JPS6397881A - Liquid feeder - Google Patents

Liquid feeder

Info

Publication number
JPS6397881A
JPS6397881A JP24392486A JP24392486A JPS6397881A JP S6397881 A JPS6397881 A JP S6397881A JP 24392486 A JP24392486 A JP 24392486A JP 24392486 A JP24392486 A JP 24392486A JP S6397881 A JPS6397881 A JP S6397881A
Authority
JP
Japan
Prior art keywords
liquid
suction
discharge
flow rate
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24392486A
Other languages
Japanese (ja)
Other versions
JP2504001B2 (en
Inventor
Tamizo Matsuura
松浦 民三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP61243924A priority Critical patent/JP2504001B2/en
Publication of JPS6397881A publication Critical patent/JPS6397881A/en
Application granted granted Critical
Publication of JP2504001B2 publication Critical patent/JP2504001B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To get rid of any pulsation, by installing a damper so as to cause a total suction flow velocity of a pump, performing suction and discharge of a liquid via a suction valve and a discharge valve being controlled for each opening or closing, to become nonpulsation flow. CONSTITUTION:A motor 1 is rotated, cams 2a-2c are rotated as well, and cam followers 3a-3c and plungers 4a-4c are reciprocated. If so, a liquid is sucked in from damper chambers 10a-10c and then discharged. Therefore, the liquid is subjected to suction so as to cause the flow velocity of a total suction fluid out of a liquid suction port 9a to become nonpulsation flow. Accordingly, mixture of the fluid in a grade elution process is performable accurately and well in repeatability.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、高速液体クロマトグラフ等に装着され液体を
無脈流で送液できる送液装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a liquid feeding device that is attached to a high performance liquid chromatograph or the like and is capable of feeding liquid in a non-pulsating flow.

〈従来の技術〉 一般に、高速液体クロマトグラフ等においては、溶に液
の濃度や種類を段階的に変える段階溶出法や該濃度や種
類を連続的に変える勾配溶出法が行なわれている。この
勾配溶出法において、例えば三種類の溶媒A、B、Cを
例えば1:2:3の割合で混合しようとすると、各溶媒
に対応する電磁弁a、b、cを夫々送液ポンプの吸引側
に配設し、これらの電磁弁a、b、cを例えば1秒間、
2砂間、3秒間というように一定の時間比で順次閉とす
るようにしていた。このように電磁弁の開閉時間の比で
溶媒(溶離液等)の混合比を決定するには、上記送液ポ
ンプの溶媒吸引パターンがフラット(平滑)であること
が条件となっていた。
<Prior Art> Generally, in high performance liquid chromatographs and the like, a stepwise elution method in which the concentration or type of solution is changed stepwise, or a gradient elution method in which the concentration or type is continuously changed is used. In this gradient elution method, when trying to mix three types of solvents A, B, and C in a ratio of 1:2:3, for example, the electromagnetic valves a, b, and c corresponding to each solvent are activated to draw the liquid pump. These solenoid valves a, b, and c are operated for one second, for example.
They were to be closed sequentially at a fixed time ratio, such as 2 sands for 3 seconds. In order to determine the mixing ratio of the solvent (eluent, etc.) based on the ratio of the opening/closing time of the electromagnetic valve in this manner, it is necessary that the solvent suction pattern of the liquid pump be flat (smooth).

〈発明が解決しようとする問題点〉 然し乍ら、上記従来例において、吐出側が無闇流化され
た送液ポンプは市販されているものの、吸引側が無■流
化された送液ポンプは市販されておらず、一般に、吸引
側は間欠吸引方式となっている送液ポンプが使用されて
いた。この間欠吸引力式送液ポンプでは、溶媒(溶ga
液等)を吸引していないときに上記電磁弁を開としても
、溶媒は吸引されず結果的に溶媒の混合比も不正確なも
のとなっていた。また、このように溶媒の混合比が不正
確になると、検出信号のベースラインにノイズが発生し
たり被測定成分の高感度測定が不可能となったり或いは
上記勾配溶出法を希望通り行なうことができなかったり
して、究極的に被測定成分の正確な分析が不可能となっ
ていた。
<Problems to be Solved by the Invention> However, in the above-mentioned conventional example, although a liquid transfer pump with a non-flowing discharge side is commercially available, a liquid transfer pump with a non-flowing suction side is not commercially available. Generally, a liquid pump with an intermittent suction system is used on the suction side. In this intermittent suction force type liquid transfer pump, the solvent
Even if the electromagnetic valve was opened when no liquid (e.g. liquid, etc.) was being suctioned, the solvent would not be suctioned and as a result, the mixing ratio of the solvents would also be inaccurate. Additionally, if the mixing ratio of the solvents becomes inaccurate in this way, noise may occur in the baseline of the detection signal, it may become impossible to measure the analyte with high sensitivity, or the gradient elution method described above may not be carried out as desired. Ultimately, it has become impossible to accurately analyze the component to be measured.

本発明はかかる従来例の欠点に鑑みてなされたものであ
り、その目的は、吐出側のみならず吸引側も無■流化さ
れた送液装置を提供することにある。
The present invention has been made in view of the drawbacks of the conventional example, and its object is to provide a liquid feeding device that is flow-free not only on the discharge side but also on the suction side.

く間第点を解決するための手段〉 上述のような問題点を解決する本発明の特徴は、送液装
置において、開閉制御される吸入弁と吐出弁を介して液
体の吸入と吐出を行なうポンプの合計吸引流速が無■流
となるようなダンパを設けたことにある。
A feature of the present invention that solves the above-mentioned problems is that in a liquid feeding device, liquid is sucked and discharged through a suction valve and a discharge valve that are controlled to open and close. The reason is that a damper is provided so that the total suction flow rate of the pump becomes zero flow.

〈実施例〉 以下、本発明について図を用いて詳しく説明する。第1
図は本発明実施例の構成断面図であり、図中、lはカム
2a、 2b、 2cを同期して回転させるモータ、3
a〜3Cはカム2a〜2Cと夫々接するようにして第1
図の紙面上を左右に動くカムフォロア、4a〜4cはカ
ムフォロア3a〜3Cに夫々一体的に結合されてなるプ
ランジャ、5a〜5cはプランジャ4a〜4cを第1図
の紙面上で右方向に押圧するバネ、61〜6cはプラン
ジャガイド、7a〜7cは例えばO−リングでなるプラ
ンジャシール、8a、 8bはチェックバルブ、9aは
液体吸入口、9bは液体吐出口、IOaはポンプ室、I
Ob、 IOcはダンパー室、11は送液装置本体であ
る。また、第2図は本発明実施例の動作を説明するため
の流量パターン図であり、図中、各流量パターンの横軸
は時間(単位は分)を示し縦軸は流ff1(単位はQ/
lll1n、)を示している。
<Example> Hereinafter, the present invention will be explained in detail using the drawings. 1st
The figure is a cross-sectional view of the configuration of an embodiment of the present invention, and in the figure, l denotes a motor that rotates the cams 2a, 2b, and 2c synchronously, and 3
a to 3C are in contact with the first cams 2a to 2C, respectively.
Cam followers that move left and right on the plane of the figure, 4a to 4c are plungers integrally connected to the cam followers 3a to 3C, respectively, and 5a to 5c push the plungers 4a to 4c to the right on the plane of the figure 1. Spring, 61 to 6c are plunger guides, 7a to 7c are plunger seals made of O-rings, 8a and 8b are check valves, 9a is a liquid intake port, 9b is a liquid discharge port, IOa is a pump chamber, I
Ob and IOc are damper chambers, and 11 is the main body of the liquid feeding device. FIG. 2 is a flow rate pattern diagram for explaining the operation of the embodiment of the present invention. In the figure, the horizontal axis of each flow rate pattern indicates time (unit: minutes), and the vertical axis indicates flow rate ff1 (unit: Q). /
lll1n,) is shown.

第1図において、モータ1が回転するとカム2a〜2c
が同期して例えば時計方向に回転する。このため、カム
2aの回転に伴ないカムフォロア3aとプランジャ4a
が第1図の紙面上を左右方向に往復動し、ダンパ室10
cから第2図(イ)の破線で示すような流量パターンで
液体を吸引・吐出する。また、カム2bの回転に伴ない
カムフォロア3bとプランジャ4bが第1図の紙面上を
左右方向に往復動じ、ポンプ室10aから第2図(イ)
の実線で示すような流量パターンで液体を吸引・吐出す
る。従って、液体吐出口9bからは、第2図(イ)の破
線で示された流量パターンと実線で示された流量パター
ンの合計に相当する第2図(ロ)の実線で示すような流
量パターンで液体が吐出されることになる。
In FIG. 1, when the motor 1 rotates, the cams 2a to 2c
rotate in synchronization, for example, clockwise. Therefore, as the cam 2a rotates, the cam follower 3a and the plunger 4a
moves back and forth in the left-right direction on the paper surface of FIG. 1, and the damper chamber 10
The liquid is sucked and discharged from c in a flow pattern as shown by the broken line in FIG. 2(a). In addition, as the cam 2b rotates, the cam follower 3b and the plunger 4b reciprocate in the left-right direction on the paper surface of FIG.
The liquid is sucked and discharged in the flow rate pattern shown by the solid line. Therefore, from the liquid discharge port 9b, a flow rate pattern as shown by the solid line in FIG. 2(B) is produced, which corresponds to the sum of the flow rate pattern shown by the broken line in FIG. 2(A) and the flow rate pattern shown by the solid line. The liquid will be discharged.

一方、カム2cの回転に伴なってカムフォロア3Cとプ
ランジャ4cが第1図の紙面上を左右方向に往復動し、
ダンパ室10bから第2図(ハ)の破線で示すような流
量パターンで液体を吸引・吐出する。
On the other hand, as the cam 2c rotates, the cam follower 3C and the plunger 4c reciprocate in the left-right direction on the paper surface of FIG.
Liquid is sucked and discharged from the damper chamber 10b in a flow rate pattern as shown by the broken line in FIG. 2(C).

尚、第2図(ハ)の実線はポンプ室10bから吸引・吐
出される液体の流量パターンを示しており第2図(イ)
の実線と全く同一である。従って、液体吸入口9aから
は、第2図(ハ)の破線で示された流量パターンと実線
で示された流量パターンの合計に相当する第2図(ニ)
の実線で示すような流量パターンで液体が吸引されるこ
とになる。
The solid line in FIG. 2(C) shows the flow rate pattern of the liquid sucked and discharged from the pump chamber 10b, and the solid line in FIG.
It is exactly the same as the solid line. Therefore, from the liquid suction port 9a, the flow rate pattern shown in FIG. 2(d) corresponds to the sum of the flow rate pattern shown by the broken line in FIG.
The liquid will be suctioned with a flow rate pattern as shown by the solid line.

第3図は本発明の他の実施例を示す構成説明図であり、
図中、第1図と同一記号は同一意味をもたせて使用しこ
こでの重複説明は省略する。また、2’bはカム2bと
同一形状で位相が180  異なる位置に配設されたカ
ム、3’bはカムフォロア3bと同一のカムフォロア、
4’bはプランジャ4bと同一のプランジャ、7°bは
プランジャシール7bと同一のプランジャシール、8’
a、8’bはチェックバルブ8a、 8bと同一のチェ
ックバルブである。また、第4図は上記他の実施例の動
作を説明するための流量パターン図であり、図中、各流
量パターンの横軸は時間(単位は分)を示し縦軸は流量
(単位はffi/1lin、)を示している。第3図に
おいて、モータ1が回転するとカム2’ b、 2b。
FIG. 3 is a configuration explanatory diagram showing another embodiment of the present invention,
In the figure, the same symbols as in FIG. 1 are used with the same meaning, and repeated explanation will be omitted here. In addition, 2'b is a cam that has the same shape as cam 2b but is disposed at a position 180 degrees different in phase, 3'b is a cam follower that is the same as cam follower 3b,
4'b is the same plunger as plunger 4b, 7°b is the same plunger seal as plunger seal 7b, 8'
a and 8'b are the same check valves as check valves 8a and 8b. FIG. 4 is a flow rate pattern diagram for explaining the operation of the other embodiment described above. In the figure, the horizontal axis of each flow rate pattern represents time (in minutes), and the vertical axis represents flow rate (in units of ffi). /1lin,) is shown. In FIG. 3, when the motor 1 rotates, the cams 2'b, 2b.

2cが同期して例えば時計方向に回転する。このため、
カム2’ bの回転に伴ないカムフォロア3’bとプラ
ンジャ4’bが第3図の紙面上を左右方向に往復動じ、
ポンプ室(図示せず)から第4図(イ)の破線で示すよ
うな流量パターンで液体を吸引・吐出する。同様に、カ
ムフォロア3’bとプランジャ4’bの往復動により、
ポンプ室(図示せず)から第4図(イ)の実線で示すよ
うな流量パターンで液体を吸引・吐出する。また、カム
2cの回転に伴ないカムフォロア3Cとプランジャ4c
が第3図の紙面上を左右方向に往復動じ、ダンパ室(図
示せず)から第4図(ロ)の破線で示すような流量パタ
ーンで液体を吸引・吐出する。尚、上述のプランジャ4
’b、4bは所謂ダブルプランジャを構成しており、該
ダブルプランジャによる吸引の流量パターンは第4図(
ロ)の実線のようになっている。従って、第4図(ロ)
の流量パターンにおける吸引側を合成すると第4図(ハ
)のような流量パターンとなり、該流量パターンで液体
吸入口から液体が吸引されるようになる。
2c rotates in synchronization, for example, clockwise. For this reason,
As the cam 2'b rotates, the cam follower 3'b and the plunger 4'b reciprocate in the left-right direction on the page of FIG.
Liquid is sucked and discharged from a pump chamber (not shown) in a flow rate pattern as shown by the broken line in FIG. 4(A). Similarly, due to the reciprocating movement of the cam follower 3'b and the plunger 4'b,
Liquid is sucked and discharged from a pump chamber (not shown) in a flow rate pattern as shown by the solid line in FIG. 4(A). Also, as the cam 2c rotates, the cam follower 3C and plunger 4c
moves back and forth in the left-right direction on the paper surface of FIG. 3, and sucks and discharges liquid from a damper chamber (not shown) in a flow rate pattern as shown by the broken line in FIG. 4 (b). In addition, the above-mentioned plunger 4
'b and 4b constitute a so-called double plunger, and the suction flow rate pattern by the double plunger is shown in Figure 4 (
It looks like the solid line in b). Therefore, Figure 4 (b)
When the suction side of the flow rate pattern is combined, a flow rate pattern as shown in FIG. 4(c) is obtained, and liquid is sucked from the liquid suction port with this flow rate pattern.

〈発明の効果〉 以上詳しく説明したような本発明によれば、ポンプの合
計吸引流速が無闇流となるようなダンパーを設けている
ため、吐出側のみならず吸引側も無脈流化された送液装
置が実現する。このような本発明に係る送液装置を使用
すれば、前記勾配溶出法における液体の混合を正確且つ
再現性よく行なうことができるようになる。また、吐出
側が無脈流化されていて圧力緩衝器等の死容積がなく低
圧勾配溶出法における無駄時間遅れが小さいだけでなく
、吸引側も無闇化されているため、低圧勾配溶出法で使
用される電磁弁を上記ポンプと同期させる必要がなくな
るという利点もある。更に、吐出側と吸引側の双方が無
脈流化されているため、上記低圧勾配法だけでなく、複
数のポンプを使用する所謂高圧勾配溶出法における液体
の混合性能も向上する利点がある。
<Effects of the Invention> According to the present invention as explained in detail above, since a damper is provided so that the total suction flow rate of the pump becomes a non-pulsating flow, not only the discharge side but also the suction side can be made into a non-pulsating flow. A liquid delivery device is realized. By using such a liquid feeding device according to the present invention, it becomes possible to mix liquids in the gradient elution method accurately and with good reproducibility. In addition, the discharge side has a non-pulsating flow and there is no dead volume such as a pressure buffer, so not only is the dead time delay in low pressure gradient elution method small, but the suction side is also seamless, so it can be used in low pressure gradient elution method. Another advantage is that there is no need to synchronize the electromagnetic valves used with the pump. Furthermore, since both the discharge side and the suction side are made non-pulsating, there is an advantage that the mixing performance of liquids is improved not only in the above-mentioned low-pressure gradient method but also in the so-called high-pressure gradient elution method using a plurality of pumps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の構成断面図、第2図は本発明実
施例の動作説明図、第3図は本発明池の実施例の構成断
面図、第4図は本発明他の実施例の動作説明図である。 I・・・モータ、 2a〜2C・・・カム、3a〜3C
・・・カムフォロア、4a〜4c・・・プランジャ、5
a〜5C・・・バネ、6a〜6c・・・プランジャガイ
ド、7a〜7C・・・プランジャシール、8a、 8b
・・・チェックバルブ、9a・・・液体吸入口、9b・
・・液体吐出口、IOa・・・ポンプ室、IOb、 I
Oc・・・ダンパー室。 第1 図 1   モータ             蓮〜7C″
7″5ンジrシール2a〜2Cカム         
 3α〜8b  今工・ノクハ゛ルフ゛3(1−3Cカ
ムフオD7        qυ ・ メ乞りトヅし入
口4O−4Cブラzy、        qb  : 
 ’Judo工巳0.5d〜5C,ハネ       
 数υ  爪5丁!6O−6C:  プラク5シカ″A
s   10b、10C:  夕”−)1’−*沫  
         g 月 d’(ゼ繭荒−←← −ご(靜恣W隼)♂(若五靜−−
−q(靜込解−) 第3し 計 漣 %’介 /2゛b zC
Fig. 1 is a cross-sectional view of the structure of an embodiment of the present invention, Fig. 2 is an explanatory diagram of the operation of the embodiment of the present invention, Fig. 3 is a cross-sectional view of the structure of an embodiment of the invention pond, and Fig. 4 is another embodiment of the present invention. FIG. 6 is an explanatory diagram of an example operation. I...Motor, 2a-2C...Cam, 3a-3C
...Cam follower, 4a-4c...Plunger, 5
a~5C...Spring, 6a~6c...Plunger guide, 7a~7C...Plunger seal, 8a, 8b
...Check valve, 9a...Liquid inlet, 9b.
...Liquid discharge port, IOa...Pump chamber, IOb, I
Oc... damper room. 1st Figure 1 Motor Ren~7C''
7″5 inch r seal 2a~2C cam
3α~8b Imago Nokuha Half 3 (1-3C Camfoo D7 qυ ・Mebegori Tozushi Entrance 4O-4C Brazy, qb:
'Judo Koumi 0.5d~5C, Hane
Number υ 5 claws! 6O-6C: Plaque 5 Deer''A
s 10b, 10C: Yu"-)1'-*Drop
g Moon d' (Ze cocoon rough-←← -Go (Seisaku W Hayabusa)♂ (Wakago Sei--
-q (quiet solution-) 3rd measurement %'suke/2゛b zC

Claims (2)

【特許請求の範囲】[Claims] (1)開閉制御される吸入弁を開にして液体を吸入し開
閉制御される吐出弁を開にして液体を吐出するポンプと
、該ポンプから吐出された液体を一部吸引し前記ポンプ
が液体を吐出しないときに吐出する第1のダンパと、前
記ポンプが液体を吐出するとき液体を吸引し前記ポンプ
が液体を吸入するとき液体を吐出する第2のダンパとを
具備し、合計吐出流速および合計吸引流速がいずれも無
脈流となるように構成したことを特徴とする送液装置。
(1) A pump that sucks in liquid by opening a suction valve that is controlled to open and close, and discharges the liquid by opening a discharge valve that is controlled to open and close; a first damper that discharges the liquid when the pump does not discharge the liquid, and a second damper that sucks the liquid when the pump discharges the liquid and discharges the liquid when the pump sucks the liquid, and the total discharge flow rate and A liquid feeding device characterized in that the total suction flow rate is a non-pulsating flow.
(2)開閉制御される吸入弁を開にして液体を吸入し開
閉制御される吐出弁を開にして流体を吐出する2つのポ
ンプを並列接続して前記吸入と吐出を交互に行なわせる
と共に、これらポンプが液体を吐出するとき液体を吸引
し該ポンプが液体を吸入するとき液体を吐出するダンパ
を前記2つのポンプの共通吸入口に接続し合計吸入流速
が無脈流となるように構成したことを特徴とする送液装
置。
(2) Two pumps are connected in parallel, which open a suction valve that is controlled to open and close to suck in liquid, and open and discharge a discharge valve that is controlled to open and close to discharge fluid, and alternately perform the suction and discharge; A damper that sucks in liquid when these pumps discharge liquid and discharges liquid when this pump sucks in liquid is connected to the common suction port of the two pumps, so that the total suction flow rate becomes a pulseless flow. A liquid feeding device characterized by:
JP61243924A 1986-10-14 1986-10-14 Liquid transfer device Expired - Fee Related JP2504001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61243924A JP2504001B2 (en) 1986-10-14 1986-10-14 Liquid transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61243924A JP2504001B2 (en) 1986-10-14 1986-10-14 Liquid transfer device

Publications (2)

Publication Number Publication Date
JPS6397881A true JPS6397881A (en) 1988-04-28
JP2504001B2 JP2504001B2 (en) 1996-06-05

Family

ID=17111045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61243924A Expired - Fee Related JP2504001B2 (en) 1986-10-14 1986-10-14 Liquid transfer device

Country Status (1)

Country Link
JP (1) JP2504001B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0367099A2 (en) * 1988-11-03 1990-05-09 Bruker Franzen Analytik GmbH Liquid piston pump for chromatographic analysis appliances
JP2001338018A (en) * 2000-05-29 2001-12-07 Iida Sangyo:Kk Home remote check system
WO2011050585A1 (en) * 2009-10-30 2011-05-05 北京普析通用仪器有限责任公司 Parallel liquid chromatographic pump
US9829396B2 (en) 2010-04-22 2017-11-28 Board Of Regents Of The University Of Texas System Surface-mounted monitoring system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412890A (en) * 1977-06-30 1979-01-30 Nippon Bunko Kogyo Kk Method and apparatus for making elution for liquidchromatography

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412890A (en) * 1977-06-30 1979-01-30 Nippon Bunko Kogyo Kk Method and apparatus for making elution for liquidchromatography

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0367099A2 (en) * 1988-11-03 1990-05-09 Bruker Franzen Analytik GmbH Liquid piston pump for chromatographic analysis appliances
EP0367099A3 (en) * 1988-11-03 1991-01-09 Bruker Franzen Analytik GmbH Liquid piston pump for chromatographic analysis appliances
JP2001338018A (en) * 2000-05-29 2001-12-07 Iida Sangyo:Kk Home remote check system
WO2011050585A1 (en) * 2009-10-30 2011-05-05 北京普析通用仪器有限责任公司 Parallel liquid chromatographic pump
US9829396B2 (en) 2010-04-22 2017-11-28 Board Of Regents Of The University Of Texas System Surface-mounted monitoring system

Also Published As

Publication number Publication date
JP2504001B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
US4244919A (en) Sample diluting apparatus
JP6367195B2 (en) Gradient liquid feeder in sample analyzer
RU2488715C2 (en) Proportioning pump and its drive
JPH09512614A (en) Single piston, multi-mode, fluid displacement pump
JP5677649B1 (en) Switching valve for flow analyzer
CN104101658B (en) It is a kind of can be with the high performance liquid chromatograph of coutroi velocity
US8733152B2 (en) Automated analyzer with low-pressure in-line filtration
US3572130A (en) Liquid sample pick-up and dispensing apparatus
JP2015092166A5 (en)
JPS6397881A (en) Liquid feeder
JP4732960B2 (en) Gradient liquid feeding method and apparatus
US10690132B2 (en) Liquid chromatography pump having diversion conduit for air evacuation
JPS633154B2 (en)
CN104101669B (en) A kind of high performance liquid chromatograph for control system pressure fluctuation
US3628891A (en) Method for the minimization of the effects of pulsations in intermittent pumping systems
CN104111342A (en) Precise loading system, precise loading method, and biochemistry analyzer
BR102013025443A2 (en) Precision Analytical Pump
CN113039424A (en) Microfluidic sample preparation device providing high reproducibility
JP3389649B2 (en) Liquid sending device
US3127062A (en) Semi-automatic sampling and diluting apparatus
DK147605B (en) PUMP FOR MEASURING AND MIXING FLUIDS
DE4412703A1 (en) Solvent mixt. prodn. for high pressure liq. chromatography
GB1400601A (en) Metering pump
US20030165390A1 (en) Continuous conveying process and device for shear-sensitive fluids
JP4136908B2 (en) Liquid feeding device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees