JPS6399000A - Plasma jet flame-coater - Google Patents

Plasma jet flame-coater

Info

Publication number
JPS6399000A
JPS6399000A JP61244854A JP24485486A JPS6399000A JP S6399000 A JPS6399000 A JP S6399000A JP 61244854 A JP61244854 A JP 61244854A JP 24485486 A JP24485486 A JP 24485486A JP S6399000 A JPS6399000 A JP S6399000A
Authority
JP
Japan
Prior art keywords
thermal spraying
cylindrical body
nozzle
oxidizing gas
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61244854A
Other languages
Japanese (ja)
Inventor
前川 信治
吉雄 難波
佐藤 義智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP61244854A priority Critical patent/JPS6399000A/en
Publication of JPS6399000A publication Critical patent/JPS6399000A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は大気中に設けられた被処理体に溶射材料を溶射
するプラズマジェット溶射装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a plasma jet thermal spraying apparatus for spraying a thermal spraying material onto a workpiece placed in the atmosphere.

〔従来の技術〕[Conventional technology]

周知のように溶射は被処理体に高度な耐熱性。 As is well known, thermal spraying provides a high degree of heat resistance to the object being treated.

耐摩耗性、耐腐蝕性などの性質を付与する念めに行なわ
れる。従って、溶射皮膜に要求される点は被処理体と溶
射皮膜との強い密着力、溶射皮膜を形成する溶射粒子間
の強い固着力であり、さらには高度な均質性、緻密性で
あるといえる。また、これら溶射製品の耐熱性、耐摩耗
性、@舖触性などの性質が優れている九めに、近年では
その使用範囲が益々拡大され、耐熱性、耐摩耗性、耐腐
蝕性などが優れると同時に安価な溶射製品が大量に要求
されるようになってきている。このような社会的要求に
応えるため種々の工夫が凝されたプラズマジェット溶射
装置が開発されて、それらの溶射装置により各種溶射材
料を溶射した溶射製品が生産されている。それらの装置
の中で第5図に示すプラズマジェット溶射装置を取上げ
て以下に説明する。
This is done to give properties such as wear resistance and corrosion resistance. Therefore, it can be said that what is required of a thermal spray coating is strong adhesion between the object to be treated and the thermal spray coating, strong adhesion between the spray particles that form the thermal spray coating, and a high degree of homogeneity and density. . In addition, these thermal sprayed products have excellent properties such as heat resistance, abrasion resistance, and tactility. There is a growing demand for thermal spray products that are both superior and inexpensive. In order to meet such social demands, plasma jet thermal spraying apparatuses with various innovations have been developed, and thermal sprayed products are produced by spraying various thermal spraying materials using these thermal spraying apparatuses. Among these devices, the plasma jet thermal spraying device shown in FIG. 5 will be described below.

この第5図に示す溶射装置の詳細は以下に説明するとお
りである。即ち、外筒(10t)と、核外筒(401)
の内部に遊嵌される内筒(102)とを有し、前記内筒
(102)には、その先端部にノズA/(103)が他
端に貫通孔(104)がそれぞれ形成されるとともK、
前記ノズル(103)と貫通孔(104)との間にプラ
ズマ発生室(105)が形成され、該プラズマ発生室(
1o s)にはプラズマ用ガス供給の念めの前記プラズ
マ発生室(105)に通ずるプラズマガス供給口(10
6)が設けられ、さらて前記プラズマ発生室(1o s
)には前記貫通孔(104)を通して同町通孔(lO4
)とN1気絶縁された陰極の電極棒(t O7)が同電
極棒先端(108)と前記プラズマ発生室(t OS)
内側のノズル開口部(1(17))との間に一定の間隔
を隔てて挿通され、前記外筒(101)と内筒(t O
2)とによって画成される空間は密封されて冷却室(1
10)とされ、該冷却室(110)の外部には冷却水給
排のための前記冷却室(110)内に通ずる冷却水供給
口(1t t)と冷却水排出口(t 12)および通電
のための陽極の電極(113)がそれぞれ設けられ、さ
らに前記ノズA/(103)の前部に溶射材料供給のた
めのm吋材料供給口(114)を有するとともに、その
先端が開口する筒状体(1t 5)が前記ノズ/!/(
103)と同心に設けられ念プラズマジェット溶射装肯
において、図示省略しであるが、大気の排気手段、非酸
化性ガス供給子役、内圧を大気圧より低圧の一定圧力に
保持する手段、′$処理体の挿入と取出し開口部並びに
その開口部の密封手段をそれぞれ具備する気密室(10
0)を設け、該気密室(10のの外部から溶射装置の先
端側である筒状体(115)を前記気密室(100)の
内部に向けて挿通し、かつ前記気密室(lOO)の壁と
気密保持可能に設けるとともに、前記気密室(1o o
)内に収納される等射材料供給口(114)などに対す
る供給手段は気密室(loo)の壁を貫通して気密保持
可能に設けられる。
Details of the thermal spraying apparatus shown in FIG. 5 will be explained below. That is, the outer cylinder (10t) and the nuclear outer cylinder (401)
The inner cylinder (102) has a nozzle A/(103) at its tip and a through hole (104) at its other end. Tomo K,
A plasma generation chamber (105) is formed between the nozzle (103) and the through hole (104), and the plasma generation chamber (
1 o s) has a plasma gas supply port (105) connected to the plasma generation chamber (105) for supplying plasma gas.
6) is provided, and the plasma generation chamber (1o s
) through the through hole (104) to the same town hole (lO4
) and the cathode electrode (tO7) insulated with N1 air are connected to the tip of the same electrode (108) and the plasma generation chamber (tOS).
The outer cylinder (101) and the inner cylinder (t O
The space defined by the cooling chamber (1) and
10), and on the outside of the cooling chamber (110) there are a cooling water supply port (1t t) and a cooling water outlet (t 12) that communicate with the inside of the cooling chamber (110) for supplying and discharging cooling water, as well as energization. The nozzle A/(103) has an m-inch material supply port (114) for supplying thermal spray material at the front of the nozzle A/(103), and a cylinder whose tip is open. The shaped body (1t 5) is the nozzle/! /(
Although not shown in the plasma jet thermal spraying equipment installed concentrically with 103), atmospheric exhaust means, a non-oxidizing gas supply element, means for maintaining the internal pressure at a constant pressure lower than atmospheric pressure, '$ An airtight chamber (10
0) is provided, and the cylindrical body (115), which is the tip side of the thermal spraying device, is inserted from the outside of the airtight chamber (10) toward the inside of the airtight chamber (100), and the airtight chamber (lOO) is The airtight chamber (1o o
A supply means for the isotropic material supply port (114) etc. housed in ) is provided so as to penetrate the wall of the airtight room (LOO) so as to be airtight.

このような構成の等射装置で被処理体(15o)に溶射
を行なうのであるが、その際には先ず気密室(100)
内に被処理体(xso)を溶射装置に対して一定の間隔
を隔てて、その溶射装置の中心に対して直角に、かつ一
定の速度で移動可能に設けるとともに、済対中に溶射材
料の溶帛体の酸化を防ぐ念めに、気密室(+oo)に充
満している大気を数十トールから数百トールの低圧の非
酸化性ガスと置換するのである。そうして非酸化性ガス
が充満され意気密室(100)の中で被処理体(150
)に向って既知の方法で発生させ念プラズマジェットと
ともに溶射材料のW!J融体を筒状体(115)の先端
開口部から噴射して、酸化物の介在が少ない溶射皮膜を
形成させるようにし之プラズマジェット溶射装置テある
The iso-spraying apparatus with such a configuration is used to spray the object to be treated (15o), but at that time, first the airtight chamber (100) is
The object to be treated (XSO) is installed at a fixed distance from the thermal spraying device and movable at a constant speed perpendicular to the center of the thermal spraying device. In order to prevent oxidation of the melt, the atmosphere filling the airtight chamber (+oo) is replaced with non-oxidizing gas at a low pressure of several tens to hundreds of torr. Then, the object to be processed (150
) of the thermal spraying material along with a plasma jet generated by a known method! There is a plasma jet thermal spraying apparatus in which the J melt is injected from the tip opening of the cylindrical body (115) to form a thermally sprayed coating with less oxides.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

溶射製品の品質を評価する被処理体と溶射皮膜の密着力
や溶射皮膜を形成する溶射粒子間の固着力に最も悪影響
を及ぼす原因の一つとされる溶射皮膜中に介在される酸
化物の量を少なくするため、被処理体の周囲の酸素を含
む大気を排除する工夫がなされ念前項において説明し念
プラズマジェット溶射装置ておいても、なお以下に説明
する数々の問題点を有しているのである。
The amount of oxides present in a thermal sprayed coating is considered to be one of the causes that have the most negative effect on the adhesion between the thermal sprayed coating and the object to be treated, which evaluates the quality of thermal sprayed products, and on the adhesion between the sprayed particles that form the thermal sprayed coating. In order to reduce the amount of heat generated by plasma jet spraying, measures have been taken to eliminate the oxygen-containing atmosphere around the object to be treated, and even with the plasma jet thermal spraying equipment described in the previous section, there are still a number of problems as explained below. It is.

即ち、被処理体を気密室内に設けて溶射を行なう装置で
ある念め、被処理体の大きさに対する制限が厳しいばか
シでなく、処理済みの被処理体と未処理の被処理体との
入換作業や気密室内の大気と非酸化性ガスとの同換作築
をも必要とするので大量生産に適さないと同時に溶射製
品の高コスト化、溶射装置全体の大型化、複雑化、取扱
いの困帷化を余儀なくされる一方、被処理体がプラズマ
ジェットの高温によシ非常に高温度となるため被処理体
の材質に厳しい制限が加えられるとともに、溶射へ品の
ひずみ発生の問題も生ずるのであるつ七ら【、溶射中に
噴射されるfR融体の中には溶射材料の紳点の相違によ
って30〜50%にも及ぶ半fR融体、即ち外部は溶融
しているが内部は固体のま\の状態である半溶融体が混
在されており、従ってこの半溶融体の一部は溶射皮膜に
付着されるのである、学界融体が付着し念″!\溶射皮
嘆が形成されると被処理体と溶射皮膜の剥離現黛が発生
したり、多孔質(11)となる之め可能な限り除去され
なければならないが、デフズマジェットノ勢いのみでは
必ずしも十分に除去できない之め、十分に均質で緻密な
溶射皮膜が得られないプラズマジェット溶射装置なので
ある。従って1本発明は第5図で説明した従来の技術に
よるプラズマジェット溶射装置が未解決のま−抱えてい
るこのような問題点を解決し、被処理体の大きさに対す
る制限が少なく、大量生産に適すると同時に低コストで
、被処理体と溶射皮膜の強い密着力、溶射皮膜を形成す
る溶射粒子間の強い同着力を有する溶射製品が得られ、
かつ小型化、ff単化、取扱いの容易化が計られたプラ
ズマジェット溶射装置の桿供を目(11)とする。
In other words, since this is a device that performs thermal spraying with the object to be treated inside an airtight chamber, there are no strict restrictions on the size of the object to be treated; Since it requires replacement work and the simultaneous exchange of air and non-oxidizing gas in an airtight chamber, it is not suitable for mass production, and at the same time increases the cost of thermal sprayed products and increases the size and complexity of the entire thermal spraying equipment, making it difficult to handle. At the same time, strict restrictions are placed on the material of the object to be treated because the temperature of the object to be treated becomes extremely high due to the high temperature of the plasma jet, and there is also the problem of distortion of the product during thermal spraying. This is because the fR molten material injected during thermal spraying can reach 30 to 50% of the fR molten material, which is molten on the outside but inside, depending on the difference in the thermal spray material. is mixed with a semi-molten material that is in a solid state, and therefore a part of this semi-molten material is attached to the thermal spray coating. When formed, the thermal spray coating may peel off from the object to be treated, or become porous (11), so it must be removed as much as possible, but it cannot always be removed sufficiently with the force of the defsma jet alone. Therefore, the plasma jet thermal spraying apparatus cannot produce a sufficiently homogeneous and dense thermal spray coating.Therefore, the present invention addresses the unsolved problems faced by the conventional plasma jet thermal spraying apparatus as explained in FIG. By solving these problems, there are fewer restrictions on the size of the object to be treated, making it suitable for mass production and at low cost. A thermal sprayed product with strong adhesion is obtained,
The object (11) is a rod for a plasma jet thermal spraying device which is designed to be smaller, have a single FF, and be easier to handle.

〔問題点を解決するための手段〕[Means for solving problems]

一木発明のプラズマジェット溶射装置は、被処理体に馬
射材料を溶射している間、非酸化性ガスを噴射する手段
を具備させることによって前項で説明した各行の問題点
解決を計ったのであシ、従って本発明の特徴とするとこ
ろは、外筒(1)と、該外筒(1)の内部に遊嵌される
内筒(2)とを有し、前記内筒(2)には、その先端部
にノズル(8)が他端に貫通孔(4)がそれぞれ形成さ
れるとともに、前記ノズル(81と貫通孔(4)との間
にプラズマ発生室(5)が形成され、該プラズマ発生室
(5)にはプラズマ用ガス供給の念めの前記プラズマ発
生室(5)に通ずるプラズマガス供給口(6)が設けら
れ、さらに前記プラズマガス全主室(5)には前記貫通
孔(4)を通して同に通孔(4)と電気?縁された陰極
の電榎棒(γ)が同電極棒先端(8)と前記プラズマ発
生室(5)内側のノズル開口部(9)との間に一定の間
隔を隔てて挿通され、前記外筒(1)と内筒(2)とに
よって画成される空間は密封されて冷却室軸とされ、該
冷却室笥の外部には冷却水給排のための前記冷却室00
に通ずる冷却水供給口011と冷却水排出口0および通
電の念めの陽極のN、極(13)がそれぞれ設けられ、
さらに前記ノズル(3)の前部に各射材料供給の念めの
溶射材料供給口Q4)を有するとともに、その先端が開
口する筒状体α9が前記ノズ〜(8)と同心に設けられ
次プフズマジェット屏射装置において、前記筒状体α9
の外径よりも内径が大きく非酸化性ガス供給のための非
酸化性ガス供給口qGを有するとともに、その先端が開
口する保護筒αηを前記筒状体aF9と同心に設けて、
前記筒状体a9の外周面と保護筒α力の内周面との間に
筒状の空間である非酸化性ガス通路(19を形成させる
ととも【、前記筒状体口9と保Fjfi7/rαカ両筒
の開口部側をともに同角度で外方に向って次第に径を拡
大して80〜toneの開口角を有するラッパ状の噴射
口(11を形成させたところにあるのである。
The plasma jet thermal spraying device invented by Ichiki solved the problems described in the previous section by providing a means for injecting non-oxidizing gas while spraying the ejection material onto the object to be treated. A feature of the present invention is that it has an outer cylinder (1) and an inner cylinder (2) that is loosely fitted inside the outer cylinder (1), and that the inner cylinder (2) has a has a nozzle (8) at its tip and a through hole (4) at the other end, and a plasma generation chamber (5) between the nozzle (81 and the through hole (4)), The plasma generation chamber (5) is provided with a plasma gas supply port (6) communicating with the plasma generation chamber (5) for supplying plasma gas, and furthermore, the plasma gas main chamber (5) is provided with a plasma gas supply port (6) for supplying plasma gas. Through the through hole (4), the cathode electric rod (γ), which is electrically connected to the through hole (4), connects the electrode rod tip (8) and the nozzle opening (9) inside the plasma generation chamber (5). ), the space defined by the outer cylinder (1) and the inner cylinder (2) is sealed to form the cooling chamber shaft, is the cooling chamber 00 for supplying and discharging cooling water.
A cooling water supply port 011, a cooling water discharge port 0, and an anode N pole (13) for energization are provided, respectively.
Furthermore, the nozzle (3) has a thermal spray material supply port Q4) for supplying each spray material in the front part, and a cylindrical body α9 whose tip is open is provided concentrically with the nozzle (8). In the Pfusmajet screen projection device, the cylindrical body α9
A protective cylinder αη having a non-oxidizing gas supply port qG for supplying non-oxidizing gas and having an inner diameter larger than the outer diameter of the protective cylinder αη and having an open end is provided concentrically with the cylindrical body aF9,
A non-oxidizing gas passage (19), which is a cylindrical space, is formed between the outer circumferential surface of the cylindrical body a9 and the inner circumferential surface of the protective cylinder α. /rα is located at the point where the diameter of the opening side of both cylinders is gradually expanded outward at the same angle to form a trumpet-shaped injection port (11) having an opening angle of 80 to tone.

〔作 用〕[For production]

本発明になるプラズマジェット溶射装置において、溶射
装置と一定の間隔を隔てて、かつ移動可能に設けられた
大気中の被処理体に向って、既知の方法でプラズマジェ
ットとともに溶射材料の溶融体を噴射するとともに、非
酸化性ガスを非酸化性ガス供給口aOから供給して、非
酸化性ガス通路(至)を通して80〜100度の間の開
口角を持っラッパ状に形成された筒状体a9と保護筒α
η両筒先端の噴射口0!lから高速で、かつ80〜10
0度の間の広がシを持つスカート状の非酸化性ガスを噴
射すると、被処理体間の醇射部位とその周囲−帯に介在
する酸素を含む大気を効果的に遮断、排除する之め、溶
射皮噂中に含まれる酸化物の生成を極少とするよう働く
のである。本発明の筒状体osと保巧筒aη両筒先端の
ラッパ状の開口角80〜100度の値は以下に説明する
各調査で決定され念のである。即ち、筒状体(17)と
保護筒a′?I両筒の開口部側の開口角をθ度、60度
、90度、120度および140度の6種類とし、そう
してそれらのそれぞれに対して、大気中で筒状体a9と
保護筒M両筒の先端とl Q rnmの間隔を隔てて、
溶射装置に対して直角に、かつ1000m/秒の一定速
度で移動している被処理体ωに向けて、既知の方法でプ
ラズマジェットを発生させ、溶射材料供給口q噂から溶
射材料として扮末状のFe−13cr系材料を3115
+の割合で供給してプラズマジェットトトもに筒状体0
1の開口部から噴射する一方、非酸化性ガス供給口q0
から非酸化性ガスの一棹であるアルゴンガスを50e/
分の割合で供給して、非酸化性ガス通路n秒を通して非
酸化性ガス噴射口n傷から高速で、筒状体q9と保護筒
α力両筒の開口部側の開口角が0度の場合には筒状の、
ま念その開口角が60度、90度、120度および14
0度の場合にはそれぞれ前記角度の広がシを持つスカー
ト状のアルゴンガスを噴射させて、被処理体FflKF
s−13cr 系材料の溶射皮膜を形成させた。そうし
て、それぞれの溶射皮膜中に含まれる酸素の重量を化学
分析によシ求め、さらに重埼%に換算して、前記開口部
に対応する溶射皮膜中に含まれる酸素の電縫%をプロッ
トして示したのが第3図である。この第3図によれば前
記開口角が90変の場合に溶射皮膜中に含まれる酸素の
1嘴%が最低になることが判るとともに、その開口角が
80〜100変の範囲であればはソ同等であることも判
るのである。こうして、筒状体(17)と保護筒面両部
の開口部側の開口角を80〜100度の範囲に設定した
のである。
In the plasma jet thermal spraying apparatus according to the present invention, a molten body of thermal spraying material is sprayed together with a plasma jet by a known method toward an object to be treated in the atmosphere, which is movably provided at a fixed distance from the thermal spraying apparatus. At the same time, the non-oxidizing gas is supplied from the non-oxidizing gas supply port aO, and the non-oxidizing gas passage (to) is passed through a trumpet-shaped cylindrical body with an opening angle between 80 and 100 degrees. a9 and protection tube α
η Injection port at the tip of both cylinders is 0! l to high speed, and 80 to 10
Injecting a skirt-shaped non-oxidizing gas with a spread between 0 degrees effectively blocks and eliminates the oxygen-containing atmosphere that exists in the infusion site between the objects to be treated and its surrounding zone. Therefore, it works to minimize the formation of oxides contained in sprayed skin. The value of the trumpet-shaped opening angle of 80 to 100 degrees at the tip of both the cylindrical body os and the maintenance tube aη of the present invention is determined by each investigation described below. That is, the cylindrical body (17) and the protective tube a'? The opening angles on the opening side of both cylinders are set to θ degrees, 60 degrees, 90 degrees, 120 degrees, and 140 degrees, and for each of them, the cylindrical body a9 and the protective tube are connected in the atmosphere. With a distance of l Q rnm between the tips of both M cylinders,
A plasma jet is generated by a known method toward the object to be treated ω, which is moving at a constant speed of 1000 m/s at a right angle to the thermal spraying device, and is disguised as a thermal spray material from the rumored thermal spray material supply port q. Fe-13cr material of 3115
Supply the plasma jet at a ratio of 0 to the cylindrical body.
1, while the non-oxidizing gas supply port q0
Argon gas, which is a non-oxidizing gas, was added at 50e/
The non-oxidizing gas is supplied through the non-oxidizing gas passage for n seconds from the non-oxidizing gas injection port at high speed until the opening angle on the opening side of the cylindrical body q9 and the protective cylinder α is 0 degrees. In some cases, cylindrical,
Please note that the opening angle is 60 degrees, 90 degrees, 120 degrees and 14 degrees.
In the case of 0 degrees, a skirt-shaped argon gas having the above-mentioned angle spread is injected, and the object to be processed FflKF is
A thermal spray coating of s-13cr type material was formed. Then, the weight of oxygen contained in each thermal sprayed coating was determined by chemical analysis, and further converted to weight percent to determine the resistance welding percentage of oxygen contained in the thermal sprayed coating corresponding to the opening. Figure 3 shows the plot. According to FIG. 3, it can be seen that when the aperture angle is 90 degrees, the 1 beak% of oxygen contained in the sprayed coating is the lowest, and if the aperture angle is in the range of 80 to 100 degrees, It can also be seen that it is equivalent to the Soviet Union. In this way, the opening angles of both the cylindrical body (17) and the protective cylindrical surface on the opening side are set in the range of 80 to 100 degrees.

ま之、この80〜100度の開口角を持つ筒状体a9と
保挿筒αカ両筒開ロ部先端のラッパ状の噴射口l′I9
からスカート状の広がシを持って噴射するアルゴンガス
はプラズマジェットとともにm状体av開口部から溶射
材料の完全溶融体と混在されて噴射され、被処理体(至
)の溶射部位に付着する半溶融体をその溶射部位よシ除
去し、半溶融体の介在が非常に少iい溶射皮膜を形成さ
せる。さらに前記アルゴンガスはプラズマジェットの高
温に晒されて非常に高温度となる被処理体の溶射部位と
その周辺−帯の温度を効果的に冷却するのである。
However, this cylindrical body a9 with an opening angle of 80 to 100 degrees and the maintenance tube α have a trumpet-shaped injection port l'I9 at the tip of the opening part of the tube.
The argon gas, which is injected with a skirt-like spread, is mixed with the completely molten material of the thermal spraying material and is injected from the AV opening of the m-shaped body together with the plasma jet, and it adheres to the thermal spraying site of the object to be treated. The semi-molten material is removed from the sprayed area to form a thermal sprayed coating with very little intervening semi-molten material. Furthermore, the argon gas effectively cools down the temperature of the sprayed area of the object to be treated and its surrounding zone, which are exposed to the high temperature of the plasma jet and become very high in temperature.

〔実施例〕〔Example〕

この発明の実施例を、図面を参照しながら以下に説明す
る。
Embodiments of the invention will be described below with reference to the drawings.

第1実施例 本発明の実施例は、ブツズマジェット溶射装置の断面を
示す第1図、筒状体と第1保護筒両簡の開口部側先端の
ラッパ状の開口角の変化に対する溶射皮膜中に含まれる
酸素の重量%の関係を示す第3図とにより説明する。
First Embodiment An embodiment of the present invention is shown in Fig. 1 showing a cross section of the Butsuma Jet thermal spraying device, and a thermal spray coating for changes in the trumpet-shaped opening angle at the opening side tip of the cylindrical body and the first protective cylinder. This will be explained with reference to FIG. 3, which shows the relationship between the weight percent of oxygen contained therein.

即ち、本発明のブヲズマジェット溶吋装置は、外筒(1
)と、該外筒(1)の中心と同心に遊1萩される内筒(
2)とを有し、該内筒(2)にはその先端部にノズル(
3)が、またその他端には貫通孔(4)がそれぞれ形成
される七ともに、前記ノズ/l/(8)と貫通孔(4)
との間に両者の内径よりも内径が大きな円筒形状の部分
と、該円筒形状部分がノズ/L’(81の内側開口部(
9)に向って次第にその径が縮少されて前記ノズル(s
)の内側開口部(9)に連なる円錐台形状部分とからな
る形状のプラズマ発生室(5)が形成され、該プラズマ
発生室(5)には前記外筒(1)を貫通して、同プラズ
マ発先室(5)内に通ずるプラズマ用ガス供給の念めの
プラズマガス供給口(6)が設けられ、さらに前記プラ
ズマ発生室(5)内には前記貫通孔(4)を通して同町
通孔(4)と電気絶縁された陰極の電憧欅(γ)が、該
電極棒(ア)の先端(8)と前記ノズル(8)の内側開
口部(9)との間に間隔を持って、かつ前記プラズマ発
生室(6)の中心を占めて挿通され、前記外筒(1)と
内筒(2)とによって画成される空間は、前記両筒の両
端において、その中央に貫通孔を有する前面板(至)と
後面板−とによって前記外筒(1)の内周と内筒(2)
の外周との間にそれぞれ気密保持可能に嵌入されて冷却
室0[fflとされ、前記外筒(1)の外部にはその外
壁を霞通して冷却水給排のための前記冷却室面内に通ず
る冷却水供給口aI)と冷却水排出口0■がそれぞれ設
けられ、またその外部には通電のための陽極の電極03
が設けられ、さらに前記前面板−の外面にその内部に通
ずる溶射材料供給の九めの溶射材料供給口04を有し、
かつその先端が開口する筒状体α9が前記ノズIV (
8)と同心に設けられたプラズマジェット溶射装置にお
いて、前記筒状体へ9の外径よりも内径が大きく非酸化
性ガス供給の念めの非酸化性ガス供給口00を有すると
ともに、その先端が開口する第1保護筒0ηを前記筒状
体α9と同心に設けて、前記筒状体a9の外周面と第1
保護筒αηの内周面との間に筒状の空間である非酸化性
ガス通路(至)を形成させるとともに、前記筒状体α9
と@1保護筒αη両筒の開口部側をともに同角度で外方
に向って次第に径を拡大して90度の開口角を有するラ
ッパ状の、大気中に設けられ念被処理体(至)に向って
高速でスカート状の非酸化性ガスが噴射する噴射口01
を形成させたのである。
That is, the Bwozma Jet welding device of the present invention has an outer cylinder (1
), and an inner cylinder (1) loosely spaced concentrically with the center of the outer cylinder (1).
2), and the inner cylinder (2) has a nozzle (2) at its tip.
3), and a through hole (4) is formed at the other end.
and a cylindrical part with an inner diameter larger than the inner diameter of both, and the cylindrical part forms the nozzle/L' (inner opening of 81).
9), the diameter of which is gradually reduced toward the nozzle (s
) is formed with a truncated conical portion connected to the inner opening (9) of the plasma generating chamber (5). A plasma gas supply port (6) is provided for supplying plasma gas to the plasma generation chamber (5), and a plasma gas supply port (6) is provided in the plasma generation chamber (5) through the through hole (4). (4) and an electrically insulated cathode (γ) with a space between the tip (8) of the electrode rod (A) and the inner opening (9) of the nozzle (8). , and a space defined by the outer cylinder (1) and the inner cylinder (2), which is inserted through the plasma generation chamber (6) and occupies the center thereof, has a through hole in the center at both ends of the two cylinders. The inner periphery of the outer cylinder (1) and the inner cylinder (2) are connected by a front plate (to) and a rear plate having
The outer periphery of the outer cylinder (1) is fitted in an airtight manner to form a cooling chamber 0[ffl, and the outer wall of the outer cylinder (1) is passed through the outer wall to provide a cooling chamber surface for supplying and discharging cooling water. A cooling water supply port aI) and a cooling water discharge port 0■ which lead to the
is provided, and further has a ninth thermal spraying material supply port 04 on the outer surface of the front plate for supplying thermal spraying material that communicates with the inside thereof,
The cylindrical body α9 whose tip is open is the nozzle IV (
8) In the plasma jet thermal spraying apparatus installed concentrically with the cylindrical body, the cylindrical body has a non-oxidizing gas supply port 00 with an inner diameter larger than the outer diameter of the non-oxidizing gas supply port 00 for supplying non-oxidizing gas, and a tip of the non-oxidizing gas supply port 00. A first protection tube 0η having an opening is provided concentrically with the cylindrical body α9, so that the outer circumferential surface of the cylindrical body a9 and the first
A non-oxidizing gas passage (toward), which is a cylindrical space, is formed between the inner peripheral surface of the protective cylinder αη, and the cylindrical body α9
and @1 Protective cylinder αη Both cylinders have a trumpet-shaped opening side that gradually expands in diameter outward at the same angle and has an opening angle of 90 degrees. ) Injection port 01 where a skirt-shaped non-oxidizing gas is injected at high speed toward
was formed.

このような構造のプラズマジェット溶射装置で、この溶
射装置の有する筒状体α9と第1保護筒αη両筒の先端
とlQmmの間隔を隔てて、この溶射装置の中心に対し
て直角に、かつ1000m/秒の速度で移動している被
処理体ωに向って、既知ノ方法でプラズマジェットを発
生させ、溶射材料供給0114)から30+−15+の
割合で粉末状のFe−13Cr系材料を供給して溶射す
る一方、非酸化性ガス供給口O13から非酸化性ガスで
あるアルゴンガスを511 e/15+の割合で供給し
て、非酸化性ガス通路的を経由させて非酸化性ガスの噴
射口(17)よシ噴射口i′l・部でz2om/秒の高
速で、90度の広がシを持つ一層のスカート状のアルゴ
ンガス噴流を噴射させながら、被処理体(至)にFe−
13Cr系材料の溶射皮バ々を形成させ九のである。こ
こにおいて、本実施例で使用し九容射材料であるFe−
13Cr系材料の成分分析値を第1表に、ま念尋射条件
をまとめて第2表に示す。
In a plasma jet thermal spraying apparatus having such a structure, the thermal spraying apparatus has a cylindrical body α9 and a first protective cylinder αη with an interval of 1Q mm between the tips of the cylinders, and at right angles to the center of the thermal spraying apparatus. A plasma jet is generated by a known method toward the object to be processed ω moving at a speed of 1000 m/sec, and powdered Fe-13Cr material is supplied from the thermal spray material supply 0114) at a rate of 30+-15+. At the same time, argon gas, which is a non-oxidizing gas, is supplied from the non-oxidizing gas supply port O13 at a ratio of 511 e/15+, and the non-oxidizing gas is injected through the non-oxidizing gas passage. While injecting a skirt-shaped argon gas jet with a 90 degree spread at a high speed of z2om/sec at the injection port i'l from the injection port (17), Fe is injected onto the object to be processed (to). −
A thermally sprayed skin burr of 13Cr-based material is formed. Here, Fe-
Table 1 shows the component analysis values of the 13Cr-based material, and Table 2 summarizes the irradiation conditions.

第1表 粉末状Fe−13cr成分分析値 (重量%)
第2表溶射条件 本実施例では溶射材料として第1表に示す成分を有する
粉末状のFe−13cr系材料を使用したのであるが、
本発明のプラズマジェット浴射装置は粉末状、ワイヤ状
の溶射材料の形態を問わず、また他の金属材料に対して
も適用できることは勿論のこと、酸素を嫌う非金属材料
、例えばWC−Co 。
Table 1 Powdered Fe-13cr component analysis value (wt%)
Second surface thermal spraying conditions In this example, a powdered Fe-13cr material having the components shown in Table 1 was used as the thermal spraying material.
The plasma jet spraying apparatus of the present invention can be applied to nonmetallic materials that dislike oxygen, such as WC-Co, regardless of the form of the thermal spraying material, such as powder or wire. .

Cr5Cz 、 TiNなどの炭化物や窒化物に対して
も適用できるのである。さらに、第2表に示す溶射条件
については、本実施例で使用したFe−13cr系材料
と溶射装置に適用される条件であって、使用に供される
溶射材料の種類と溶射装置の容量によって最適条件が設
定されるものであるから、本条件は固定さるべきもので
はない。なお、本実施例では本発明によるプラズマジェ
ット溶射装置の性能を確認するため、さらに以下の事を
も試み念。即ち、これまで説明したn射では筒状体05
と第工保巧筒面両筒の先端の開口部側を外方に向って次
第に径を拡大して90度の開口角度を持つラッパ状の噴
射口(11を有するプラズマジェット溶射装置を用いた
のであるが、さらに前記開口角度を0度、60?、12
0度および140度と変化させて、それぞれ前記条件で
Fe−13Cr系材料を前記条件で溶射した場合に、そ
れらの尋射皮模中に含まれる酸素の重量%がどのように
変るかを調べたものである。これらの調査結果と前記開
口角度90度の場合の調査結果とを併せて示したのが第
3図である。本図によれば、筒状体05と第1保護筒0
η両筒の開口角度を90度として、非酸化性ガス噴射口
的より高速で、90変の広がりを持つ−層のスカート状
のアルゴンガスを噴射しながら被処理体(至)に粉末状
のFe−13Cr系材料を溶射すれば、その溶射皮膜中
に含まれる酸素の量が最少となることを示しているが、
併せて前記開口角度が80〜100度の範囲内の角度で
あれば同等であるということをも示しているのである。
It can also be applied to carbides and nitrides such as Cr5Cz and TiN. Furthermore, the thermal spraying conditions shown in Table 2 are conditions applied to the Fe-13cr material and thermal spraying equipment used in this example, and depend on the type of thermal spraying material used and the capacity of the thermal spraying equipment. Since the optimal conditions are set, these conditions do not have to be fixed. In addition, in this example, in order to confirm the performance of the plasma jet thermal spraying apparatus according to the present invention, we also attempted the following. That is, in the n-ray explained so far, the cylindrical body 05
A plasma jet thermal spraying device having a trumpet-shaped nozzle (11) with an opening angle of 90 degrees and whose diameter gradually expands outward on the opening side of the tip of the cylinder and the No. 1 Kobo cylindrical surface was used. However, furthermore, the opening angle is set to 0 degrees, 60?, 12
We investigated how the weight percent of oxygen contained in the sprayed skin changes when Fe-13Cr-based materials are thermally sprayed under the above conditions at 0 degrees and 140 degrees, respectively. It is something that FIG. 3 shows these investigation results together with the investigation results for the aperture angle of 90 degrees. According to this figure, the cylindrical body 05 and the first protection tube 0
η By setting the opening angle of both cylinders to 90 degrees, powder-like powder is injected onto the object to be processed while injecting argon gas in the shape of a skirt at a higher speed than that of a non-oxidizing gas injection port and with a spread of 90 degrees. It has been shown that when Fe-13Cr-based materials are thermally sprayed, the amount of oxygen contained in the thermally sprayed coating is minimized.
This also indicates that the opening angle is equivalent if it is within the range of 80 to 100 degrees.

逆に、前記開口角度が前記80〜10(1度の範囲を外
れると急激に溶射皮膜中に含まれる酸素が増加すること
もあって、前記開口角度は80〜100度の範囲内の角
度でなければならないと結論付けたのである。
On the other hand, if the opening angle is outside the range of 80 to 10 degrees, oxygen contained in the sprayed coating may increase rapidly, so the opening angle is within the range of 80 to 100 degrees. I concluded that it must be done.

第2実施例 本発明の実施例についてはプラズマジエツ)M射装置の
断面図を示す第2図、アルゴンガスが噴射する噴射口の
数に対する醪射皮喚中に含まれる酸素の重量%との関係
を示す第4図および各溶射条件で溶射して得念溶射皮膜
の被処理体に対する密着強度と浴射皮噂自体の引張強度
とを示す第4表によシ以下に説明する。
Second Embodiment Regarding the embodiment of the present invention, see Plasma Jet.) Figure 2 showing a cross-sectional view of the M injection device, the relationship between the number of injection ports through which argon gas is injected and the weight percent of oxygen contained in the molasses. This will be explained below with reference to FIG. 4, which shows the adhesion strength of the thermally sprayed coating to the object to be treated, and the tensile strength of the thermally sprayed coating itself, which are thermally sprayed under various thermal spraying conditions.

第1実施例で説明したプラズマジェット溶射装置におい
て、第1保護筒αηが設けられた側の端面に、第1保護
筒α力の外径よシも内径が大きく非酸化性ガス供給0翰
を有するとともに、その先端が開口する第2保護筒勾を
第1保護筒(+71と同心に設けて、第1保護筒αηの
外周面と第2保獲筒(2)の内周面との間に非酸化性ガ
ス通路のを形成させ、さらに第2保炉筒(ハ)が設けら
れ九個の端面に第2保護筒21)の外径よシも内径が大
きく非酸化性ガス供給口りを有するとともに、その先端
が開口する第3保膵筒C4を第2保護筒(至)と同心に
設けて、第2保護筒(財)の外周面と第3保護筒(ハ)
の内周面との間に非酸化性ガス通路(至)を形成させて
、非酸化性ガス通路を(17).■および(至)の3層
とするとともに、筒状体(17).第1保護筒αη、第
2保護筒e21)および第3保護筒■4筒の開口部側を
ともに45度の同角度で外方に向って次第に径を拡大し
て90度の開口角を有するラッパ状の、大気中に設けら
れた被処理体(イ)に向って90度の広がシを持つ3層
のスカート状の非酸化性ガスが噴射する噴射口01翰勿
を形成させたのである。このような構造のプラズマジェ
ット溶射装置で、先ず大気中でこの溶射装置に含まれる
前記4簡の先端とI Q mntの間隔を隔てて、この
溶射装置の中心に対して直角に、かつ100Cnl/秒
の一定速度で移動している被処理体間に向って、既知の
方法でプラズマジェットヲ発生させ、溶射材料供給口a
4から30g100割合で粉末状のFe−13Cr系材
料を供給して溶射する一方、非酸化性ガス供給口ae翰
からそれぞれ同量の50e79Fの割合でアルゴンガス
を供給して、非酸化性ガス通路α8)(2)を経由させ
非酸化性ガス噴射口al(ト)より噴射口部で220m
/秒の高速で、それぞれ90度の広がりを持つスカート
状で2層のアルゴンガスを噴射させながら、被処理体(
至)にFe−13Cr系材料の溶射支障を成形させ念。
In the plasma jet thermal spraying apparatus described in the first embodiment, a non-oxidizing gas supply wire having a larger inner diameter than the outer diameter of the first protection tube α is provided on the end face on the side where the first protection tube αη is provided. At the same time, a second protection tube slope with an open tip is provided concentrically with the first protection tube (+71), and between the outer circumferential surface of the first protection tube αη and the inner circumference surface of the second protection tube (2). A non-oxidizing gas passage is formed in the outer diameter of the second protective tube (21), and a second protective tube (c) is provided on each end face of the second protective tube (21), which has a larger inner diameter than the outer diameter. At the same time, a third protection tube C4 having an open tip is provided concentrically with the second protection tube (to), so that the outer peripheral surface of the second protection tube (goods) and the third protection tube (c)
A non-oxidizing gas passage (to) is formed between the inner peripheral surface of (17) and the non-oxidizing gas passage (17). (2) and (to) three layers, and a cylindrical body (17). The opening sides of the first protection tube αη, the second protection tube e21) and the third protection tube ■4 have an opening angle of 90 degrees, with the diameters gradually expanding outward at the same angle of 45 degrees. A trumpet-shaped nozzle 01 was formed from which non-oxidizing gas was injected in a three-layered skirt with a 90-degree spread toward the object to be treated (a) placed in the atmosphere. be. In a plasma jet thermal spraying apparatus having such a structure, first, a beam of 100 Cnl/ A plasma jet is generated by a known method between the objects to be treated that are moving at a constant speed of 1 second, and the spray material supply port a is
Powdered Fe-13Cr material is supplied at a ratio of 4 to 30g100 for thermal spraying, while the same amount of argon gas is supplied from the non-oxidizing gas supply port ae at a ratio of 50e79F to complete the non-oxidizing gas passage. 220 m from the non-oxidizing gas injection port al (g) via α8) (2) at the injection port.
The object to be treated (
(to) to avoid problems with thermal spraying of Fe-13Cr material.

次いで、非酸化性ガス供給口aeeznrzsからそれ
ぞれ同量の50e/分の割合でアルゴンガスを供給して
、非酸化性ガス通路叫(イ)(イ)を経由させ非酸化性
ガス噴射口的(至)勾より高速で、それぞれ90度の広
がりを持つスカート状で3層のアルゴンガスを噴射させ
ながら、被処理体(至)にFs−13Cr系材料の溶射
皮膜を形成させたのである。
Next, argon gas is supplied from the non-oxidizing gas supply ports aeeznrzs at the same rate of 50 e/min, and is passed through the non-oxidizing gas passages (A) and (A) to the non-oxidizing gas injection port ( A sprayed coating of Fs-13Cr-based material was formed on the object to be treated by spraying three layers of argon gas in the form of a skirt, each extending 90 degrees, at a high speed.

本第2実施例と第1実施例の溶射条件において相違する
ところは、第1実施例で用いたプラズマジエツ)M射装
隋に追加して設けた非酸化性ガス供給0翰1に対しても
それぞれ全く同量の!’i n 17%の割合でアルゴ
ンガスを供給して、非酸化性ガス噴射口H@からもそれ
ぞれ90度の広がりを持つスカート状で高速のアルゴン
ガスを噴射したという点だけである。このようにして形
成されたFe−13Cr系溶射皮嘆について、傅射皮膜
中に含まれる酸素の重量%に対する各強度、即ち被処理
体と溶射皮膜の密着強度や溶射皮膜自体の引張強度をJ
IS H8664に規定されている「肉盛欝吋(鋼)製
品試験方法」に準拠する方法で調べたのである。そうし
て、木vX2実施例で得たデータと第1実施例で得たデ
ータおよび第5図で説明した従来の気密室を有するプラ
ズマジェット溶射装置により第1表で示す成分のFe−
13cr  系材料を以下に示す第3表の条件で溶射し
て得たデータとを併せて、それぞれ第4図および第4表
に示したので、以下にこれらの図9表に基づき、本発明
と従来技術とを比較する。
The difference between the thermal spraying conditions of the second embodiment and the first embodiment is that the non-oxidizing gas supply 0 and 1 was added to the plasma jet used in the first embodiment. Exactly the same amount of each! The only difference is that argon gas was supplied at a ratio of 17%, and high-speed argon gas was injected from the non-oxidizing gas injection ports H@ in a skirt shape with a 90 degree spread. Regarding the Fe-13Cr-based thermal spray coating formed in this way, the respective strengths relative to the weight percent of oxygen contained in the spray coating, that is, the adhesion strength between the object to be treated and the thermal spray coating and the tensile strength of the thermal spray coating itself, were determined by J
The test was conducted in accordance with the "Testing method for overlay (steel) products" stipulated in IS H8664. Then, Fe-
The data obtained by thermal spraying 13cr type materials under the conditions shown in Table 3 below are shown in Figure 4 and Table 4, respectively. Compare with conventional technology.

第3表 溶射条件 注記二木表と第2表における条件上の相違は、木表は気
密室内に45トーμのアルゴンガスを充満させたのに対
して、第2表は非酸化性ガス噴射口よF)50e/分の
割合でアルゴンガスを噴射きせた点にあり、溶射条件そ
のものは両者同一として実験した。
Table 3: Thermal spray conditions Note: The difference in conditions between the Niki table and Table 2 is that in the Ki table, the airtight chamber was filled with argon gas of 45 tomμ, whereas in Table 2, non-oxidizing gas injection was used. (F) Argon gas was injected at a rate of 50 e/min, and the experiments were conducted under the same thermal spraying conditions.

第4図は1本発明の高速で、90変の広がりを持つスカ
ート状のアルゴンガスを噴射する噴射口の数をO(アル
ゴンガスを噴射しない場合)、1.2および3個として
それぞれ第2表で示した条件で、第1表で示す成分のF
e−13Cr系材料を溶射した場合に、その溶射皮膜中
に含まれる酸素の重量%を白丸で示し、また第5図で説
明し念従来の気′M室を有するデフズマジェット溶射装
置を用いて、第3表に示す条件で、第1表に示す成分の
Fe−13Cr系材料を溶射して得た溶射皮膜中に含ま
れる酸素の電源%を黒丸で示したものである。
Figure 4 shows the high speed of the present invention, where the number of injection ports for injecting skirt-shaped argon gas with a width of 90 degrees is O (when no argon gas is injected), 1.2 and 3, respectively. F of the components shown in Table 1 under the conditions shown in the table.
When e-13Cr material is thermally sprayed, the weight percent of oxygen contained in the sprayed film is shown by the white circle, and as explained in Fig. The percentage of oxygen contained in the thermal spray coating obtained by thermal spraying the Fe-13Cr material having the components shown in Table 1 under the conditions shown in Table 3 is shown by black circles.

従って、溶射皮膜中に含まれる酸素の重量%はアルゴン
ガスを噴射する噴射口の数が1個であれば、第5図で説
明した従来の技術に比べてや−多いが、アルゴンガスを
噴射する噴射口の数が2個。
Therefore, if the number of nozzles for injecting argon gas is one, the weight percent of oxygen contained in the thermal spray coating will be slightly higher than in the conventional technology explained in Fig. The number of injection ports is 2.

3個になるとほぼ同程度であることを示すのである。This shows that when there are three, they are almost the same.

Pg4表は、本発明の第1実施例、第2実施例で説明し
念プラズマジェット装置で、第1表に示す蜘分のFe−
13Cr  材料を第2表で示す条件で溶第4表 溶射
皮膜中の酸素量と溶射皮膜の強度射して得た溶射皮膜(
試料高1〜8)と、第5図で説明した気密室を有する従
来技術のプラズマジェット溶射装置で、第1表に示す成
分のFe−13Cr材料を第3表に示す条件で溶射して
得た溶射皮膜(試料高q)のそれぞれの溶射皮膜中に含
まれる酸素の重量%、それぞれの溶射皮膜と被処理体の
密着強度およびそれぞれの溶射皮膜自体の引張強度を併
せて示し次ものである。従って、本発明の非酸化性ガス
が噴射する噴射口の開口偵は90度の場合であるから、
試料屓4.7および8が該当するのであシ、これらを前
記従来技術で得た試料高9と比較すると以下のことが云
えるのである。即ち、 (梢 溶射皮膜中に含まれる酸素の重量%噴射口の数が
1個であると本発明は前記従来技術の場合に比べて溶射
皮膜中に含まれる酸素量は若干多いが、噴射口の数が2
個、3個になると、溶射皮膜中に含まれる酸素量は同等
となる。
The Pg4 table shows the amount of Fe-
13Cr material was melted under the conditions shown in Table 2 Table 4 Oxygen content in the sprayed coating and strength of the sprayed coating The sprayed coating obtained by spraying (
The samples were obtained by spraying Fe-13Cr material having the composition shown in Table 1 under the conditions shown in Table 3 using a conventional plasma jet thermal spraying apparatus having sample heights of 1 to 8) and an airtight chamber as explained in FIG. The weight percent of oxygen contained in each thermal sprayed coating (sample height q), the adhesion strength between each thermal sprayed coating and the object to be treated, and the tensile strength of each thermal sprayed coating itself are as follows. . Therefore, since the opening angle of the injection port for injecting the non-oxidizing gas of the present invention is 90 degrees,
This applies to sample heights 4.7 and 8, and when these are compared with sample height 9 obtained using the prior art, the following can be said. That is, (wt% of oxygen contained in the thermal spray coating) If the number of injection ports is one, the present invention has a slightly larger amount of oxygen contained in the thermal spray coating than in the case of the prior art, but the number of injection ports is 1. The number of
When the number of particles reaches three, the amount of oxygen contained in the sprayed coating becomes the same.

(切破処理体と溶射皮膜の密着強度 噴射口の数が1個であると本発明は前記従来技術の場合
に比べて被処理体と溶射皮膜の密着強度は若干弱いが、
噴射口の数が2個、3個になると、被処理体と溶射皮膜
の密着強度は同等となる。
(Adhesion strength between the cut object and the thermal sprayed coating When the number of injection ports is one, the adhesion strength between the object to be treated and the thermal sprayed coating is slightly weaker in the present invention than in the case of the prior art, but
When the number of injection ports is two or three, the adhesion strength between the object to be treated and the thermal spray coating becomes the same.

(ハ)溶射皮膜自体の引張強度 噴射口の数が1個であると本発明は前記従来技術の場合
に比べて溶射皮膜自体の引張強度は若干弱いが、噴射口
の数が2個、3個になると、溶射皮膜自体の引張強度は
同等となる。
(c) Tensile strength of the thermal sprayed coating itself If the number of injection ports is one, the tensile strength of the thermal sprayed coating itself is slightly lower in the present invention than in the case of the prior art, but if the number of injection ports is 2 or 3. The tensile strength of the sprayed coating itself becomes the same.

従って、本発明は第1表に示すFe−13cr材料を第
2表で示す条件で溶射すれば、前記従来技術と比べて、
溶射製品の強度面でほぼ同等の前記強度を得ることので
きる溶射装置であることを示すものであるといえるので
ある。
Therefore, in the present invention, if the Fe-13cr material shown in Table 1 is thermally sprayed under the conditions shown in Table 2, compared to the prior art,
This can be said to indicate that the thermal spraying apparatus is capable of obtaining substantially the same strength as mentioned above in terms of the strength of the thermal sprayed product.

〔発明の効果〕〔Effect of the invention〕

第5図により説明し念従来技術の気密室を有するプラズ
マジェット酵射装置では、溶射製品の品質面、特に強度
面に悪影響を及ぼす溶射皮膜中の酸化物の介在を防ぐた
め、非酸化性ガスを充満した気密室内に被処理体を設け
ることによって、被処理体の溶射部位とその周囲−帯の
大気を排除しているのであるが、本発明では、大気中に
設けられた被処理体に対して、噴射口から高速で80〜
100度の広がシを持つスカート状の非酸化性ガスを噴
射して、被処理体の溶射部位とその周辺−帯に介在する
酸素を含む大気を2断、排除できるため、前記従来技術
のプラズマジェット溶射装置のように非常に大型、複雑
な気密室を設けるまでもなく、溶射皮膜中に介在される
酸化物の生成を極少に抑えることができるのである。従
って、被処理体の大きさに対する制限が大巾に緩和され
るばかりでなく、大量生産にも十分応えることができる
と同時に、被処理体と溶射皮膜の密着強度や溶射皮膜自
体の引張強度といった強度の点でも同等で、しかも安価
な溶射製品が生産できるとともに、溶射装置自体は小型
化され、簡単化され、言らにその取扱いも容易化された
のである。ま念、被処理体はプラズマジェットの高温に
晒される結果、被処理体の溶射部位とその周辺は非常な
高温になるのであるが、本発明では非酸化性ガス噴射口
から噴射する非酸化性ガスによって効果的番て冷却され
て、等射部位における温度it第5図で説明し念従来技
術の場合に比べて100〜200℃低くなる念め、比較
的融点の低い被処理体に対しても適用できることになっ
て、使用可能被処理体材質の範囲を拡大させるとともに
、溶射製品のひずみ発生を少なくする効果もあるのであ
る。また、被処理体の溶射部位に完全浴融体と混在し念
状態でプラズマジェットとともに噴射される半溶融体が
付着しても、非酸化性ガス噴射口から噴射される非酸化
性ガスはその勢いで、付着した半溶融体を溶射部位から
容易に除去し、大気中に飛散させてしまうのである。従
って、半溶融体の混在が非常に少なく均質でしかも緻密
な溶射皮−を持つ溶射製品を得ることができる効果を有
する極めて有用なプラズマジェット溶射装置なのである
As explained in Fig. 5, in the conventional plasma jet fermentation equipment having an airtight chamber, non-oxidizing gas is By placing the object to be treated in an airtight chamber filled with air, the atmosphere around and around the sprayed area of the object is excluded. On the other hand, at high speed from the injection nozzle,
By injecting a skirt-shaped non-oxidizing gas with a 100 degree spread, it is possible to cut off and eliminate the oxygen-containing atmosphere present in the sprayed area of the object to be treated and its surrounding zone. There is no need to provide a very large and complicated airtight chamber like in a plasma jet thermal spraying device, and the generation of oxides interposed in the sprayed coating can be minimized. Therefore, not only the restrictions on the size of the object to be treated are relaxed to a large extent, but also mass production can be fully accommodated. Not only was it possible to produce thermal sprayed products that were equally strong in terms of strength but also cheaper, the thermal spraying equipment itself was smaller and simpler, and not to mention easier to handle. As a result of the object to be treated being exposed to the high temperature of the plasma jet, the sprayed area of the object and its surroundings become extremely hot. The temperature at the isotropic part is 100 to 200 degrees Celsius lower than in the case of the prior art, as explained in Figure 5, due to the effective cooling by the gas. This also has the effect of expanding the range of usable target materials and reducing the occurrence of distortion in thermal sprayed products. In addition, even if semi-molten material mixed with complete bath molten material and injected together with the plasma jet adheres to the thermal spraying part of the object to be treated, the non-oxidizing gas injected from the non-oxidizing gas injection port will The force easily removes the adhered semi-molten material from the sprayed area and scatters it into the atmosphere. Therefore, it is an extremely useful plasma jet thermal spraying apparatus that has the effect of being able to obtain a thermal sprayed product with a homogeneous and dense sprayed skin with very little amount of semi-molten material mixed in.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1実施例のプラズマジェット装置の断面図、
第2図は第2実施例のプラズマジェット装置の断面図、
第3図は筒状体と第1保護筒の開口部側の開口角を変化
させ念場合に対する溶射皮膜中に含まれる酸素の重量%
の関係を示す図、第4図は本発明の噴射口数の変化に対
する溶射皮膜中に含まれる酸素の重量%の関係と気密室
を有する従来技術のプラズマジェット溶射装置で得た溶
射皮膜中に含まれる酸素の重量%の関係とを併せて示す
図および第5図は気密室を有する従来技術のプラズマジ
ェット溶射装置の断面図である。 (1)・・・外筒、(2)・・・内筒、(3)・・・ノ
ズル、(4)・・・貫通孔、(5)・・・プラズマ発生
室、(6)・・・プラズマガス供給口、(ア)・・・電
極棒、(101・・・冷却室、Qll−・・冷却水供給
口、0・・・冷却水排出口、03・・・電極、a4)・
・・溶射材料供給口、(17)・・・筒状体、00翰(
支)・・・非酸化性ガス供給口、αη・・・第1保護筒
、(至)(イ)(至)・・・非酸化性ガス通路。 01翰(5)・・・噴射口、al)・・・第2保護筒、
(ハ)・・・第3保護筒 特許出願人 株式会社神戸#鋼所 代理人(弁理士)  梶    良 之第1図 第2図 噴射口(4)口^4  cJ)
FIG. 1 is a sectional view of the plasma jet device of the first embodiment,
FIG. 2 is a sectional view of the plasma jet device of the second embodiment,
Figure 3 shows the percentage by weight of oxygen contained in the thermal spray coating when the opening angles of the cylindrical body and the first protective tube are changed.
Figure 4 shows the relationship between the weight percent of oxygen contained in the sprayed coating with respect to the change in the number of nozzles of the present invention and the weight percent of oxygen contained in the sprayed coating obtained with the prior art plasma jet thermal spraying apparatus having an airtight chamber. FIG. 5 is a sectional view of a prior art plasma jet thermal spraying apparatus having an airtight chamber. (1)...Outer cylinder, (2)...Inner cylinder, (3)...Nozzle, (4)...Through hole, (5)...Plasma generation chamber, (6)...・Plasma gas supply port, (A)...electrode rod, (101...cooling chamber, Qll-...cooling water supply port, 0...cooling water outlet, 03...electrode, a4)・
... Thermal spray material supply port, (17) ... Cylindrical body, 00 wire (
Support)...Non-oxidizing gas supply port, αη...First protection tube, (To) (A) (To)...Non-oxidizing gas passage. 01Ken (5)...Injection port, al)...Second protection tube,
(c)...Third protective cylinder patent applicant Kobe Steel Works Co., Ltd. Agent (patent attorney) Yoshiyuki Kaji Figure 1 Figure 2 Injection port (4) mouth ^4 cJ)

Claims (1)

【特許請求の範囲】[Claims] (1)外筒(1)と、該外筒(1)の内部に遊嵌される
内筒(2)とを有し、前記内筒(2)には、その先端部
にノズル(3)が他端に貫通孔(4)がそれぞれ形成さ
れるとともに、前記ノズル(3)と貫通孔(4)との間
にプラズマ発生室(5)が形成され、該プラズマ発生室
(6)にはプラズマ用ガス供給のための前記プラズマ発
生室(5)に通ずるプラズマガス供給口(6)が設けら
れ、さらに前記プラズマ発生室(6)には前記貫通孔(
4)を通して同貫通孔(4)と電気絶縁された陰極の電
極棒(7)が同電極棒先端(8)と前記プラズマ発生室
(5)内側のノズル開口部(9)との間に一定の間隔を
隔てて挿通され、前記外筒(1)と内筒(2)とによつ
て画成される空間は密封されて冷却室(10)とされ、
該冷却室(10)の外部には冷却水給排のための前記冷
却室(10)に通ずる冷却水供給口(11)と冷却水排
出口(12)および通電のための陽極の電極(13)が
それぞれ設けられ、さらに前記ノズル(3)の前部に溶
射材料供給のための溶射材料供給口(14)を有すると
ともに、その先端が開口する筒状体(15)が前記ノズ
ル(3)と同心に設けられたプラズマジエツト溶射装置
において、前記筒状体(15)の外径よりも内径が大き
く非酸化性ガス供給のための非酸化性ガス供給口(16
)を有するとともに、その先端が開口する保護筒(17
)を前記筒状体(15)と同心に設けて、前記筒状体(
15)の外周面と保護筒(17)の内周面との間に筒状
の空間である非酸化性ガス通路(18)を形成させると
ともに、前記筒状体(15)と保護筒(17)両筒の開
口部側をともに同角度で外方に向つて次第に径を拡大し
て80〜100度の開口角を有するラツパ状の噴射口(
19)を形成させたことを特徴とするプラズマジエツト
溶射装置。
(1) It has an outer cylinder (1) and an inner cylinder (2) that is loosely fitted inside the outer cylinder (1), and the inner cylinder (2) has a nozzle (3) at its tip. A through hole (4) is formed at the other end of the nozzle (3) and a plasma generation chamber (5) is formed between the nozzle (3) and the through hole (4). A plasma gas supply port (6) communicating with the plasma generation chamber (5) for supplying plasma gas is provided, and the plasma generation chamber (6) is further provided with the through hole (
A cathode electrode (7), which is electrically insulated from the through hole (4) through the through hole (4), is fixed between the tip of the electrode (8) and the nozzle opening (9) inside the plasma generation chamber (5). The space defined by the outer cylinder (1) and the inner cylinder (2) is sealed to form a cooling chamber (10),
Outside the cooling chamber (10) are a cooling water supply port (11) and a cooling water discharge port (12) communicating with the cooling chamber (10) for supplying and discharging cooling water, and an anode electrode (13) for supplying and discharging the cooling water. ), and further has a thermal spraying material supply port (14) for supplying thermal spraying material at the front part of the nozzle (3), and a cylindrical body (15) with an open end is connected to the nozzle (3). In the plasma jet thermal spraying device installed concentrically with the cylindrical body (15), the non-oxidizing gas supply port (16) has an inner diameter larger than the outer diameter of the cylindrical body (15) and is for supplying non-oxidizing gas.
) and has an open end (17).
) is provided concentrically with the cylindrical body (15), and the cylindrical body (
A non-oxidizing gas passage (18), which is a cylindrical space, is formed between the outer circumferential surface of the cylindrical body (15) and the inner circumferential surface of the protective tube (17). ) The diameter of the opening side of both cylinders is gradually expanded outward at the same angle, and the injection port has an opening angle of 80 to 100 degrees.
19) A plasma jet thermal spraying apparatus characterized by forming:
JP61244854A 1986-10-14 1986-10-14 Plasma jet flame-coater Pending JPS6399000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61244854A JPS6399000A (en) 1986-10-14 1986-10-14 Plasma jet flame-coater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61244854A JPS6399000A (en) 1986-10-14 1986-10-14 Plasma jet flame-coater

Publications (1)

Publication Number Publication Date
JPS6399000A true JPS6399000A (en) 1988-04-30

Family

ID=17124969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61244854A Pending JPS6399000A (en) 1986-10-14 1986-10-14 Plasma jet flame-coater

Country Status (1)

Country Link
JP (1) JPS6399000A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235283A (en) * 1990-12-31 1992-08-24 Semiconductor Energy Lab Co Ltd Apparatus and method for forming coating film
JPH0544041A (en) * 1990-12-12 1993-02-23 Semiconductor Energy Lab Co Ltd Film forming device and film formation
JP2007186974A (en) * 2005-12-14 2007-07-26 Moriyama Tekko:Kk Folding stepladder
JP2008130503A (en) * 2006-11-24 2008-06-05 Toyota Gakuen Atmospheric pressure plasma jet apparatus
CN113939071A (en) * 2020-07-14 2022-01-14 大气电浆股份有限公司 Plasma generating apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544041A (en) * 1990-12-12 1993-02-23 Semiconductor Energy Lab Co Ltd Film forming device and film formation
JPH04235283A (en) * 1990-12-31 1992-08-24 Semiconductor Energy Lab Co Ltd Apparatus and method for forming coating film
JP2007186974A (en) * 2005-12-14 2007-07-26 Moriyama Tekko:Kk Folding stepladder
JP2008130503A (en) * 2006-11-24 2008-06-05 Toyota Gakuen Atmospheric pressure plasma jet apparatus
CN113939071A (en) * 2020-07-14 2022-01-14 大气电浆股份有限公司 Plasma generating apparatus

Similar Documents

Publication Publication Date Title
US4741286A (en) Single torch-type plasma spray coating method and apparatus therefor
US3892882A (en) Process for plasma flame spray coating in a sub-atmospheric pressure environment
US5733662A (en) Method for depositing a coating onto a substrate by means of thermal spraying and an apparatus for carrying out said method
US5844192A (en) Thermal spray coating method and apparatus
US5332601A (en) Method of fabricating silicon carbide coatings on graphite surfaces
US6431464B2 (en) Thermal spraying method and apparatus
US6113991A (en) Method for coating a carbon substrate or a non-metallic containing carbon
US5220150A (en) Plasma spray torch with hot anode and gas shroud
JPH0857358A (en) Method and device for shielding fluid
JPS6399000A (en) Plasma jet flame-coater
CN107052354B (en) A kind of device and method preparing high sphericity 3D printing refractory metal powder
JP6683902B1 (en) Method of forming thermal spray coating
JP2002004027A (en) Mixed powder thermal spraying method
US3282814A (en) Method and device for carrying out gas discharge processes
JPS63266001A (en) Production of composite spherical powder
JPH1192804A (en) Production of metal fine powder
JPH03192697A (en) Temperature and speed lowering prevention method for shield plasma jet
JPH04131649U (en) plasma spray gun
JPS62273044A (en) Preparation of ceramics powder
JP2001200354A (en) Thermal spraying process and thermal spraying equipment
JPH0564707B2 (en)
JPS5852408A (en) Production of metallic particles
JP6715694B2 (en) Plasma spraying equipment
JPH07110984B2 (en) How to spray tungsten carbide
JP2001020051A (en) Thermal spraying method and thermal spraying gun