JPS639930A - X-ray exposure device - Google Patents

X-ray exposure device

Info

Publication number
JPS639930A
JPS639930A JP61154390A JP15439086A JPS639930A JP S639930 A JPS639930 A JP S639930A JP 61154390 A JP61154390 A JP 61154390A JP 15439086 A JP15439086 A JP 15439086A JP S639930 A JPS639930 A JP S639930A
Authority
JP
Japan
Prior art keywords
window
transmitting window
synchrotron radiation
radiation
radiation transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61154390A
Other languages
Japanese (ja)
Other versions
JPH058854B2 (en
Inventor
Koichi Okada
浩一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61154390A priority Critical patent/JPS639930A/en
Publication of JPS639930A publication Critical patent/JPS639930A/en
Publication of JPH058854B2 publication Critical patent/JPH058854B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70983Optical system protection, e.g. pellicles or removable covers for protection of mask
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70841Constructional issues related to vacuum environment, e.g. load-lock chamber

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To prevent the breakdown and deterioration of a radiation transmitting window, and to improve reliability for a prolonged term by forming the radiation transmitting window to one part of a beam line and respectively mounting evacuating exhausting sections on the upstream side and downstream side of the transmitting window. CONSTITUTION:Emitted beams 3 introduced to a beam line 4 pass through a vibrating mirror 7 first, and pass through a radiation transmitting window 9 in a lower stream when a gate valve 8 is opened, and are lead out into atmospheric air through a radiation leading-out window 5. The radiation leading-out window 5 has a structure resisting atmospheric pressure, but the radiation transmitting window 9 fitted in front of the window 5 in order to absorb heat by emitted beams 3 hardly resists atmospheric pressure because of the main object being heat absorption. Accordingly, an evacuation section 10 having bypass structure is mounted before and behind the radiation transmitting window 9, holding the window 9, and both sides of the radiation transmitting window 9 are evacuated simultaneously on evacuation, thus extremely reducing pressure applied to the radiation transmitting window 9.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシンクロトロン放射線源を用いたX線露光装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an X-ray exposure apparatus using a synchrotron radiation source.

〔従来の技術〕[Conventional technology]

近年、サブミクロン幅パターンの高速転写技術として、
高強度X線源であるシンクロトロン放射線源を用いたX
、a露光技術が一段と脚光を浴びて、各所で精力的に研
究、開発が行われ始めた。シンクロトロン放射線源を用
いたX線露光技術は、例えば1976年に発行された刊
行物ジャーナル・オン・アプライド・フィジイクス(J
ournal of AppliedPhysics)
47巻12号、 5450〜5459頁に、あるいは1
979年に発行された刊行物アイトリプルイー・トラン
ザクションズ・オン・エレクトロン・デバイシイズ(I
EEE  TRANSACTIONS  ON  EL
ECTRON  DEVICES)HD−25巻4号、
693〜698頁に初期の項の成果が示されている。第
2図(a) 、 (b)に、従来より行われているシン
クロトロン放射線源を用いたX線露光装置の基本的概念
図を示す、第2図(a)において、電子蓄積リング1に
おけるシンクロトロン放射光源2から、シンクロトロン
放射光(以後放射光と略す)3が放射される。第2図(
b)において、ビームライン4と称される真空に保たれ
た光学系を通過した放射光3は放射光取出し窓5を通し
て、X線マスク6及びX線しジストRを塗布した被加工
物WとからなるX線露光系に導かれ、X線マスク6上に
照射された放射光3によって、X線マスク6上のパター
ンが、X線レジスト上に転写される。
In recent years, high-speed transfer technology for sub-micron width patterns has been developed.
X-rays using a synchrotron radiation source, which is a high-intensity X-ray source
, a exposure technology has become even more in the spotlight, and vigorous research and development has begun in various places. X-ray exposure techniques using synchrotron radiation sources are described, for example, in the 1976 publication Journal on Applied Physics (J
Applied Physics)
Volume 47, No. 12, pages 5450-5459, or 1
The publication I Triple E Transactions on Electron Devices, published in 1979,
EEE TRANSACTIONS ON EL
ECTRON DEVICES) HD-Volume 25 No. 4,
The results of the earlier sections are presented on pages 693-698. FIGS. 2(a) and 2(b) show basic conceptual diagrams of a conventional X-ray exposure apparatus using a synchrotron radiation source. Synchrotron radiation light (hereinafter abbreviated as synchrotron radiation) 3 is emitted from a synchrotron radiation light source 2 . Figure 2 (
In b), the synchrotron radiation 3 that has passed through an optical system kept in a vacuum called a beam line 4 passes through a synchrotron radiation extraction window 5 and passes through an X-ray mask 6 and a workpiece W coated with an X-ray resist R. The pattern on the X-ray mask 6 is transferred onto the X-ray resist by the synchrotron radiation 3 that is guided to the X-ray exposure system and irradiated onto the X-ray mask 6.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、シンクロトロン放射光源を用いたX線露光技
術は、実用を1指した研究開発が途についたばかりであ
り、解決されなければならない問題点は山積している。
By the way, the research and development of X-ray exposure technology using a synchrotron radiation light source with a view to putting it into practical use has just begun, and there are many problems that need to be solved.

特に電子蓄積リング1.ビームライン4等から構成され
るX線露光システムの構造に係わる課題が多数残されて
いる。特にビームラインの構造において、真空破壊の防
御対策あるいはシンクロトロンの熱吸収のため、放射光
透過窓を用いる必要がある。すなわちビームラインの最
下端に設置されている放射光取出し窓は、通常、構成上
大気圧を受けていることが多く、また、一方では放射光
を十分に透過させるという必要があるため、放射光取出
し窓としては厚さ数十〜100−のBe箔が用いられる
ことが多い、このため、Be窓は大気圧に対する耐性と
、放射光による熱に対する耐性とを同時に有する必要が
ある。これは熱の発生によっても、熱応力によって圧力
(大気圧)に対する耐性が劣化するためである。放射光
は強度が強い反面、Be窓での熱の発生も多く、Bs窓
の大気圧に対する耐性を劣化させる。これに対する対策
として、ビームラインの途中に放射光透過窓を設けるの
が有効である。この放射光透過窓によって放射光の熱を
吸収することができる。
Especially electron storage ring 1. Many issues remain regarding the structure of the X-ray exposure system including the beam line 4 and the like. In particular, in the structure of a beam line, it is necessary to use synchrotron radiation transmitting windows to protect against vacuum breakdown or to absorb synchrotron heat. In other words, the synchrotron radiation extraction window installed at the lowest end of the beam line is usually exposed to atmospheric pressure due to its configuration, and on the other hand, it is necessary to sufficiently transmit the synchrotron radiation. Be foil with a thickness of several tens to 100 mm is often used as the extraction window. Therefore, the Be window needs to have resistance to atmospheric pressure and resistance to heat generated by radiated light at the same time. This is because resistance to pressure (atmospheric pressure) deteriorates due to thermal stress caused by the generation of heat. Although the synchrotron radiation has high intensity, it also generates a lot of heat in the Be window, which deteriorates the resistance of the Bs window to atmospheric pressure. As a countermeasure against this, it is effective to provide a synchrotron radiation transmitting window in the middle of the beam line. The heat of the radiation can be absorbed by the radiation transmission window.

しかしながら、放射光透過窓を設けると放射光強度を弱
めてしまうので、十分に薄くする必要がある。そのため
、放射光透過窓は圧力に対して十分な耐性を有していな
いことが多い、ビームラインは真空系で構成されており
、真空排気操作時の排気操作によって放射光透過窓を破
損させてしまうという事故が生じることも多い、このよ
うな事故は、放射光を用いたX線露光装置を長期的に安
定に使用するという観点からは、致命的なダメージを与
える。このような理由から放射光を利用したX線露光装
置を実用化するためには、放射光透過窓を破壊しないで
運用できる対策を講じることが必要不可欠である。
However, since providing a radiation transmitting window weakens the radiation intensity, it is necessary to make it sufficiently thin. Therefore, synchrotron radiation transmission windows often do not have sufficient resistance to pressure. Beam lines are constructed in a vacuum system, and the synchrotron radiation transmission windows may be damaged during evacuation operations. Accidents such as storage and storage often occur, and such accidents can cause fatal damage from the standpoint of long-term stable use of X-ray exposure equipment that uses synchrotron radiation. For these reasons, in order to put an X-ray exposure apparatus that uses synchrotron radiation into practical use, it is essential to take measures to enable operation without destroying the synchrotron radiation transmission window.

本発明の目的は上記従来の問題点を除去し、放射光透過
窓の破壊及び劣化を防ぎ長期信頼性を有するX線露光装
置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned conventional problems and to provide an X-ray exposure apparatus that prevents destruction and deterioration of the radiation transmitting window and has long-term reliability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上流のシンクロトロン放射光源から放射される
シンクロトロン放射光を、ビームラインを経由してビー
ムラインの先端に設置された放射光取出し窓から取出し
、最下流のX線マスク及びX線レジストが塗布された被
加工物に照射するX線露光装置において、前記ビームラ
インの一部に放射光透過窓を有し、該放射光透過窓の上
流側及び下流側に各々真空排気する排気部を設けたこと
を特徴とするX線露光装置である。
The present invention extracts synchrotron radiation light emitted from an upstream synchrotron radiation light source through a beam line and from a synchrotron radiation extraction window installed at the tip of the beam line. An X-ray exposure apparatus that irradiates a workpiece coated with a synchrotron radiation, which has a synchrotron radiation transmitting window in a part of the beam line, and has evacuation sections upstream and downstream of the synchrotron radiation transmitting window, respectively. This is an X-ray exposure apparatus characterized by the following.

〔実施例〕〔Example〕

以下本発明の実施例について、図面を参照しながら説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図に本発明の一実施例を示す。第1図において、放
射光3は第2図(a)に示すシンクロトロン放射光源2
より放射され、これがビームライン4に導入される。ビ
ームライン4に導入された放射光3は、まず振動ミラー
7を通り、ゲートバルブ8が開のとき、より下流の放射
光透過窓9を通り、放射光取出し窓5を通って大気中に
取出される。
FIG. 1 shows an embodiment of the present invention. In FIG. 1, synchrotron radiation 3 is synchrotron radiation light source 2 shown in FIG. 2(a).
This is introduced into the beam line 4. The synchrotron radiation 3 introduced into the beam line 4 first passes through the vibrating mirror 7, and when the gate valve 8 is open, passes through the synchrotron radiation transmitting window 9 located further downstream, and is extracted into the atmosphere through the synchrotron radiation extraction window 5. be done.

大気中に取出された放射光3が、X線マスク6を通して
X線しジストRを塗布した被加工物Wに照射される。放
射光取出し窓5は大気圧に耐える構造を有しているが、
放射光3による熱を吸収するために、その前方に放射光
透過窓9が設けられている。放射光透過窓9は、熱吸収
が主目的であるため大気圧の耐性は不要である。そのた
めかなり薄くして放射光の必要波長の強度の劣化は防ぐ
ことができる。放射光透過窓9の材料としては、Be箔
、 Si膜、SiN膜、SiC膜等がある。ところで、
放射光透過窓9は圧力に対する耐性がないため、取扱い
には厳重に注意をする必要がある。特に、真空排気時の
放射光透過窓への加圧が事故につながることが多い、そ
こで本発明では、放射光透過窓9をはさんでその前後に
バイパス構造の真空排気部10を設けたものである。真
空排気の際には、放射光透過窓9の両側、すなわちすぐ
上流及び下流を同時に排気することによって、放射光透
過窓9に加わる圧力を極めて軽減することができる。こ
のようなバイパス構造を有する真空排気部10による真
空排気は、装置の立上げのときにおいて特に有効である
。すなわち、装置の立上げ前には、放射光透過窓9の上
流側、下流側はともに大気圧であり、放射光透過窓9に
加わる圧力は零の状態である。真空排気部10を通じて
の真空排気によって放射光透過窓9の上流側及び下流側
の両側から真空引きを行うため、放射光透過窓9に対し
て圧力が加わることはない。
The synchrotron radiation 3 taken out into the atmosphere is irradiated with X-rays through an X-ray mask 6 and onto a workpiece W coated with a resist R. Although the synchrotron radiation extraction window 5 has a structure that can withstand atmospheric pressure,
In order to absorb the heat generated by the radiation 3, a radiation transmission window 9 is provided in front thereof. Since the main purpose of the radiation transmitting window 9 is to absorb heat, resistance to atmospheric pressure is not required. Therefore, it is possible to prevent the intensity of the required wavelength of the synchrotron radiation from deteriorating by making it considerably thinner. Materials for the radiation transmitting window 9 include Be foil, Si film, SiN film, SiC film, and the like. by the way,
Since the radiation transmitting window 9 has no resistance to pressure, it must be handled with great care. In particular, pressurization of the synchrotron radiation transmitting window during evacuation often leads to accidents. Therefore, in the present invention, a vacuum evacuation section 10 with a bypass structure is provided before and after the synchrotron radiation transmitting window 9. It is. During evacuation, the pressure applied to the synchrotron radiation transmission window 9 can be significantly reduced by simultaneously evacuating both sides of the synchrotron radiation transmission window 9, that is, immediately upstream and downstream thereof. Evacuation by the evacuation section 10 having such a bypass structure is particularly effective when starting up the apparatus. That is, before the apparatus is started up, both the upstream and downstream sides of the synchrotron radiation transmitting window 9 are at atmospheric pressure, and the pressure applied to the synchrotron radiation transmitting window 9 is in a state of zero. Since evacuation is performed through the evacuation section 10 from both the upstream and downstream sides of the synchrotron radiation transmitting window 9, no pressure is applied to the synchrotron radiation transmitting window 9.

放射光透過窓9とバイパス構造を有する真空排気部10
とから構成される機構部の設置場所については、第1図
の放射光取出し窓5のすぐ上流に限定する必要はない0
例えば、第1図の振動ミラー7の上流に置くことも有効
である。この場合には、放射光照射によるミラーからの
放出ガスが振動ミラーより上流に流入することを防ぐこ
とができるメリットも兼ねることができ、る。
Vacuum exhaust section 10 having a synchrotron radiation transmission window 9 and a bypass structure
There is no need to limit the installation location of the mechanism section consisting of and immediately upstream of the radiation extraction window 5 in FIG.
For example, it is also effective to place it upstream of the vibrating mirror 7 in FIG. In this case, there is also the advantage that gas released from the mirror due to radiation of synchrotron radiation can be prevented from flowing upstream from the vibrating mirror.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、シンクロトロン放
射光を通過させて露光部に導くビームラインの信頼性を
向上し、シンクロトロン放射光を用いたX線露光装置の
実用化に大きく寄与できる効果を有する。
As explained above, according to the present invention, the reliability of the beam line through which synchrotron radiation passes and guides it to the exposure section can be improved, and it can greatly contribute to the practical application of X-ray exposure equipment using synchrotron radiation. have an effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す放射光透過窓及びバイ
パス構造を有する真空排気部の構造図、第2図(a)は
シンクロトロン放射線源の要部斜視図、(b)は従来の
ビームライン露光系の断面図である。
FIG. 1 is a structural diagram of a vacuum evacuation section having a synchrotron radiation transmission window and a bypass structure showing an embodiment of the present invention, FIG. 2(a) is a perspective view of the main part of a synchrotron radiation source, and FIG. 2(b) is a conventional FIG. 3 is a cross-sectional view of the beam line exposure system of FIG.

Claims (1)

【特許請求の範囲】[Claims] (1)上流のシンクロトロン放射光源から放射されるシ
ンクロトロン放射光を、ビームラインを経由してビーム
ラインの先端に設置された放射光取出し窓から取出し、
最下流のX線マスク及びX線レジストが塗布された被加
工物に照射するX線露光装置において、前記ビームライ
ンの一部に放射光透過窓を有し、該放射光透過窓の上流
側及び下流側に各々真空排気する排気部を設けたことを
特徴とするX線露光装置。
(1) Synchrotron radiation emitted from an upstream synchrotron radiation light source is extracted from a synchrotron radiation extraction window installed at the tip of the beam line via a beam line,
In an X-ray exposure apparatus that irradiates a workpiece coated with an X-ray mask and an X-ray resist at the most downstream side, a part of the beam line has a synchrotron radiation transmitting window, and the upstream side of the synchrotron radiation transmitting window and An X-ray exposure apparatus characterized in that an exhaust section for evacuation is provided on the downstream side.
JP61154390A 1986-06-30 1986-06-30 X-ray exposure device Granted JPS639930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61154390A JPS639930A (en) 1986-06-30 1986-06-30 X-ray exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61154390A JPS639930A (en) 1986-06-30 1986-06-30 X-ray exposure device

Publications (2)

Publication Number Publication Date
JPS639930A true JPS639930A (en) 1988-01-16
JPH058854B2 JPH058854B2 (en) 1993-02-03

Family

ID=15583089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61154390A Granted JPS639930A (en) 1986-06-30 1986-06-30 X-ray exposure device

Country Status (1)

Country Link
JP (1) JPS639930A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0462756A2 (en) * 1990-06-19 1991-12-27 Canon Kabushiki Kaisha X-ray exposure apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0462756A2 (en) * 1990-06-19 1991-12-27 Canon Kabushiki Kaisha X-ray exposure apparatus

Also Published As

Publication number Publication date
JPH058854B2 (en) 1993-02-03

Similar Documents

Publication Publication Date Title
CA1246759A (en) X-ray lithography system
JPS61158656A (en) Filter apparatus and method for using x ray equipment
EP0422814A2 (en) Exposure apparatus
JPS639930A (en) X-ray exposure device
JP3118933B2 (en) X-ray exposure equipment
US5170418A (en) X-ray exposure apparatus
JPS62296516A (en) X-ray exposure device
JPS62291028A (en) X-ray exposure device
JPS62296515A (en) X-ray exposure device
JPH0426206B2 (en)
JP3176216B2 (en) X-ray window
US7068347B2 (en) Apparatus for reducing pellicle darkening
ATE207235T1 (en) ELECTRON BEAM SYSTEM
JPH01225118A (en) X-ray exposure device
JPH0511651B2 (en)
JPH0511920B2 (en)
JPS61273294A (en) Laser marking device
JPH04124500U (en) Electron beam irradiation device
JPS5913336A (en) X-ray exposure device
Turcu et al. Calibration of an excimer laser-plasma source for X-ray lithography
JPH10275764A (en) X-ray aligner
JPH0355799A (en) Sor light absorber for sor device
JPS60224223A (en) X-ray exposure method
JPH02109299A (en) X-ray generator of lazor excitation type
JPS60225426A (en) Plasmic x-ray exposure equipment