JPS6399326A - Production of carbon fiber by gas phase method - Google Patents

Production of carbon fiber by gas phase method

Info

Publication number
JPS6399326A
JPS6399326A JP24334786A JP24334786A JPS6399326A JP S6399326 A JPS6399326 A JP S6399326A JP 24334786 A JP24334786 A JP 24334786A JP 24334786 A JP24334786 A JP 24334786A JP S6399326 A JPS6399326 A JP S6399326A
Authority
JP
Japan
Prior art keywords
transition metal
organic compound
compound
vgcf
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24334786A
Other languages
Japanese (ja)
Inventor
Shingo Morimoto
信吾 森本
Haruo Yoshida
晴雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP24334786A priority Critical patent/JPS6399326A/en
Publication of JPS6399326A publication Critical patent/JPS6399326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain the titled yarn efficiently and at low cost from an inexpensive seed source instead of ferrocene, by using a transition metal salt of a specific carboxylic acid as a transition metal compound to be the seed source. CONSTITUTION:First a transition metal salt of >=3C carboxylic acid (preferably transition metal salt of caprylic acid) is used as a transition metal compound to be a seed source. Then the transition metal compound and an organic compound (preferably benzene, etc.) are fed to a thermal decomposition furnace and heated so that ultrafine particles of the transition metal element produced by thermal decomposition of the transition metal compound are used as a seed and the organic compound is thermally decomposed to give the aimed yarn. H2 is usually used as a carrier gas.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシート源として安価なカルボン酸の遷移金属塩
を用いる気相法炭素vanの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a vapor phase carbon van using an inexpensive transition metal salt of a carboxylic acid as a sheet source.

〔従来の技術〕[Conventional technology]

従来、気相法炭素11.l(以下VGCFという)を製
造する場合には、遷移金属元素の超微粒子をシートとし
て用い、これに炭素を析出、成長させて炭素ll随とす
るが、その製造法としては、■熱分解炉内の基板上にF
・の超微粉末を散布してシートとして用いる方法(特開
昭52−103528号公報)、■フェロセン等のFa
化合物を気化させ熱分解炉に導入しFeの微粉末を生成
させシートとして用いる方法(特開昭60−54998
号公報)、■F・を直接熱分解炉中で気化させてシート
として用いる方法(特願昭60−129986号)、■
フェロセン等の鉄化合物を液体有機化合物に分散或いは
溶解させて熱分解か中にスプレーしてシートとして用い
る方法(特開昭58−180615号公報)などがある
Conventionally, vapor phase carbon 11. When producing VGCF (hereinafter referred to as VGCF), ultrafine particles of transition metal elements are used as a sheet, and carbon is precipitated and grown on this sheet to form a carbon film. F on the board inside
・Method of scattering ultrafine powder and using it as a sheet (Japanese Unexamined Patent Publication No. 52-103528), ■ Fa such as ferrocene
A method of vaporizing the compound and introducing it into a pyrolysis furnace to produce fine Fe powder and using it as a sheet (Japanese Patent Application Laid-Open No. 60-54998
(Japanese Patent Application No. 129986/1986),
There is a method of dispersing or dissolving an iron compound such as ferrocene in a liquid organic compound, spraying it during thermal decomposition, and using it as a sheet (Japanese Unexamined Patent Publication No. 180615/1983).

これらの方法においては、いずれも1100〜1300
℃の反応空間に活性なFe等のシートと、炭素源となる
有機化合物とを共存させることが必要である。
In these methods, 1100 to 1300
It is necessary to coexist an active sheet of Fe or the like and an organic compound serving as a carbon source in the reaction space at .degree.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、■の基板法は、基板平面からのVGCFtl
、長であるので、生産性が悪く、■のFeを直接気化さ
せる方法は、VGCF成長が開始するまでの誘導期間が
長いので、生産性がやや劣っている。
By the way, in the substrate method (■), VGCFtl from the substrate plane
, are long, so the productivity is poor, and the method (2) of directly vaporizing Fe requires a long induction period until VGCF growth starts, so the productivity is somewhat poor.

したがって、フェロセン等を用いた■の気化法、■のス
プレー法は有効な手段であるが、フェロセンは5000
〜10000円/kQと高価で、VGCFのコストを高
める不都合があった。
Therefore, the vaporization method (2) and the spray method (2) using ferrocene etc. are effective methods, but ferrocene has a
It is expensive at ~10,000 yen/kQ, and has the disadvantage of increasing the cost of VGCF.

本発明者等は上記の事情に鑑み、スプレー法或いは気化
法においてシート源となる安価な遷移金属化合物を得る
べく、鋭意研究を行なった結果、遷移金属化合物として
は、メタロセン、キレート化合物、カルボニル化合物等
種々なものがあるが、天然に産出し、容易に入手可能な
特定のカルボン酸の遷移金属塩がシート源として使用出
来ることを発見した。
In view of the above circumstances, the inventors of the present invention conducted extensive research in order to obtain an inexpensive transition metal compound that can be used as a sheet source in the spray method or vaporization method. Although there are various types of carboxylic acid, it has been discovered that naturally occurring and easily available transition metal salts of specific carboxylic acids can be used as a sheet source.

本発明は上記の発見に基づいて開発されたもので、フェ
ロセンに代る安価なシート源によって効率よく、かつ安
価にVGCFを製造する方法を提供することを目的とす
る。
The present invention was developed based on the above discovery, and an object of the present invention is to provide a method for efficiently and inexpensively producing VGCF using an inexpensive sheet source instead of ferrocene.

〔問題点を解決するための手段〕 本発明は上記の目的を達成すべくなされたちので、その
要旨は、遷移金属化合物と有機化合物を熱分解炉内に導
入し、遷移金属元素の超微粒子をシートとして有機化合
物の気相熱分解により炭素遷移を製造する方法において
、シート源となる遷移金属化合物として炭素数3以上の
カルボン酸の遷移金属塩を用いる気相法炭素!!紺の製
造法にある。
[Means for Solving the Problems] The present invention has been made to achieve the above object, and its gist is to introduce a transition metal compound and an organic compound into a pyrolysis furnace, and to generate ultrafine particles of a transition metal element. In a method of producing carbon transition as a sheet by vapor phase pyrolysis of an organic compound, vapor phase carbon uses a transition metal salt of a carboxylic acid having 3 or more carbon atoms as a transition metal compound serving as a sheet source! ! It is in the manufacturing method of navy blue.

〔発明の具体的構成および作用〕[Specific structure and operation of the invention]

以下本発明を具体的に説明する。 The present invention will be specifically explained below.

本発明の方法に用いられるカルボン酸塩の原料となるカ
ルボン酸としては、例えば第1表に示すものがあげられ
る。
Examples of carboxylic acids that serve as raw materials for the carboxylic acid salts used in the method of the present invention include those shown in Table 1.

第1表 カルボン酸の遷移金属塩(以下カルボン**という)は
、C,Hの他にOを含有しているので、シート源として
適切かどうか懸念されたが、意外にもメタロセンと大差
ないVGCF生成率が得られる。特に炭素数8のカプリ
ル酸は、例えばF・塩とした場合、F・を5wt%含む
塩を容易、かつ安価に得ることが出来、また毒性も低く
扱い易いのでシート源として好適である。
Table 1 Transition metal salts of carboxylic acids (hereinafter referred to as carbone**) contain O in addition to C and H, so there were concerns about whether they would be suitable as sheet sources, but surprisingly they are not much different from metallocenes. The VGCF production rate is obtained. In particular, caprylic acid having 8 carbon atoms is suitable as a sheet source because, for example, when it is made into an F salt, a salt containing 5 wt% of F can be easily and inexpensively obtained, and the toxicity is low and it is easy to handle.

本発明においてカルボン酸塩地の炭素数を3以上とした
理由は、Cの数が2以下の、カルボン酸塩は0の炭素に
対する割合が高くなるためか、VGCFの生成効率がよ
くないからである。
In the present invention, the reason why the number of carbon atoms in the carboxylate base is set to 3 or more is that carboxylates with a carbon number of 2 or less have a high ratio to 0 carbons, or because the production efficiency of VGCF is not good. be.

カルボン酸塩は炭素11M源となる有機化合物と併用さ
れ、通常後者の液体に前者が溶解して使用される。この
液体有機化合物としては、炭化水素。
The carboxylic acid salt is used together with an organic compound serving as a carbon 11M source, and the former is usually dissolved in the liquid of the latter. This liquid organic compound is a hydrocarbon.

0、S、N等を含有する有機化合物、或いはアルコール
類等が用いられるが、特にベンゼン等の炭化水素がCの
含有量が多く好ましい。
Organic compounds containing 0, S, N, etc., or alcohols are used, but hydrocarbons such as benzene are particularly preferred because they have a large C content.

キャリヤガスとしては、従来VGCFの製法において使
用されるものがいずれも使用出来、通常1」2が用いら
れる。
As the carrier gas, any carrier gas used in conventional VGCF manufacturing methods can be used, and 1" and 2 are usually used.

次に本発明において用いられる装置を説明する。Next, the apparatus used in the present invention will be explained.

第1図は気化法に用いられる外熱式装置の一例を示すも
ので、図中符号1はムライト等によってつくられた熱分
解炉である。熱分解炉1の外周には、内部を1100〜
1300℃に加熱するヒータ2が取付けられている。ま
た、E2熱分解炉1の一端には、それぞれ所定の温度に
保持された液体有機化合物3aが入れられている容器3
、カルボン酸塩4aが入れられている容器4、必要に応
じて硫黄等の添加物5aが入れられた容器5を直列に通
って、それぞれを所定の割合に含有させられたキャリヤ
ガス6が導入され、他端には排出管7が設けられている
FIG. 1 shows an example of an external heating type device used in the vaporization method, and reference numeral 1 in the figure is a pyrolysis furnace made of mullite or the like. The outer periphery of the pyrolysis furnace 1 has an inner diameter of 1100~
A heater 2 for heating to 1300° C. is attached. Further, at one end of the E2 pyrolysis furnace 1, there are containers 3 each containing a liquid organic compound 3a maintained at a predetermined temperature.
A carrier gas 6 containing each of them in a predetermined proportion is introduced by passing in series through a container 4 containing carboxylic acid salt 4a and a container 5 containing additives 5a such as sulfur as necessary. A discharge pipe 7 is provided at the other end.

上記キャリヤガス6によって導入されたカルボン酸塩4
aは熱分解されて金属超微粒子となり、これをシート8
として有機化合物が熱分解してVGCF9を生成する。
Carboxylate 4 introduced by the carrier gas 6
a is thermally decomposed to become ultrafine metal particles, which are then separated into sheet 8
The organic compound thermally decomposes to produce VGCF9.

また、第2図はスプレー法に用いられる内熱式装置の一
例を示すもので、第1図と同一部分には同−符号を付し
てその説明を省略する。
Moreover, FIG. 2 shows an example of an internal heating type apparatus used in the spray method, and the same parts as in FIG.

熱分解炉1の一端には、内部を加熱する酸水素バーナ1
0および、キャリヤガス6を類1内に導入するとともに
、カルボン酸塩を所定のa度に溶解或いは分散した液体
有機化合物11aを入れた容器11より、上記有機化合
物11aを類1内に噴霧導入する噴霧器12が設けられ
ている。この噴霧器は、VGCF生成反応を効率よく行
なわせるため分散液滴を径5〜30μmの大きさとする
のがよく、それには一般にアトマイザ−が使用される。
At one end of the pyrolysis furnace 1, there is an oxyhydrogen burner 1 for heating the inside.
0 and the carrier gas 6 are introduced into the Class 1, and the organic compound 11a is sprayed into the Class 1 from a container 11 containing a liquid organic compound 11a in which a carboxylic acid salt is dissolved or dispersed to a predetermined degree a. A sprayer 12 is provided. In order to carry out the VGCF production reaction efficiently, this sprayer preferably makes the dispersed droplets have a diameter of 5 to 30 .mu.m, and an atomizer is generally used for this purpose.

本発明の方法は、安価(例えばカプリル酸鉄は800〜
900円/ka)なカルボン酸塩を用い、しかも効率よ
<VGCFの製造を可能とする。
The method of the present invention is inexpensive (for example, iron caprylate costs 800~
900 yen/ka), and enables efficient production of VGCF.

この際、カルボン酸塩は、気化法においては必要とする
蒸気圧を示す温度で安定であればよく、スプレー法では
使用する有機化合物に可溶であることが望ましい。
In this case, in the vaporization method, the carboxylate salt only needs to be stable at a temperature that provides the required vapor pressure, and in the spray method, it is desirable that it be soluble in the organic compound used.

〔実施例〕〔Example〕

次に、実施例、比較例を示して本発明を説明する。 Next, the present invention will be explained by showing examples and comparative examples.

実施例1 径100s1長さ10001Mのムライト製熱分解炉1
を有する第1図のVt置を用いて気化法によりVGCF
の製造を行なった。
Example 1 Mullite thermal decomposition furnace 1 with a diameter of 100s and a length of 10001M
VGCF is produced by vaporization using the Vt position shown in Figure 1 with
was manufactured.

原料としては、容器3にベンゼンを入れ20℃に保持し
、容器4にはカプリル酸鉄を入れて100℃に保持し、
容器5には、硫黄を入れて150℃に保持し、キャリヤ
ガス6としてH2を用い、500 cc/sinの速度
で各容器を直列に通して、反応ガスをつくり、これを1
200’Cに加熱した熱分解炉に導入した。この反応ガ
スの組成は、ベンゼン11vo1%、カプリル酸鉄1.
3vo1%、硫黄0.04vo1%であった。
As raw materials, put benzene in container 3 and keep it at 20°C, put iron caprylate in container 4 and keep it at 100°C,
Container 5 was filled with sulfur and maintained at 150°C, and H2 was used as carrier gas 6 to pass through each vessel in series at a rate of 500 cc/sin to create a reaction gas.
It was introduced into a pyrolysis furnace heated to 200'C. The composition of this reaction gas is 11% benzene and 1% iron caprylate.
The content of sulfur was 3vol%, and the sulfur content was 0.04vol%.

5分間反応ガスを流した後、炉内J3よび排出管7付近
に堆積したVGCFを集め計量したところ0.6gであ
った。これは炭素収率として約75%である。
After flowing the reaction gas for 5 minutes, the VGCF deposited in the furnace J3 and around the discharge pipe 7 was collected and weighed, and the amount was 0.6 g. This is a carbon yield of about 75%.

実施例2 径150ag、長さ1ooo履の熱分解炉を有する第2
図の装置を用いてスプレー法によってVGCFの製造を
行なった。
Example 2 A second pyrolysis furnace with a diameter of 150ag and a length of 1ooo
VGCF was produced by a spray method using the apparatus shown in the figure.

先ず、酸水素バーナ10によって熱分解炉1内を110
0〜1300℃に加熱し、2液混合型アトマイザー12
より3分間、キャリヤガス6としてH2を151/si
nで供給するとともに、カプリル酸鉄1%、硫黄0.0
5%を含むベンゼン溶液11aを容器11に入れ、これ
を10cc/sinで、5〜10μmの液滴として炉内
に供給した。
First, the inside of the pyrolysis furnace 1 is heated to 110 by the oxyhydrogen burner 10.
Heat to 0 to 1300℃ and use a two-liquid mixing type atomizer 12
151/si of H2 as carrier gas 6 for 3 minutes.
Supplied with n, iron caprylate 1%, sulfur 0.0
A benzene solution 11a containing 5% was placed in a container 11, and was supplied into the furnace as droplets of 5 to 10 μm at a rate of 10 cc/sin.

供給終了後、生成VGCFを回収、計量したところ21
gであった。
After the supply was completed, the generated VGCF was collected and weighed, and the result was 21.
It was g.

実施例3 カプリル酸鉄の代りに市販のナフテン酸鉄(塗料用に使
用する金属石けん)を用いた他は実施例2と同じにして
VGCFを生成せしめたところ2(lであった。
Example 3 VGCF was produced in the same manner as in Example 2, except that commercially available iron naphthenate (metal soap used for paint) was used instead of iron caprylate, and the amount was 2 (l).

実施例4 カプリル酸鉄の代りにエナント酸鉄を用いた他は実施例
2と同じにしてVGCFを生成せしめたところ20gで
あった。
Example 4 VGCF was produced in the same manner as in Example 2 except that iron enanthate was used instead of iron caprylate, and the amount was 20 g.

比較例1 カプリル酸の代りにフェロセンを容器3に入れこれを1
60℃に保持した他は実施例1と同じにしてVGCFを
生成せしめたところ0.6gであった。
Comparative Example 1 Put ferrocene in container 3 instead of caprylic acid and add it to container 1.
VGCF was produced in the same manner as in Example 1 except that the temperature was maintained at 60°C, and the amount was 0.6 g.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の方法は、従来シート源として
用いられている高価なフェロセンに代えて、安価なカル
ボン酸の遷移金属塩を用い、従来とほぼ同程度の生成効
率でV G CFを製造出来る優れた方法である。
As described above, the method of the present invention uses an inexpensive transition metal salt of carboxylic acid in place of the expensive ferrocene conventionally used as a sheet source, and produces V G CF with approximately the same production efficiency as the conventional method. This is an excellent method for manufacturing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明の方法を実施する装置の
例を示す図で、第1図は気化法装置の図、第2図はスプ
レー法装置の図である。 1・・・熱分解炉、2・・・ヒータ、3・・・容器、3
a・・・液体有機化合物、4・・・容器、4a・・・カ
ルボン酸遷移金属塩(カルボン酸塩)、5・・・容器、
5a・・・S等の添加物、6・・・キャリヤガス、7・
・・排出管、8・・・シート、9・・・VGCF、10
・・・酸水素バーナ、11・・・容器、11a・・・カ
ルボン酸塩を溶解した液体有機化合物、12・・・噴霧
器(2液混合型アトマイザー)。
1 and 2 are diagrams showing examples of apparatus for carrying out the method of the present invention, with FIG. 1 being a diagram of a vaporization method apparatus and FIG. 2 being a diagram of a spray method apparatus. 1... Pyrolysis furnace, 2... Heater, 3... Container, 3
a... Liquid organic compound, 4... Container, 4a... Carboxylic acid transition metal salt (carboxylate), 5... Container,
5a...Additives such as S, 6...Carrier gas, 7.
...Discharge pipe, 8... Sheet, 9... VGCF, 10
... Oxygen hydrogen burner, 11... Container, 11a... Liquid organic compound in which carboxylic acid salt is dissolved, 12... Sprayer (two-liquid mixing type atomizer).

Claims (1)

【特許請求の範囲】[Claims] 遷移金属化合物と有機化合物を熱分解炉内に導入し、遷
移金属元素の超微粒子をシートとして有機化合物の気相
熱分解により炭素遷移を製造する方法において、シート
源となる遷移金属化合物として炭素数3以上のカルボン
酸の遷移金属塩を用いることを特徴とする気相法炭素繊
維の製造法。
In this method, a transition metal compound and an organic compound are introduced into a pyrolysis furnace, and ultrafine particles of a transition metal element are used as a sheet to produce carbon transition by vapor phase pyrolysis of the organic compound. A method for producing vapor-grown carbon fiber, characterized by using a transition metal salt of three or more carboxylic acids.
JP24334786A 1986-10-14 1986-10-14 Production of carbon fiber by gas phase method Pending JPS6399326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24334786A JPS6399326A (en) 1986-10-14 1986-10-14 Production of carbon fiber by gas phase method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24334786A JPS6399326A (en) 1986-10-14 1986-10-14 Production of carbon fiber by gas phase method

Publications (1)

Publication Number Publication Date
JPS6399326A true JPS6399326A (en) 1988-04-30

Family

ID=17102477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24334786A Pending JPS6399326A (en) 1986-10-14 1986-10-14 Production of carbon fiber by gas phase method

Country Status (1)

Country Link
JP (1) JPS6399326A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8470284B2 (en) 1992-05-22 2013-06-25 Hyperion Catalysis International, Inc. Methods and catalysts for the manufacture of carbon fibrils

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8470284B2 (en) 1992-05-22 2013-06-25 Hyperion Catalysis International, Inc. Methods and catalysts for the manufacture of carbon fibrils

Similar Documents

Publication Publication Date Title
US10093545B2 (en) Method for making ferrocene-embedded multi-wall carbon nanotubes
NL2026635B1 (en) Integrated manufacturing of core-shell particles for Li-ion batteries
US7518045B2 (en) Method of preparing carbon nanocages
CN104995134B (en) Produce carbon nano-structured method and device
JP6890187B2 (en) Catalyst for mass production of multiwalled carbon nanotubes
US20090181846A1 (en) Process for preparing catalyst for synthesis of carbon nanotubes using spray pyrolysis
JP5274249B2 (en) Method for producing a solid mixture containing nanoparticulate lanthanoid / boron-compound or nanoparticulate lanthanoid / boron-compound
JP2018126705A (en) Catalyst precursor composition for the production of carbon nanotubes and method for producing the same, and method and device for producing carbon nanotubes using the catalyst precursor composition
JP2003026410A (en) Method for mass-producing carbon nanocoil
JP2015151277A (en) Production method of gas phase method fine carbon fiber
JPS6399326A (en) Production of carbon fiber by gas phase method
KR20070110739A (en) Method of manufacturing catalyst for synthesis of carbon nanotubes and apparatus for manufacturing the same
JPH02167898A (en) Production of graphite whisker
WO2023159700A1 (en) Synthesis method for superfine catalyst powder
KR20080000033A (en) Method of manufacturing catalyst for synthesis of carbon nanotubes and apparatus for manufacturing the same
CN107614426A (en) The manufacture method of carbon nanotube-containing composition
JPS61132600A (en) Whisker-shaped carbonaceous material
CN1960942B (en) Highly efficient process for producing carbon nanostructure through raw material blasting and apparatus tehrefor
JPS61225328A (en) Production of carbonaceous fiber
JP2006213590A (en) Carbon fiber aggregate composed of very fine single-wall carbon nanotube and its manufacturing method
Park et al. Parametric study on synthesis of carbon nanotubes by the vertical spray pyrolysis method
US20100143235A1 (en) Method of manufacturing carbon nanofiber and apparatus for manufacturing the same
JPS60181319A (en) Manufacture of carbon fiber by vapor-phase process
WO2023173357A1 (en) Method for synthesizing thin-walled carbon nanotube
JP2003221215A (en) Method for manufacturing carbon nanotube