JPS6398624A - Synchronous detecting method - Google Patents

Synchronous detecting method

Info

Publication number
JPS6398624A
JPS6398624A JP61246058A JP24605886A JPS6398624A JP S6398624 A JPS6398624 A JP S6398624A JP 61246058 A JP61246058 A JP 61246058A JP 24605886 A JP24605886 A JP 24605886A JP S6398624 A JPS6398624 A JP S6398624A
Authority
JP
Japan
Prior art keywords
light
lens
receiving element
light beam
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61246058A
Other languages
Japanese (ja)
Inventor
Yutaka Kaneko
豊 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP61246058A priority Critical patent/JPS6398624A/en
Publication of JPS6398624A publication Critical patent/JPS6398624A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PURPOSE:To detect synchronizing light properly all the time and to make a device compact by detecting a light beam which is deflected and travels to an optical scanning area as the synchronizing signal, and timing the start of optical scanning. CONSTITUTION:A lens 18 is arranged between a light receiving element which detects the light beam as the synchronizing light and an image forming lens 12, a synchronizing light detection position Q1 is set on the deflection-directional composite focal plane of the image forming lens 12 and lens 18, and the light receiving element is arranged at the position. The lens 18 has power at least in a deflection direction and the synchronizing light is converged on the light receiving element at least in the deflection direction. The light receiving element is arranged on the composite focal plane, so even if the deflected light beam varies owing to the error of an optical deflector, the synchronizing signal is detected correctly all the time.

Description

【発明の詳細な説明】 (技術分野) 本発明は同期検知方法に関する。[Detailed description of the invention] (Technical field) The present invention relates to a synchronization detection method.

(従来技術) 光走査装置は光ビームを偏向させて被走査面を光走査す
る装置であって、被走査面に光情報を書き込んだり、被
走査面上の情報を読みとったりするのに用いられる装置
として知られている。このような光走査装置のうちに、
光ビームの偏向に回転多面鏡やホログラムディスクある
いはガルバノミラ−等の機械式の光偏向器を用いるもの
がある、機械式の光偏向器で光ビームを偏向させると機
械的な誤差のために光ビームの偏向の周期が完全には一
定にならないので光走査の開始のタイミングを取るため
に、偏向され光走査領域へと向かう光ビームを同期光と
して受光素子で検出することが行われている。
(Prior art) An optical scanning device is a device that optically scans a surface to be scanned by deflecting a light beam, and is used to write optical information on the surface to be scanned and read information on the surface to be scanned. known as a device. Among such optical scanning devices,
Some mechanical optical deflectors such as rotating polygon mirrors, hologram disks, or galvano mirrors are used to deflect the optical beam.If the optical beam is deflected by a mechanical optical deflector, the optical beam may be distorted due to mechanical errors. Since the period of deflection is not completely constant, in order to determine the timing of the start of optical scanning, the deflected light beam heading towards the optical scanning area is detected by a light receiving element as synchronous light.

第4図は、従来知られている光走査装置の要部を略示し
ている。符号10は回転多面鏡、符号12は結像レンズ
としてのf9レンズ、符号14はfeレンズの結像面を
示す。この結像面14は被走査面と合致しており、符号
16で示す領域が、被走査領域である。結像面14上の
符号Qで示す位置は、同期光検出位置であり、受光素子
は、この同期光検出位置Qに配備される。光ビームLは
平行光束として回転多面鏡10に入射し回転多面鏡10
の鏡面により反射されてfeレンズ12に入射し同レン
ズ12の作用により結像面14上にスポット状に集束す
る1回転多面鏡10の鏡面は回転多面鏡10の回転とと
もに機械的な誤差のために、鏡面SOやSlのように変
動し、偏向される光ビームもビームLOやLlのように
変動するが受光素子の同期光検出位置Qは結像面14上
に設定されているので、上記光ビームの変動にも係わら
ず常に同期光を正しく検出できる。しかしながら反面、
受光素子の配設位置が結像レンズの結像面上に限定され
るので、光学部品の配置に対する制約となり光学ユニッ
トが大型化したり同期光の光路を折り曲げるためのミラ
ーが必要となる等の不都合があった。
FIG. 4 schematically shows the main parts of a conventionally known optical scanning device. Reference numeral 10 indicates a rotating polygon mirror, reference numeral 12 indicates an f9 lens as an imaging lens, and reference numeral 14 indicates an imaging surface of an FE lens. This imaging plane 14 coincides with the scanned surface, and the area indicated by reference numeral 16 is the scanned area. The position indicated by the symbol Q on the imaging plane 14 is a synchronous light detection position, and the light receiving element is arranged at this synchronous light detection position Q. The light beam L enters the rotating polygon mirror 10 as a parallel light beam, and the light beam L enters the rotating polygon mirror 10 as a parallel light flux.
The mirror surface of the one-rotation polygon mirror 10 is reflected by the mirror surface of the rotary polygon mirror 10, enters the FE lens 12, and is focused into a spot on the image forming plane 14 by the action of the lens 12. The mirror surfaces SO and SL vary, and the deflected light beam also varies like the beams LO and Ll, but since the synchronized light detection position Q of the light receiving element is set on the imaging plane 14, the above Synchronous light can always be detected correctly despite fluctuations in the light beam. However, on the other hand,
Since the placement position of the light receiving element is limited to the imaging surface of the imaging lens, there are restrictions on the arrangement of optical components, resulting in disadvantages such as an increase in the size of the optical unit and the need for a mirror to bend the optical path of the synchronized light. was there.

(目 的) 本発明は上述の事情に鑑みてなされたものであって、そ
の目的とするところは、同期光検出用の受光素子の配設
位置に自由度を与え得る新規な同期検知方法の提供にあ
る。
(Purpose) The present invention has been made in view of the above-mentioned circumstances, and its purpose is to develop a novel synchronization detection method that can provide flexibility in the arrangement position of a light receiving element for detecting synchronization light. It's on offer.

(構 成) 以下、本発明を説明する。本発明の同期検知方法は、回
転多面鏡やホログラムディスクあるいはガルバノミラ−
等の機械式の光偏向器により光ビームを偏向させ結像レ
ンズにより被走査面上にスポット状に集光させて光走査
を行う光走査装置において、偏向され光走査領域へと向
かう光ビームを同期光として検出し、光走査開始のタイ
ミングを取るための方法である。
(Structure) The present invention will be explained below. The synchronization detection method of the present invention uses a rotating polygon mirror, a hologram disk, or a galvano mirror.
In an optical scanning device that performs optical scanning by deflecting a light beam using a mechanical optical deflector such as This is a method for detecting it as synchronous light and timing the start of optical scanning.

本発明の特徴とする所は、以下に述べる点にある。すな
わち、光ビームを同期光として検出する受光素子と結像
レンズとの間に、レンズを配備し、上記結像レンズと上
記レンズの偏向方向の合成焦点面上に同期光検出位置を
設定してこの位置に上記受光素子を配設するようにした
点である。上記レンズは、少なくとも偏向方向にパワー
を有するものである。ここに偏向方向とは、理想的に偏
向された光ビームの掃引面内において、光ビームを動径
方向とするとき、その接線方向をさす。
The features of the present invention are as follows. That is, a lens is provided between a light receiving element that detects a light beam as synchronous light and an imaging lens, and a synchronous light detection position is set on a composite focal plane of the deflection direction of the imaging lens and the lens. The point is that the light receiving element is disposed at this position. The lens has power at least in the deflection direction. Here, the deflection direction refers to the tangential direction of the ideally deflected light beam when the light beam is defined as the radial direction within the sweep plane of the light beam.

このようにすることにより、同期光は少なくとも偏向方
向に於いては受光素子上に集光する。受光素子が上記合
成焦点面上に配備されるので、光偏向器の誤差により、
偏向光ビームが変動しても、常に正しく同期光を検出で
きる。
By doing so, the synchronized light is focused on the light receiving element at least in the polarization direction. Since the light receiving element is placed on the above synthetic focal plane, due to the error of the optical deflector,
Even if the polarized light beam fluctuates, synchronized light can always be detected correctly.

また、結像レンズと組み合わせるレンズの偏向方向のパ
ワーやレンズ位置の選択によって上記合成焦点面上って
受光素子の配設位置を変えることができる。
Further, by selecting the power in the deflection direction of the lens combined with the imaging lens and the lens position, the arrangement position of the light receiving element can be changed on the synthetic focal plane.

以下、具体的な実施例に即して説明する。Hereinafter, description will be given based on specific examples.

なお、繁雑をさけるため、混同の恐れがないと思われる
ものについては、以下の各実施例を示す図面に於いても
、前述の第4図におけると同一の符号をもちいる。
In order to avoid complication, the same reference numerals as in FIG. 4 will be used in the drawings showing each of the following embodiments for those parts that are considered to be free from confusion.

第1図に示す実施例において、符号18は、レンズを示
す、レンズ18は平凸レンズであり、結像レンズたるf
Qレンズ12と同期光検出位置Q1との間に配備されて
いる。受光素子は、同期光検出位置Q1に配設されるが
、同位置Qlはfθレンズ12とレンズ18の合成光学
系の合成焦点面上の位置であり、この例では、合成焦点
の位置である。 光ビームLは平行光束として回転多面
鏡10に入射し、反射されたのちはf9レンズ12を透
過し集束性の光束となり結像面14上にスポット状に集
光するが、同期光はレンズ18に入射して、受光素子の
配備された位置Q1に集束し、検出される。この実施例
では、同期光検出位置が結像面14からfθレンズ12
寄りにずれた位置に設定されている。
In the embodiment shown in FIG. 1, reference numeral 18 indicates a lens. The lens 18 is a plano-convex lens, and the imaging lens f
It is arranged between the Q lens 12 and the synchronous light detection position Q1. The light receiving element is arranged at the synchronous light detection position Q1, which is a position on the synthetic focal plane of the synthetic optical system of the fθ lens 12 and the lens 18, and in this example, is the position of the synthetic focal point. . The light beam L enters the rotating polygon mirror 10 as a parallel light beam, and after being reflected, it passes through the f9 lens 12 and becomes a convergent light beam, condensing into a spot on the imaging plane 14. , and is focused on the position Q1 where the light receiving element is placed and detected. In this embodiment, the synchronous light detection position is from the imaging plane 14 to the fθ lens 12.
It is set in a position that is off to the side.

第2図に示す実施例では、tgレンズ12と組み合わせ
られるレンズ20は負のパワーを有し、従って受光素子
を配設するべき同期光検出位置Q2は結像面14よりも
さらに後方に設定されている。位置Q2はfθレンズ1
2とレンズ20の合成焦点面上の位置であり、この例で
は合成焦点の位置であって、回転多面鏡10に入射する
光ビームLは平行光束である。これらの実施例では、同
期光検出位置Ql、Q2は合成焦点面上の位置であるか
ら、回転多面鏡10の反射面SOやSlによって同期光
がLOやLlのように変動しても正しく同期検知が可能
である。
In the embodiment shown in FIG. 2, the lens 20 combined with the TG lens 12 has negative power, and therefore the synchronous light detection position Q2 where the light receiving element is to be disposed is set further back than the imaging plane 14. ing. Position Q2 is fθ lens 1
2 and the lens 20, and in this example, it is the position of the composite focal point, and the light beam L incident on the rotating polygon mirror 10 is a parallel light flux. In these embodiments, the synchronization light detection positions Ql and Q2 are on the synthetic focal plane, so even if the synchronization light changes to LO and Ll due to the reflection surfaces SO and SL of the rotating polygon mirror 10, correct synchronization is possible. Detection is possible.

第3図の実施例は面倒れの補正をも行う例である。被走
査面たる結像面14に対してはシリンダーレンズ13が
fθレンズ12と組み合わせられ、第3図(=)に示す
ように回転多面鏡10の鏡面がSolやSIOのように
面倒れして偏向光ビームがLOIやLloのように変動
しても偏向方向に直交する方向即ち理想的な掃引面に直
交する方向での走査位置の変動を防止出来るようになっ
ている。
The embodiment shown in FIG. 3 is an example in which correction of surface inclination is also performed. A cylinder lens 13 is combined with an fθ lens 12 for an image forming surface 14 which is a surface to be scanned, and the mirror surface of a rotating polygon mirror 10 is tilted like Sol or SIO as shown in FIG. Even if the deflected light beam changes like LOI or Llo, it is possible to prevent the scanning position from changing in the direction perpendicular to the deflection direction, that is, the direction perpendicular to the ideal sweep plane.

一方、受光素子を配設するべき同期光検出位置Q3に関
しては、レンズ22がfθレンズ12と組み合わせられ
ている。レンズ22は偏向方向およびこれに直交する方
向すなわち上記理想的な掃引面に直交する方向でパワー
が互いに異なる。
On the other hand, regarding the synchronized light detection position Q3 where the light receiving element is to be arranged, the lens 22 is combined with the fθ lens 12. The lenses 22 have different powers in the deflection direction and in a direction perpendicular thereto, that is, in a direction perpendicular to the ideal sweep plane.

すなわち、受光素子を配設するべき同期光検出位置Q3
は第3図(=)に示すように偏向方向に直交する方向に
関しては同期光の偏向点P即ち、偏向の起点と、fθレ
ンズ12とレンズ22とによって共役関係に結ばれてい
る。従って、回転多面鏡10に面倒れが生じても同期光
の検出は、面倒れの影響をうけない、なお、偏向方向に
直交する方向に関しては、回転多面鏡10への入射光ビ
ームLAは、上述の偏向点の位置に集束する。一方、上
記理想的な掃引面に直交する方向からみると上記入射光
ビームLAは平行光束である。
In other words, the synchronous light detection position Q3 where the light receiving element should be placed
As shown in FIG. 3 (=), in the direction orthogonal to the deflection direction, the synchronous light is connected in a conjugate relationship by the deflection point P of the synchronous light, that is, the starting point of deflection, by the fθ lens 12 and the lens 22. Therefore, even if the surface of the rotating polygon mirror 10 is tilted, the detection of the synchronous light is not affected by the surface tilt.In addition, in the direction perpendicular to the deflection direction, the incident light beam LA on the rotating polygon mirror 10 is Focus on the position of the deflection point mentioned above. On the other hand, when viewed from a direction perpendicular to the ideal sweep plane, the incident light beam LA is a parallel light beam.

受光素子を配設するべき同期光検出位置Q3は偏向方向
に関しては同期光の集束点すなわちf9レンズ12とレ
ンズ22との合成光学系の焦点面上の合成焦点位置とな
っている。従って回転多面鏡10の反射面SOやSlに
よって同期光がLOやLlのように変動しても正しい同
期検知が可能である。
The synchronous light detection position Q3 where the light receiving element is to be disposed is the focal point of the synchronous light in terms of the deflection direction, that is, the synthetic focal point on the focal plane of the synthetic optical system of the f9 lens 12 and the lens 22. Therefore, correct synchronization detection is possible even if the synchronization light varies as LO and Ll due to the reflecting surfaces SO and S1 of the rotating polygon mirror 10.

(効 果) 以上、本発明によれば、新規な同期検知方法を提供でき
る。この方法は上記の如き構成となっているから、同期
光を常に適正に検出でき、また、受光素子の配設位置に
大きな自由度が与えられるので光走査装置をコンパクト
化することが可能となり、コストダウンも可能となる効
果がある。なお、第1図ないし第4図において、各光ビ
ームは主光線で代表させて示しである。
(Effects) As described above, according to the present invention, a novel synchronization detection method can be provided. Since this method has the above-mentioned configuration, it is possible to always properly detect the synchronized light, and since a large degree of freedom is given to the placement position of the light-receiving element, it is possible to make the optical scanning device more compact. This also has the effect of reducing costs. Note that in FIGS. 1 to 4, each light beam is represented by a principal ray.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例を示す図、第2図は、本発明
の別実流側を示す図、第3図は、本発明の他の実施例を
示す図、第4図は、従来の技術を説明するための図であ
る。
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing another actual flow side of the present invention, FIG. 3 is a diagram showing another embodiment of the present invention, and FIG. 4 is a diagram showing another embodiment of the present invention. FIG. 2 is a diagram for explaining a conventional technique.

Claims (1)

【特許請求の範囲】 1 機械式の光偏向器により光ビームを偏向させ結像レ
ンズにより被走査面にスポット状に集光させて光走査を
行う光走査装置において、偏向され光走査領域へと向か
う光ビームを同期光として検出し、光走査開始のタイミ
ングを取るための方法であって、 光ビームを同期光として検出する受光素子と上記結像レ
ンズとの間に、少なくとも偏向方向にパワーを有するレ
ンズを配備し、上記結像レンズと上記レンズの偏向方向
の合成焦点面上に同期光検出位置を設定して、この同期
光検出位置に上記受光素子を配備して同期光を検出する
ことを特徴とする、同期検知方法。 2 特許請求の範囲第1項において、 レンズが、偏向方向およびこれにに直交する方向に互い
に異なるパワーを有し、偏向方向に直交する方向に於い
ては光偏向器の偏向点と受光素子の位置とが共役関係と
なるようにしたことを特徴とする、同期検知方法。
[Claims] 1. In an optical scanning device that performs optical scanning by deflecting a light beam using a mechanical optical deflector and converging the light beam into a spot on a surface to be scanned using an imaging lens, the optical beam is deflected into an optical scanning area. A method for detecting an oncoming light beam as a synchronous light and timing the start of optical scanning, the method comprising applying power at least in the direction of deflection between a light receiving element that detects the light beam as a synchronous light and the imaging lens. A synchronous light detection position is set on a composite focal plane of the deflection directions of the imaging lens and the lens, and the light receiving element is arranged at this synchronous light detection position to detect the synchronous light. A synchronous detection method characterized by: 2. In claim 1, the lenses have different powers in the direction of deflection and in the direction orthogonal thereto, and in the direction orthogonal to the direction of deflection, the deflection point of the optical deflector and the light receiving element are different from each other. A synchronization detection method characterized in that the position is in a conjugate relationship with the position.
JP61246058A 1986-10-16 1986-10-16 Synchronous detecting method Pending JPS6398624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61246058A JPS6398624A (en) 1986-10-16 1986-10-16 Synchronous detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61246058A JPS6398624A (en) 1986-10-16 1986-10-16 Synchronous detecting method

Publications (1)

Publication Number Publication Date
JPS6398624A true JPS6398624A (en) 1988-04-30

Family

ID=17142839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61246058A Pending JPS6398624A (en) 1986-10-16 1986-10-16 Synchronous detecting method

Country Status (1)

Country Link
JP (1) JPS6398624A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02158709A (en) * 1988-12-13 1990-06-19 Hitachi Ltd Optical scanner
US5084616A (en) * 1989-03-16 1992-01-28 Asahi Kogaku Kogyo Kabushiki Kaisha Scanner having horizontal synchronizing signal generator with prism light diameter reducing means

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02158709A (en) * 1988-12-13 1990-06-19 Hitachi Ltd Optical scanner
US5084616A (en) * 1989-03-16 1992-01-28 Asahi Kogaku Kogyo Kabushiki Kaisha Scanner having horizontal synchronizing signal generator with prism light diameter reducing means

Similar Documents

Publication Publication Date Title
JP3073801B2 (en) Optical scanning lens and optical scanning device
JP2777353B2 (en) Photodetector
JPH0222616A (en) Laser scanner
JPS6398624A (en) Synchronous detecting method
JPH0132700B2 (en)
JP3532324B2 (en) Optical scanning device
JP4173953B2 (en) Scanning optical device
JPS61296326A (en) Optical scanner
JP2959830B2 (en) Optical scanning device
JP2002202468A (en) Scanning optical device
JPH03131817A (en) Light beam scanning optical device
JPH063617A (en) Optical scanner
JPH09203876A (en) Optical scanning device
JP2721386B2 (en) Scanning optical device
JPS61175611A (en) Detecting device for synchronizing light
JP2893872B2 (en) Optical scanning device
JP2721619B2 (en) Optical scanning device / hologram lens for optical scanning
JP3205264B2 (en) Optical scanning optical system
KR970000083Y1 (en) Scanning apparatus
JP3492902B2 (en) Scanning optical device
JPH02266316A (en) Scanning optical device
JPS6225722A (en) Light scanning device
JPH01182822A (en) Beam scanner
JPH0225827A (en) Beam scanner
JPH09101472A (en) Image writing device