JPH0346037B2 - - Google Patents

Info

Publication number
JPH0346037B2
JPH0346037B2 JP27514484A JP27514484A JPH0346037B2 JP H0346037 B2 JPH0346037 B2 JP H0346037B2 JP 27514484 A JP27514484 A JP 27514484A JP 27514484 A JP27514484 A JP 27514484A JP H0346037 B2 JPH0346037 B2 JP H0346037B2
Authority
JP
Japan
Prior art keywords
distillation column
naphtha
fraction
splitter
stabilizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP27514484A
Other languages
Japanese (ja)
Other versions
JPS6191290A (en
Inventor
Michuki Myake
Hitoshi Maruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Engineering Co Ltd
Original Assignee
Niigata Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Engineering Co Ltd filed Critical Niigata Engineering Co Ltd
Priority to JP27514484A priority Critical patent/JPS6191290A/en
Publication of JPS6191290A publication Critical patent/JPS6191290A/en
Publication of JPH0346037B2 publication Critical patent/JPH0346037B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は、主蒸留塔と前蒸留塔とを有し、更
にはスタビライザおよびスプリツタからなるナフ
サ精留系を備えた石油類の蒸留装置に関するもの
である。 更に詳しくは、前蒸留塔の蒸留性能に応じた最
適なナフサ精留系構成を備えた石油類の蒸留装置
に関するものである。 この明細書中で石油類とは、代表的には原油を
意味するが、一般的に蒸留によりLPG、ナフサ
を得ることができる石油系の化合物を総称する。 <従来の技術> 原油を常圧で蒸留して各種留分を取出すための
装置としては、従来から各種のものが考えられて
いるが、その一つとして、主蒸留塔の前に前蒸留
塔を設置し、熱回収系で予熱された原油から
LPGとナフサ(軽質+重質)との混合留分の一
部を前蒸留塔で蒸留して、スタビライザおよびス
プリツタからなるナフサ精留系に直接この前蒸留
塔の塔頂留分を主蒸留塔の塔頂留分と共に送るよ
うにした原油常圧蒸留装置がある。この装置を第
3図および第4図の工程図に基づいて説明する
と、まず第3図に示したように、原油は主蒸留塔
30の側線還流30a、各留分30c,30d、
および塔底残油30e等を熱源とする一以上つの
熱交換器群E1,E2からなる熱回収系で予熱さ
れた後、前蒸留塔20へ供給される。これら各熱
交換器群は、原油を1つ以上の熱源に対して順次
熱交換する方式(ワンスルー型)、熱源の数に応
じて分配し、各熱源と熱交換後に合流させる方式
(スプリツト型)またはそれらの組合せ方式によ
つて配列された熱交換器の集りである。前蒸留塔
20は、側線還流方式、塔頂外部還流方式或いは
両者の併用方式といつた還流機構を具備してい
る。側線還流方式を採用する場合には、図示した
ように側線還流20aの熱を熱回収系熱源として
利用することができる。前蒸留塔20における原
油の精留に要する熱は、熱回収系における原油予
熱により原油によつて持ち込まれる熱で通常は十
分であり、前蒸留塔用のリボイラは特に必要とし
ない。図示していないが、前蒸留塔の精留効果を
高めるために、必要に応じてストリツピングスチ
ームが前蒸留塔塔底部に導入される。熱回収系熱
交換器群E1,E2で予熱された原油は、前蒸留
塔20で精留され、塔頂からLPG・ナフサ混合
留分の一部である前蒸留塔塔頂留分20fが取出
される一方、前蒸留塔塔底残油20eは熱回収系
熱交換器群E3を経て加熱炉70で更に加熱され
た後、主蒸留塔30へ供給される。主蒸留塔30
においては、異なる沸点範囲を持つ各種留分30
c,30dに順次蒸留されて、主蒸留塔塔頂から
は前蒸留塔で取出されなかつたLPG・ナフサ留
分の残部である主蒸留塔塔頂留分30fが取出さ
れ、主蒸留塔塔底からは残油30eが得られる。 前蒸留塔20と主蒸留塔30の塔頂部機構はい
ずれも、コンデンサ21,31と塔頂受槽22,
32とを備えた塔頂還流系からなり、前蒸留塔と
主蒸留塔のそれぞれの塔頂部機構で凝縮された
LPG・ナフサ混合留分20f,30fは、第4
図に示したように混合されてナフサ精留系へ送ら
れ、まずスタビライザ40でLPGとナフサに分
けられた後、ナフサ留分は更にスプリツタ50に
送られて軽質ナフサと重質ナフサに分けられる。
第4図中、符号F1およびF2はそれぞれスタビ
ライザ40およびスプリツタ50の塔頂還流経路
を示し、いずれもコンデンサ、塔頂受槽およびポ
ンプを含んでいる。また、図示していないが前蒸
留塔、主蒸留塔、スラビライザおよびスプリツタ
は、それぞれ受槽の頂部に塔の運転圧力調整用ガ
ス抜き配管や調整弁が設けられている。 上記したごとき原油常圧蒸留装置においては、
前蒸留塔20へ供給される原油の予熱温度は、前
蒸留塔塔頂よりLPGとナフサ(軽質+重質)留
分の一部が得られ、且つその留分に混入する灯油
留分の量がナフサ精留系から得られる重質ナフサ
の製品仕様を損わない程度であるような精留が前
蒸留塔で達成できる温度とすることが前提とな
る。また、前蒸留塔20における運転圧力は、原
油の油種や予熱温度等で多少異なるが通常1〜5
Kg/cm2Gの範囲で運転される。 ところで、ナフサ精留系におけるスタビライザ
40およびスプリツタ50はいずれも、蒸留操作
に必要な熱の大部分を第4図に示したようにリボ
イラー41,51による加熱により得ており、リ
ボイラーの熱源は第3図に示したように通常主蒸
留塔30の塔底残油30eあるいは側線還流30
bの一部が使用されている。第3図においては、
スタビライザ40のリボイラー41の熱源を主蒸
留塔塔底からの残油30eとし、スプリツタ50
のリボイラー51の熱源を主蒸留塔の側線還流3
0bとしているが、両者のリボイラー共に主蒸留
塔塔底残油30eを熱源とするように配置した
り、更には主蒸留塔の塔側からの留分30c,3
0dをこれらリボイラーの熱源として利用するこ
ともある。 しかしながら、ナフサ精留系におけるスタビラ
イザおよびスプリツタでの各リボイラーによる加
熱温度、換言すればリボイラーの所要熱量は、ス
タビライザやスプリツタへ供給されるLPG・ナ
フサ留分の処理量によつて変動し、必ずしも一定
でない。スタビライザやスプリツタでの処理量
は、主として前蒸留塔および主蒸留塔における蒸
留性能、特に前蒸留塔における塔頂収率および精
留度に依存し、これらの変動に伴つてスタビライ
ザやスプリツタで処理すべきLPG・ナフサ留分
の量も変動し、処理量が少なくなればスタビライ
ザやスプリツタのリボイラー所要熱量も少なくて
済むのである。 一方、前蒸留塔における精留度は、原油種や前
蒸留塔に供給される原油予熱温度によつて変化
し、この変化に伴つて前蒸留塔塔頂留分や主蒸留
塔塔頂留分の収量や組成も変化する。例えば、前
蒸留塔の塔頂よりLPG留分と軽質ナフサ留分と
重質ナフサ留分の一部とを得、塔底残油中には軽
質ナフサ留分が比較的多量に存在するような前蒸
留塔の精留度で運転する場合には、第4図に示し
たように前蒸留塔塔頂留分と主蒸留塔塔頂留分と
を混合してナフサ精留系へ送ることが必ずしもス
タビライザおよびスプリツタでの処理量を低減さ
せるために適切でない。 <発明が解決しようとする問題点> そこでこの発明は、前述した如き従来の原油常
圧蒸留装置において、前蒸留塔の塔頂よりLPG
留分と軽質ナフサ留分と重質ナフサ留分の一部と
を得、塔底残油中に軽質ナフサ留分が比較的多量
に存在するような前蒸留塔の精留度で運転する場
合に特に適したナフサ精留系の構成とすることに
よつて、スタビライザおよびスプリツタの処理量
を最少にすると共に、スタビライザおよびスプリ
ツタのリボイラー所要熱量を必要最小限に抑える
ことができ、リボイラー熱源の余剰熱量を他の熱
回収系に振り向けて装置全体として省エネルギ化
を図ることのできる原油常圧蒸留装置を提供する
ことを目的としてなされたものである。 <問題点を解決するための手段> 上記の目的を達成するために、この発明におけ
るナフサ精留系には、前蒸留塔塔頂留分をスタビ
ライザへ導く配管と、スタビライザの塔底留分を
スプリツタへ導く配管と、スタビライザ塔底留分
をスプリツタへ導く前記配管に主蒸留塔塔頂留分
を合流させる配管とを配設する。これによつて、
スタビライザ塔頂よりLPGを、スピリツタ塔頂
より軽質ナフサを、スプリツタ塔底より重質ナフ
サをそれぞれ取出すことができる。 ここで前蒸留塔の精留度について述べるなら
ば、前蒸留塔の精留度は一般にその蒸留塔のトレ
イ段数と内部還流量により左右されるものであ
り、このうちトレイ段数は塔建設時に決められて
しまうから、運転面で精留度に変化を及ぼす条件
は内部還流量であるといえる。この内部還流量は
)供給原油の持ち込み熱量(原油予熱系での予
熱量)、)原油供給量に対する塔頂留分抜出し
量の割合、および)コンデンサ、側線還流等の
除熱量の三つの要素により決められる。 そしてこの発明のごとき装置構成が最適となる
前蒸留塔の精留度は、例えばある原油種を処理
し、第2図に示したように対原油15vol%のLPG
留分全部と軽質ナフサ留分および重質ナフサ留分
の一部のみを得るが、なお塔底残油中に軽質ナフ
サ留分が比較的多量に存在する場合である。 <実施例> 以下にこの発明の実施例を図面を参照して詳述
する。第1図は前蒸留塔20、主蒸留塔30、ス
タビライザ40とスプリツタ50とを有するナフ
サ精留系60からなるこの発明の蒸留装置を概念
的に示す図面であり、熱回収系熱交換器群、加熱
炉、スタビライザおよびスプリツタのリボイラ
ー、各蒸留塔と留出管や側線還流経路、およびそ
れらの配管等は第3図、第4図の従来装置と実質
的に同じであるため図示を省略し、あるいは第3
図、第4図と同じ参照符号を付すことにより説明
を省略する。 熱回収系熱交換器群(図示せず)で予熱された
原油は前蒸留塔20に導入され、前蒸留塔塔頂留
分と塔底残油に分けられ、前蒸留塔塔底残油は熱
交換器群と加熱炉(いずれも図示せず)を経て主
蒸留塔30へ供給される。 前蒸留塔20の塔頂留分20fはコンデンサ2
1、塔頂受槽22、ポンプ23を経て配管1によ
りスタビライザ40へ直接導かれる。このスタビ
ライザにおいては、一般に塔頂圧力5〜12Kg/cm2
Gで蒸留操作が行なわれ前蒸留塔塔頂留分中の
LPG留分が分留されて、スタビライザ塔頂より
塔頂還流経路F1を経て配管2からブタンおよび
それより軽質の成分がLPGとして取出され、一
方スタビライザ塔底留分からはナフサ(軽質+重
質)が得られ、配管3によりスプリツタ50へ導
かれる。 なお、スタビライザ塔頂留分は、通常液として
取出されるが、メタン等の軽質分が多い場合、一
部ガスとしても取出されることがある。 主蒸留塔30の塔量留分30fはコンデンサ3
1、塔頂受槽32、ポンプ33を経て配管4によ
りナフサ精留系へ導かれるが、この留分30f
(重質ナフサ留分)中には重質ナフサ製品許容量
を上回る軽質ナフサ留分を含んでいるためそのま
重質ナフサ製品とすることができないため、スタ
ビライザ塔底留分と合流させてスプリツタ50へ
供給する。。このスプリツタにおいては、塔頂圧
力0.1〜2.0Kg/cm2G程度で蒸留操作が行なわれる
が、軽質ナフサの蒸気圧により塔頂受槽にて負圧
になることがあり、燃料ガス等を塔頂受槽に導入
して補圧することもある。スプリツタの塔頂から
は塔頂還流経路F2を経て配管5により軽質ナフ
サ製品が取出され、スプリツタ塔底からは配管6
により重質ナフサ製品が取出される。 上記のようなナフサ精留系の構成とすることに
よつて、スタビライザおよびスプリツタにおける
処理量の低減およびリボイラー所要熱量の低減が
図れるのである。 スタビライザおよびスプリツタのリボイラー熱
源は、従来のナフサ精留系(第4図)におけると
同様に主蒸留塔の側線還流や塔底残油から得られ
るが、例えば第4図に示した三方弁42,52と
温度コントロールTCのような構成により、この
発明の採用によつて得られるリボイラー熱源低減
に伴う余剰熱量を、熱回収系熱交換器群へ振り向
けることができる。 なお、管4と管3との合流点下流側の管4に管
6を流れるスプリツタ塔底留出液を熱源とする熱
交換器を設け、スプリツタ50へ供給される原料
油をそれぞれ予熱し、スプリツタのリボイラ所要
熱量の低減をさらに図つてもよい。 <発明の効果> 以上説明したようにこの発明によれば、前蒸留
塔塔頂よりLPG留分と軽質ナフサ留分と重質ナ
フサ留分の一部とを得、塔底残油中には軽質ナフ
サ留分が比較的多量に存在するような前蒸留塔の
精留度を採用した場合に、ナフタ精留系のスタビ
ライザおよびスプリツタでの処理量を最小限にで
きるような最適なナフサ精留系の構成としたた
め、スタビライザやスプリツタのリボイラー所要
熱源を必要最小限に抑えることができる。その結
果、リボイラー熱源の余剰熱量を例えば原油予熱
に振り向けることが可能となり、それにより主蒸
留塔の加熱炉負荷を一層低減させることができ
る。以下に実施例を挙げてこの発明の効果を具体
的に説明する。 実験例 前蒸留塔、主蒸留塔およびナフサ精留系を具備
した100000BPSD(バーレル/日)の原油常圧蒸
留装置において、100000BPSDで中東系原油を処
理し、ナフサ精留系として第1図の如きこの発明
の装置を用いた場合と、従来のナフサ精留系(第
4図)を用いた場合とについて、それぞれスタビ
ライザおよびスプリツタの処理量、リボイラー熱
量を比較し、リボイラー熱量低減量とそれに伴う
主蒸留塔加熱炉燃料低減利益、原油予熱系回収熱
量増加に伴う必要伝熱面積増加による熱交換器建
設コスト増を求めた。また、この発明によるナフ
サ精留系装置の建設コストの低減額(従来装置
(第4図)と本発明装置(第1図)との建設コス
ト差)も算出した。結果を下表に示す。 この表から、この発明を採用することにより熱
交換器建設コストが1100万円増加し、一方ナフサ
精留系装置の建設コストが700万円低減し、差引
400万円の装置コスト増となるが、主蒸留塔加熱
燃料低減による利益が10100万円と/年となるた
め、装置コスト増に対する省エネルギ効果が十分
に発揮されることが認められる。 【表】
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a petroleum distillation apparatus having a main distillation column and a pre-distillation column, and further equipped with a naphtha rectification system consisting of a stabilizer and a splitter. It is something. More specifically, the present invention relates to a petroleum distillation apparatus equipped with an optimal naphtha rectification system configuration depending on the distillation performance of a pre-distillation column. In this specification, petroleum typically means crude oil, but generally refers to petroleum-based compounds from which LPG and naphtha can be obtained by distillation. <Prior art> Various types of equipment have been considered for distilling crude oil at normal pressure to extract various fractions. from crude oil preheated by a heat recovery system.
Part of the mixed fraction of LPG and naphtha (light + heavy) is distilled in a pre-distillation column, and the top fraction of the pre-distillation column is directly transferred to the naphtha rectification system consisting of a stabilizer and a splitter to the main distillation column. There is an atmospheric distillation unit for crude oil that is sent together with the overhead fraction. This apparatus will be explained based on the process diagrams of FIGS. 3 and 4. First, as shown in FIG.
After being preheated in a heat recovery system consisting of one or more heat exchanger groups E1 and E2 using the column bottom residual oil 30e as a heat source, it is supplied to the pre-distillation column 20. Each of these heat exchanger groups has a method in which crude oil is sequentially exchanged heat with one or more heat sources (one-through type), and a method in which crude oil is distributed according to the number of heat sources and merged with each heat source after heat exchange (split type). Alternatively, it is a collection of heat exchangers arranged in a combination manner. The pre-distillation column 20 is equipped with a reflux mechanism such as a side line reflux system, an external reflux system at the top, or a combination of both. When the side line reflux system is adopted, the heat of the side line reflux 20a can be used as a heat source for the heat recovery system, as shown in the figure. The heat required for the rectification of crude oil in the pre-distillation column 20 is normally the heat brought in by the crude oil by preheating the crude oil in the heat recovery system, and a reboiler for the pre-distillation column is not particularly required. Although not shown, stripping steam is introduced into the bottom of the pre-distillation column as needed in order to enhance the rectification effect of the pre-distillation column. The crude oil preheated by the heat recovery system heat exchanger groups E1 and E2 is rectified in the pre-distillation column 20, and the pre-distillation column top fraction 20f, which is a part of the LPG/naphtha mixed fraction, is taken out from the top of the column. On the other hand, the pre-distillation column bottom residual oil 20e is further heated in the heating furnace 70 via the heat recovery system heat exchanger group E3, and then supplied to the main distillation column 30. Main distillation column 30
In 30 different fractions with different boiling point ranges,
c and 30d, and the main distillation column top fraction 30f, which is the remainder of the LPG/naphtha fraction that was not taken out in the previous distillation column, is taken out from the top of the main distillation column. Residual oil 30e is obtained. The top mechanisms of both the pre-distillation column 20 and the main distillation column 30 include condensers 21 and 31, a top receiving tank 22,
It consists of an overhead reflux system equipped with 32, and the condensed water is
The LPG/naphtha mixed fractions 20f and 30f are
As shown in the figure, the mixture is sent to the naphtha rectification system, first separated into LPG and naphtha by the stabilizer 40, and then the naphtha fraction is sent to the splitter 50 where it is separated into light naphtha and heavy naphtha. .
In FIG. 4, symbols F1 and F2 indicate the top reflux paths of the stabilizer 40 and the splitter 50, respectively, and both include a condenser, a top receiving tank, and a pump. Although not shown, the pre-distillation column, the main distillation column, the stabilizer, and the splitter are each provided with a gas venting pipe and a regulating valve for adjusting the operating pressure of the column at the top of the receiving tank. In the crude oil atmospheric distillation equipment as described above,
The preheating temperature of the crude oil supplied to the pre-distillation column 20 is determined by the amount of LPG and naphtha (light + heavy) fractions obtained from the top of the pre-distillation column and the amount of kerosene fraction mixed into the fractions. The premise is that the temperature is such that rectification can be achieved in the pre-distillation column at a level that does not impair the product specifications of the heavy naphtha obtained from the naphtha rectification system. In addition, the operating pressure in the pre-distillation column 20 varies slightly depending on the type of crude oil, preheating temperature, etc., but is usually 1 to 5.
It is operated in the range of Kg/cm 2 G. By the way, in both the stabilizer 40 and the splitter 50 in the naphtha rectification system, most of the heat required for the distillation operation is obtained from heating by the reboilers 41 and 51, as shown in FIG. As shown in Figure 3, usually the bottom residue 30e of the main distillation column 30 or the side line reflux 30
Part of b is used. In Figure 3,
The heat source of the reboiler 41 of the stabilizer 40 is the residual oil 30e from the bottom of the main distillation column, and the splitter 50
The heat source of the reboiler 51 is the side line reflux 3 of the main distillation column.
0b, but both reboilers are arranged so that the main distillation column bottom residual oil 30e is used as a heat source, and furthermore, the reboilers are arranged so that the bottom oil 30e of the main distillation column is used as a heat source, and the fractions 30c and 3 from the column side of the main distillation column are
0d may be used as a heat source for these reboilers. However, the heating temperature by each reboiler in the stabilizer and splitter in a naphtha rectification system, in other words, the amount of heat required for the reboiler, varies depending on the throughput of LPG/naphtha fraction supplied to the stabilizer and splitter, and is not necessarily constant. Not. The throughput of the stabilizer or splitter depends mainly on the distillation performance of the pre-distillation column and the main distillation column, especially the top yield and fractionation degree of the pre-distillation column. The amount of LPG and naphtha fraction to be processed also changes, and if the amount to be processed is reduced, the amount of heat required for the stabilizer and splitter reboiler will also be reduced. On the other hand, the degree of rectification in the pre-distillation column changes depending on the crude oil type and the preheating temperature of the crude oil supplied to the pre-distillation column, and as a result of this change, the fraction at the top of the pre-distillation column and the top fraction of the main distillation column are The yield and composition also change. For example, an LPG fraction, a light naphtha fraction, and a part of a heavy naphtha fraction are obtained from the top of a pre-distillation column, and a relatively large amount of light naphtha fraction is present in the bottom oil. When operating at the rectification degree of the pre-distillation column, the top fraction of the pre-distillation column and the top fraction of the main distillation column can be mixed and sent to the naphtha rectification system as shown in Figure 4. It is not necessarily suitable for reducing the throughput in stabilizers and splitters. <Problems to be Solved by the Invention> Therefore, the present invention aims at dissolving LPG from the top of the pre-distillation column in the conventional crude oil atmospheric distillation apparatus as described above.
When operating at a rectification degree of the pre-distillation column such that a fraction, a light naphtha fraction, and a part of the heavy naphtha fraction are obtained, and a relatively large amount of the light naphtha fraction is present in the bottom oil. By configuring a naphtha rectification system that is particularly suitable for The purpose of this invention is to provide a crude oil atmospheric distillation apparatus that can save energy as a whole by allocating heat to other heat recovery systems. <Means for Solving the Problems> In order to achieve the above object, the naphtha rectification system of the present invention includes a pipe that leads the top fraction of the pre-distillation column to the stabilizer, and a pipe that leads the bottom fraction of the stabilizer to the naphtha rectification system. A pipe leading to the splitter and a pipe leading the top fraction of the main distillation column to join the pipe leading the stabilizer bottom fraction to the splitter are provided. By this,
LPG can be taken out from the top of the stabilizer tower, light naphtha can be taken out from the top of the spritzator tower, and heavy naphtha can be taken out from the bottom of the splitter tower. If we talk about the degree of rectification of the pre-distillation column here, the degree of rectification of the pre-distillation column is generally determined by the number of trays and internal reflux amount of the distillation column, and the number of trays is determined at the time of construction of the column. Therefore, it can be said that the internal recirculation amount is the operational condition that affects the degree of rectification. This amount of internal reflux is determined by three factors: a) the amount of heat brought in by the supplied crude oil (amount of preheating in the crude oil preheating system), a) the ratio of the amount of overhead distillate withdrawn to the amount of crude oil supplied, and a) the amount of heat removed by condenser, side line reflux, etc. It can be decided. The rectification degree of the pre-distillation column for which the equipment configuration of this invention is optimal is, for example, when processing a certain type of crude oil, and as shown in Figure 2, the degree of rectification of the pre-distillation column is as follows:
This is a case in which all the fractions, a light naphtha fraction, and only a part of the heavy naphtha fraction are obtained, but a relatively large amount of the light naphtha fraction is still present in the column bottom residue. <Examples> Examples of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a drawing conceptually showing a distillation apparatus of the present invention consisting of a naphtha rectification system 60 having a pre-distillation column 20, a main distillation column 30, a stabilizer 40 and a splitter 50, and a heat recovery system heat exchanger group. , the heating furnace, the stabilizer, the reboiler of the splitter, each distillation column, the distillation pipe, the side wire reflux route, and their piping, etc., are substantially the same as the conventional equipment shown in Figs. 3 and 4, so illustrations are omitted. , or the third
The same reference numerals as in FIGS. 4 and 4 are used to omit the explanation. The crude oil preheated by a heat recovery system heat exchanger group (not shown) is introduced into the pre-distillation column 20 and is separated into a pre-distillation column top fraction and a column bottom residue, and the pre-distillation column bottom residue is It is supplied to the main distillation column 30 via a group of heat exchangers and a heating furnace (none of which are shown). The top fraction 20f of the pre-distillation column 20 is sent to the condenser 2.
1. The water is directly guided to the stabilizer 40 by the pipe 1 via the tower top receiving tank 22 and the pump 23. In this stabilizer, the top pressure is generally 5 to 12 Kg/cm 2
Distillation operation is carried out in G, and the top fraction of the pre-distillation column is
The LPG fraction is fractionated, and butane and lighter components are taken out as LPG from the top of the stabilizer tower via the top reflux route F1 and from pipe 2, while naphtha (light + heavy) is extracted from the bottom fraction of the stabilizer tower. is obtained and guided to the splitter 50 through the pipe 3. Note that the stabilizer tower overhead fraction is usually taken out as a liquid, but if it contains a large amount of light components such as methane, a portion of it may also be taken out as a gas. The column fraction 30f of the main distillation column 30 is the condenser 3
1. This fraction 30f is led to the naphtha rectification system via pipe 4 through the top receiving tank 32 and pump 33.
(Heavy naphtha fraction) contains a light naphtha fraction that exceeds the allowable amount of heavy naphtha products, so it cannot be made into a heavy naphtha product as it is, so it is combined with the stabilizer bottom fraction and sent to the splitter. Supply to 50. . In this splitter, the distillation operation is performed at a tower top pressure of about 0.1 to 2.0 Kg/cm 2 G, but the vapor pressure of light naphtha may cause a negative pressure in the tower receiving tank, and the fuel gas etc. Sometimes it is introduced into a receiving tank to compensate for the pressure. A light naphtha product is taken out from the top of the splitter column via the top reflux path F2 through pipe 5, and from the bottom of the splitter column via pipe 6.
The heavy naphtha product is removed by By configuring the naphtha rectification system as described above, it is possible to reduce the throughput in the stabilizer and splitter and to reduce the amount of heat required for the reboiler. The reboiler heat source for the stabilizer and splitter is obtained from the side line reflux of the main distillation column or the bottom oil, as in the conventional naphtha rectification system (Fig. 4). 52 and the temperature control TC, surplus heat due to the reduction of the reboiler heat source obtained by employing this invention can be directed to the heat recovery system heat exchanger group. Note that a heat exchanger using the splitter tower bottom distillate flowing through the pipe 6 as a heat source is installed in the pipe 4 downstream of the confluence of the pipes 4 and 3, and preheats the raw material oil supplied to the splitter 50, respectively. The amount of heat required by the reboiler of the splitter may be further reduced. <Effects of the Invention> As explained above, according to the present invention, an LPG fraction, a light naphtha fraction, and a part of a heavy naphtha fraction are obtained from the top of the pre-distillation column, and the residual oil at the bottom of the column contains Optimal naphtha rectification that minimizes the amount of treatment in the stabilizer and splitter of the naphtha rectification system when the pre-distillation column has a rectification degree where a relatively large amount of light naphtha fraction exists. Because of the system configuration, the heat source required for the reboiler for the stabilizer and splitter can be kept to the minimum necessary. As a result, it becomes possible to allocate the surplus heat of the reboiler heat source to, for example, crude oil preheating, thereby further reducing the heating furnace load on the main distillation column. EXAMPLES The effects of this invention will be specifically explained below with reference to Examples. Experimental example: In a crude oil atmospheric distillation apparatus with a capacity of 100,000 BPSD (barrel/day), which is equipped with a pre-distillation column, a main distillation column, and a naphtha rectification system, Middle Eastern crude oil is processed at 100,000 BPSD, and the naphtha rectification system is as shown in Figure 1. We compared the throughput of the stabilizer and splitter and the amount of heat in the reboiler using the apparatus of this invention and the case in which a conventional naphtha rectification system (Figure 4) was used. We calculated the profit from reduction in distillation column heating furnace fuel and the increase in heat exchanger construction cost due to the increase in the required heat transfer area due to the increase in the amount of heat recovered in the crude oil preheating system. Furthermore, the amount of reduction in the construction cost of the naphtha rectification system apparatus according to the present invention (the difference in construction cost between the conventional apparatus (FIG. 4) and the apparatus of the present invention (FIG. 1)) was also calculated. The results are shown in the table below. From this table, it can be seen that by adopting this invention, the construction cost of the heat exchanger increased by 11 million yen, while the construction cost of the naphtha rectification system decreased by 7 million yen.
Although the equipment cost will increase by 4 million yen, the profit from the reduction in heating fuel for the main distillation column will be 101 million yen per year, so it is recognized that the energy saving effect is fully realized compared to the increase in equipment cost. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の蒸留装置の実施例を示す説
明図;第2図はこの発明装置に最適な前蒸留塔の
精留度を示す説明図;第3図および第4図は従来
の蒸留装置を示す説明図である。 1〜6……配管、20……前蒸留塔、30……
主蒸留塔、40……スタビライザ、50……スプ
リツタ、60……ナフサ精留系、70……加熱
炉。
Fig. 1 is an explanatory diagram showing an embodiment of the distillation apparatus of this invention; Fig. 2 is an explanatory diagram showing the rectification degree of the pre-distillation column that is optimal for this inventive apparatus; Figs. 3 and 4 are illustrations of conventional distillation equipment. It is an explanatory view showing a device. 1-6...Piping, 20...Pre-distillation column, 30...
Main distillation column, 40... stabilizer, 50... splitter, 60... naphtha rectification system, 70... heating furnace.

Claims (1)

【特許請求の範囲】[Claims] 1 前蒸留塔と主蒸留塔とスタビライザおよびス
プリツタを有するナフサ精留系とを具備し、前蒸
留塔の塔底残油を主蒸留塔で蒸留し、前蒸留塔の
塔頂留分および主蒸留塔の塔頂留分をナフサ精留
系で処理してLPG、軽質ナフサおよび重質ナフ
サを得る石油類の蒸留装置において、前記ナフサ
精留系は、前記前蒸留塔塔頂留分をスタビライザ
へ導く配管と、前記スタビライザの塔底留分をス
プリツタへ導く配管と、スタビライザ塔底留分を
スプリツタへ導く前記配管に前記主蒸留塔塔頂留
分を合流させる配管とを有し、これによつて前記
スタビライザ塔頂よりLPGを、前記スプリツタ
塔頂より軽質ナフサを、前記スプリツタ塔底より
重質ナフサをそれぞれ得るようにしたことを特徴
とする石油類の蒸留装置。
1 Equipped with a pre-distillation column, a main distillation column, and a naphtha rectification system having a stabilizer and a splitter, the bottom residue of the pre-distillation column is distilled in the main distillation column, and the top fraction of the pre-distillation column and the main distillation column are distilled. In a petroleum distillation apparatus for producing LPG, light naphtha, and heavy naphtha by treating the top fraction of the column with a naphtha rectification system, the naphtha rectification system processes the top fraction of the pre-distillation column to a stabilizer. a pipe that leads the bottom fraction of the stabilizer to the splitter, and a pipe that joins the top fraction of the main distillation column with the pipe that leads the stabilizer bottom fraction to the splitter; A petroleum distillation apparatus characterized in that LPG is obtained from the top of the stabilizer column, light naphtha is obtained from the top of the splitter column, and heavy naphtha is obtained from the bottom of the splitter column.
JP27514484A 1984-12-25 1984-12-25 Distillation unit for petroleum or such Granted JPS6191290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27514484A JPS6191290A (en) 1984-12-25 1984-12-25 Distillation unit for petroleum or such

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27514484A JPS6191290A (en) 1984-12-25 1984-12-25 Distillation unit for petroleum or such

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP21367384A Division JPS6191287A (en) 1984-10-12 1984-10-12 Distillation unit for petroleum

Publications (2)

Publication Number Publication Date
JPS6191290A JPS6191290A (en) 1986-05-09
JPH0346037B2 true JPH0346037B2 (en) 1991-07-12

Family

ID=17551294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27514484A Granted JPS6191290A (en) 1984-12-25 1984-12-25 Distillation unit for petroleum or such

Country Status (1)

Country Link
JP (1) JPS6191290A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4684684B2 (en) * 2005-03-03 2011-05-18 出光興産株式会社 Isopentane fractionator, method thereof, and fuel oil preparation method

Also Published As

Publication number Publication date
JPS6191290A (en) 1986-05-09

Similar Documents

Publication Publication Date Title
RU2143459C1 (en) Method and apparatus for isolation of liquid oil products from stream leaving petroleum hydroconversion reactor
EP0213791B1 (en) Process for separating crude oil
US4686027A (en) Asphalt coking method
CA1143688A (en) Twin tower distillation of crude oil
US4082653A (en) Crude oil distillation process
US3886062A (en) Method and apparatus for fractionating multi-component feeds
EP3768803A1 (en) Network of dividing-wall columns in complex process units
US20160160130A1 (en) Integrated Vacuum Distillate Recovery Process
US4321132A (en) Distillation of crude oil
US9663721B2 (en) Heat recovery from a naphtha fractionation column
JPH0346035B2 (en)
JPH0346037B2 (en)
JPH06102121B2 (en) Improved distillation method
JPH0346036B2 (en)
JPS6410035B2 (en)
US2745794A (en) Combination cracking process
US2149058A (en) Method for distilling oils
KR102629124B1 (en) METHOD AND APPARATUS FOR PREPARING n-HEXANE
JPH0141363B2 (en)
US2130988A (en) Treatment of hydrocarbon oils
KR102552143B1 (en) METHOD AND APPARATUS FOR PREPARING n-HEXANE
US3257313A (en) Mineral oil distillation and hydrodesulfurizing process
RU2114891C1 (en) Crude oil rectification process
US2028728A (en) Oil cracking system
CN116064070A (en) Crude oil bi-component pre-separation method and device