corrosion in the column. In addition to factors (i) and (ii), taking into consideration prevention of corrosion in the column due to water condensation, the operating pressure of the main distillation column is usually set at a pressure of 0.5 kg/cm 2 G or more at the top of the column. However, when installing the pre-distillation column 20 upstream of the main distillation column 30 as in the apparatus of the above embodiment, some of the light components in the crude oil are removed by the pre-distillation column. When the main distillation column is operated under the above-mentioned pressure as in the case where the main distillation column is not installed, there is a tendency for the temperature of the top vapor of the main distillation column to become relatively high. Therefore, in this invention in which a pre-distillation column is installed, even if the operating pressure of the main distillation column is relatively low, it is possible to maintain the temperature level of the vapor at the top of the main distillation column at the same level as when the pre-distillation column is not installed. can. Specifically, it is possible to reduce the main distillation column operating pressure to a minimum of 0.1 Kg/cm 2 G at the column top pressure, taking into account the pressure loss of the condenser. At such a pressure, the overhead fraction can be discharged due to the internal pressure of the main distillation column. The main distillation column operating pressure can be adjusted, for example, by pressure regulating means between the top receiving tank 32 of the main distillation column 30 and the valve 35 of the gas venting pipe 34 in FIG.
This can be done using a PC. By operating the main distillation column at a relatively low operating pressure as described above, the non-volatility increases and the distillation effect increases, so the amount of heating required for distillation can be reduced, and therefore the main distillation It becomes possible to reduce the load on the heating furnace of the tower. <Effects of the Invention> As explained above, according to the present invention, an optimal naphtha rectification can be achieved in which the amount of treatment in the stabilizer and splitter of the naphtha rectification system can be minimized according to the degree of rectification in the pre-distillation column. The system configuration can be selected, thereby minimizing the required heat source for the stabilizer and splitter reboilers. As a result, it becomes possible to allocate the surplus heat of the reboiler heat source to, for example, crude oil preheating, thereby making it possible to further reduce the heating furnace load on the main distillation column. The effects of this invention will be specifically explained below with reference to experimental examples. Experimental example: In a crude oil atmospheric distillation apparatus with a capacity of 100,000 BPSD (barrel/day), which is equipped with a pre-distillation column, a main distillation column, and a naphtha rectification system, Middle Eastern crude oil is processed at 100,000 BPSD, and the naphtha rectification system is as shown in Figure 1. Regarding the case where the apparatus of this invention is used to adopt the optimal naphtha rectification system configuration depending on the degree of rectification of the pre-distillation column, and the case where the conventional naphtha rectification system (Fig. 11) is used. Comparing the throughput of the stabilizer and splitter and the reboiler heat amount, we calculated the reduction in reboiler heat amount and the associated main distillation column heating furnace fuel reduction benefit, and the increase in heat exchanger construction cost due to the increase in the required heat transfer area due to the increase in the amount of heat recovered in the crude oil preheating system. I asked for The results are shown in the table below. From this table, it can be seen that even if the heat exchanger construction cost increases by up to 44 million yen by adopting this invention and the profit from main distillation column heating furnace fuel reduction is the minimum of 101 million yen/year, the savings will be made against the increased equipment cost. It is recognized that the energy effect is sufficiently exerted.

【表】【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の蒸留装置の実施例を示す説
明図;第2図、第3図および第4図は前蒸留塔の
精留度の例を示す説明図;第5図、第6図、第7
図、第8図および第9図は前蒸留塔精留度とそれ
に対応した最適なナフサ精留系の構成を個別に示
す説明図;第10図および第11図は従来の蒸留
装置を示す説明図である。 1〜10…配管、20…前蒸留塔、30…主蒸
留塔、40…スタビライザ、50…スプリツタ、
60…ナフサ精留系。
Fig. 1 is an explanatory diagram showing an embodiment of the distillation apparatus of the present invention; Figs. 2, 3, and 4 are explanatory diagrams showing examples of the degree of rectification of the pre-distillation column; Figs. 5 and 6. , 7th
Figures 8 and 9 are explanatory diagrams individually showing the degree of rectification in the pre-distillation column and the configuration of the optimal naphtha rectification system corresponding thereto; Figures 10 and 11 are explanatory diagrams showing conventional distillation equipment. It is a diagram. 1 to 10... Piping, 20... Pre-distillation column, 30... Main distillation column, 40... Stabilizer, 50... Splitter,
60... Naphtha rectification system.

Claims (1)

【特許請求の範囲】 1 前蒸留塔と主蒸留塔とスタビライザおよびス
プリツタを有するナフサ精留系とを具備し、前蒸
留塔の塔底残油を主蒸留塔で蒸留し、前蒸留塔の
塔頂留分および主蒸留塔の塔頂留分をナフサ精留
系で処理してLPG、軽質ナフサおよび重質ナフ
サを得る石油類の蒸留装置において、前記ナフサ
精留系に、スタビライザへの導入管と、スプリツ
タへの導入管と、スタビライザ塔頂留分をLPG
取出管へ導く配管と、スタビライザ塔底留分を軽
質ナフサ取出管または前記スプリツタ導入管へ選
択的に導く配管と、スプリツタ塔頂留分を前記ス
タビライザ導入管または前記軽質ナフサ取出管へ
選択的に導く配管と、スプリツタ塔底留分を重質
ナフサ取出管へ導く配管と、前記前蒸留塔塔頂留
分を前記スタビライザ導入管へ導く配管と、前記
主蒸留塔塔頂留分を前記スプリツタ導入管に導く
配管とを設けたことを特徴とする石油類の蒸留装
置。 2 前記主蒸留塔塔頂留分を前記スプリツタ導入
管に導く配管は、該塔頂留分を前記スプリツタ導
入管または前記重質ナフサ取出管へ選択的に導く
配管であることを特徴とする特許請求の範囲第1
項記載の石油類の蒸留装置。
[Scope of Claims] 1. A naphtha rectification system having a pre-distillation column, a main distillation column, and a stabilizer and a splitter, in which the bottom residue of the pre-distillation column is distilled in the main distillation column, and the column of the pre-distillation column is In a petroleum distillation apparatus in which the top fraction and the top fraction of the main distillation column are processed in a naphtha rectification system to obtain LPG, light naphtha, and heavy naphtha, an inlet pipe to the stabilizer is connected to the naphtha rectification system. , the inlet pipe to the splitter, and the stabilizer tower overhead distillate to LPG.
A pipe leading to the take-out pipe, a pipe selectively leading the stabilizer bottom fraction to the light naphtha take-off pipe or the splitter introduction pipe, and a pipe selectively leading the splitter top fraction to the stabilizer lead-in pipe or the light naphtha take-out pipe. a pipe that leads the splitter bottom fraction to the heavy naphtha take-off pipe, a pipe that leads the pre-distillation column top fraction to the stabilizer introduction pipe, and a pipe that leads the main distillation column top fraction to the splitter introduction pipe. A petroleum distillation apparatus characterized by being provided with piping leading to a pipe. 2. A patent characterized in that the piping that leads the top fraction of the main distillation column to the splitter introduction pipe is a pipe that selectively leads the top fraction to the splitter introduction pipe or the heavy naphtha take-off pipe. Claim 1
Distillation equipment for petroleum as described in Section 1.
JP21367384A 1984-10-12 1984-10-12 Distillation unit for petroleum Granted JPS6191287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21367384A JPS6191287A (en) 1984-10-12 1984-10-12 Distillation unit for petroleum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21367384A JPS6191287A (en) 1984-10-12 1984-10-12 Distillation unit for petroleum

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP27514284A Division JPS6191288A (en) 1984-12-25 1984-12-25 Distillation unit for petroleum or such
JP27514484A Division JPS6191290A (en) 1984-12-25 1984-12-25 Distillation unit for petroleum or such
JP27514384A Division JPS6191289A (en) 1984-12-25 1984-12-25 Distillation unit for petroleum or such

Publications (2)

Publication Number Publication Date
JPS6191287A JPS6191287A (en) 1986-05-09
JPS6410035B2 true JPS6410035B2 (en) 1989-02-21

Family

ID=16643070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21367384A Granted JPS6191287A (en) 1984-10-12 1984-10-12 Distillation unit for petroleum

Country Status (1)

Country Link
JP (1) JPS6191287A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3009672B2 (en) * 1988-10-05 2000-02-14 トヨタ自動車株式会社 Servo motor controller
JP4684684B2 (en) * 2005-03-03 2011-05-18 出光興産株式会社 Isopentane fractionator, method thereof, and fuel oil preparation method
CN109438167B (en) * 2018-12-27 2024-04-12 成都科特瑞兴科技有限公司 Cyclohexene energy-saving production system and production method

Also Published As

Publication number Publication date
JPS6191287A (en) 1986-05-09

Similar Documents

Publication Publication Date Title
RU2143459C1 (en) Method and apparatus for isolation of liquid oil products from stream leaving petroleum hydroconversion reactor
EP0213791A2 (en) Process for separating crude oil
US9783741B2 (en) Process for vacuum distillation of a crude hydrocarbon stream
US2158425A (en) Vacuum steam distillation of heavy oils
US20090301935A1 (en) Process and Apparatus for Cooling Liquid Bottoms from Vapor-Liquid Separator by Heat Exchange with Feedstock During Steam Cracking of Hydrocarbon Feedstocks
JPS6410035B2 (en)
RU2689737C1 (en) Installation of ntdr for non-waste complex gas treatment
US11648488B2 (en) Method of revamping of a plant for distillation of methanol
JPH0346035B2 (en)
JPH0346037B2 (en)
US2922751A (en) Debenzolizing wash oil
US2130988A (en) Treatment of hydrocarbon oils
US1882568A (en) Method of distilling
US2725342A (en) Distillation
JPS61148294A (en) Distillation of petroleum
JPS6191289A (en) Distillation unit for petroleum or such
US10160918B2 (en) Preflash arrangements and feedstock multiple injection in a process for distillation of crude oil
US2341389A (en) Treatment of hydrocarbon oils
JPS61133289A (en) Fractionation of oil under methane atmosphere
CN215162409U (en) Device for producing 5# industrial white oil in wax oil hydrocracking process
US1646619A (en) Art of fractional distillation
US2028728A (en) Oil cracking system
KR102629124B1 (en) METHOD AND APPARATUS FOR PREPARING n-HEXANE
KR102552143B1 (en) METHOD AND APPARATUS FOR PREPARING n-HEXANE
US2068856A (en) Combined still and coil cracking