JPS6397802A - Turbine moving blade made of ti alloy - Google Patents

Turbine moving blade made of ti alloy

Info

Publication number
JPS6397802A
JPS6397802A JP24132386A JP24132386A JPS6397802A JP S6397802 A JPS6397802 A JP S6397802A JP 24132386 A JP24132386 A JP 24132386A JP 24132386 A JP24132386 A JP 24132386A JP S6397802 A JPS6397802 A JP S6397802A
Authority
JP
Japan
Prior art keywords
electron beam
welding
plate
shim
blade member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24132386A
Other languages
Japanese (ja)
Inventor
Takeo Uehara
上原 壮夫
Takamitsu Nakasaki
中崎 隆光
Kazu Kobayashi
小林 計
Takeshi Onoda
武志 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24132386A priority Critical patent/JPS6397802A/en
Publication of JPS6397802A publication Critical patent/JPS6397802A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable excellent welding of a turbine moving blade, by a method wherein, after an intermediate medium metal is secured to either a blade member or a corrosionproof plate by electron beam welding, the intermediate medium metal and either the blade member or the corrosionproof plate are secured to each other by electron beam welding. CONSTITUTION:A turbine moving blade Ti is formed with a blade member 1 made of a Ti alloy and a corrosionproof plate 2 in a J-shape and the like made of a corrosionproof Ti alloy, and the two members are secured together through a shim (intermediate medium metal) 5, made of a pure Ti alloy having hardness lower than that of the two members, by electron beam welding. In this constitution, the shim 5 is welded to the corrosionproof plate 2 through irradiation with electron beam, and the shim 5 is welded to the blade member 1 by electron beam. The corrosion plate 2 and the blade member 1, to which the shim 5 is welded, are irradiated with electron beams 6a and 6b to form a weld metal 7, whereby the corrosionproof plate 2 and the blade member 1 are secured to each other. This constitution enables reduction of weld deformation and residual stress.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、火力タービンおよび原子力タービンのような
湿り蒸気中で使用されるタービン動翼に係り、特に、侵
食防止に好適なタービン動翼に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to turbine rotor blades used in wet steam such as thermal power turbines and nuclear power turbines, and particularly relates to turbine rotor blades suitable for erosion prevention. .

〔従来の技術〕[Conventional technology]

火力あるいは原子力発電用タービン等の湿り蒸気の雰囲
気中で使用されろタービン動翼前縁部には、水滴の衝突
によって翼面が侵食されるのを防止するため、従来、特
公昭46−30411号又は、実願昭60−15985
3号明細書に記載のように、翼先端部の蒸気流入側に防
食片が、電子ビーム溶接、又は、TIG溶接で接合され
ている。特公昭46−30411号公報の場合、電子ビ
ーム溶接中の変形および溶接金属の組成について考慮さ
れていない。
To prevent the blade surface from being eroded by the collision of water droplets, the leading edge of the turbine rotor blade used in a humid steam atmosphere such as a turbine for thermal power or nuclear power generation has conventionally been used in Japanese Patent Publication No. 46-30411. Or, Jitsugan Sho 60-15985
As described in Specification No. 3, a corrosion protection piece is joined to the steam inflow side of the blade tip by electron beam welding or TIG welding. In the case of Japanese Patent Publication No. 46-30411, deformation during electron beam welding and the composition of the weld metal are not considered.

又、実願昭60−159853号明細書の場合、溶接変
形およびその変形修正に伴う残留応力の発生等について
考慮されていない。
Furthermore, in the case of Utility Model Application No. 159853/1984, no consideration is given to welding deformation and the generation of residual stress due to correction of the deformation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来技術を第4図ないし第10図を用いて説明する。T
i合金製タービン動翼全体図を示す。基本的にダブテー
ル部3を含む翼部材1と防食板2(二ローションシール
ド板)から構成される装置通常翼部材1にはTi合金で
あるT i −6%AM−4%Vが、また、防食板2に
は耐食性Ti合金であるTi−15%MO−5%Zr、
または、Ti−15%M o −5%Zr−3%AQが
使用される。
The prior art will be explained using FIGS. 4 to 10. T
An overall view of an i-alloy turbine rotor blade is shown. The device basically consists of a wing member 1 including a dovetail portion 3 and a corrosion protection plate 2 (two lotion shield plates).The wing member 1 usually contains a Ti alloy, Ti-6%AM-4%V, and The anti-corrosion plate 2 contains Ti-15% MO-5% Zr, which is a corrosion-resistant Ti alloy.
Alternatively, Ti-15%Mo-5%Zr-3%AQ is used.

この翼部材1と防食板2の固着には、一つの方法として
第3図の■断面を第4図に示すように防食板2をJ型で
示しているが、純Tiの溶接ワイヤを用いた不活性ガス
中のTIG溶接が用いられ、溶接部m4は、翼部材1お
よび防食板2より硬度の低い純Tiで形成される。これ
は、運転中、防食片2に応力腐食等で亀裂が生じた場合
、回転中の翼の捩り戻りの曲げ疲労により、亀裂が進展
しても、軟化層である純Tiの溶接金層4で亀裂を停留
させることを目的としている。このTIC溶接の場合、
周知のように活性な金属であるTi合金では不活性ガス
雰囲気中の溶接といえども、ブロホール等の溶接欠陥が
非常に発生しやすいこと、さらにTIG溶接ではV型開
光を必要とし溶接金属4の量が大いため、溶接後の変形
が、他のステンレス鋼等に比べて著しく大きく、残留応
力も大きくなり、さらに変形修正に伴い残留応力が発生
し、これらの残留応力は熱処理を実施しても、完全に除
去出来ず、残留応力と蒸気中に含まれる塩素イオンによ
り運転中防食板2に応力腐食割れが発生しやすくなり、
重大な影響を与える。なお。
As one method for fixing the wing member 1 and the anti-corrosion plate 2, the anti-corrosion plate 2 is shown in a J shape as shown in FIG. TIG welding in an inert gas is used, and the welded portion m4 is made of pure Ti, which has a lower hardness than the wing member 1 and the corrosion protection plate 2. This means that if a crack occurs in the anti-corrosion piece 2 due to stress corrosion etc. during operation, even if the crack develops due to bending fatigue due to untwisting of the blade during rotation, the welded metal layer 4 of pure Ti, which is a softened layer, The purpose is to stop the cracks. In the case of this TIC welding,
As is well known, Ti alloys, which are active metals, are very susceptible to welding defects such as blowholes even when welding in an inert gas atmosphere.Furthermore, TIG welding requires a V-shaped opening, making it difficult to weld metal 4. Due to the large amount of welding, the deformation after welding is significantly larger than that of other stainless steels, etc., and the residual stress is also large.Furthermore, residual stress is generated as a result of deformation correction, and these residual stresses can be maintained even after heat treatment. , it cannot be completely removed, and stress corrosion cracking tends to occur in the corrosion protection plate 2 during operation due to residual stress and chlorine ions contained in the steam.
have a significant impact. In addition.

変形修正も翼部材1の材質より0.2%耐力と引張強さ
が数−5/m2しか差がなく、非常に難しい、さらに溶
接変形を少なくする溶接方法として溶接ビード幅および
熱影響部が非常に狭い電子ビーム溶接が近年採用されつ
つあり、その例を、特公昭413−30411号公報に
示される例として第5図に示す、翼部材1と防食板2の
間に純Tiである中間媒体金属5(以下シムと略す、)
をはさみ第:6図に示すように電子ビーム6a、6bを
連続して照射するか、又は、第8図に示すように1表裏
より電子ビーム6a、6b、6c、6dを照射し。
Deformation correction is also very difficult since the difference in yield strength and tensile strength is only a few -5/m2 compared to the material of the wing member 1.Furthermore, as a welding method to reduce welding deformation, weld bead width and heat affected zone Very narrow electron beam welding is being adopted in recent years, and an example of this is shown in Japanese Patent Publication No. 413-30411, as shown in FIG. Medium metal 5 (hereinafter abbreviated as shim)
Scissors: irradiate with electron beams 6a and 6b continuously as shown in FIG. 6, or irradiate with electron beams 6a, 6b, 6c, and 6d from the front and back sides as shown in FIG.

電子ビーム溶接部7を形成し、翼部材1と防食板2を固
着する。シム5として、純Tiを用いるのは、TIC溶
接の場合と同じ理由である。しかしこれらの電子ビーム
溶接方法には次の欠点がある。
Electron beam welding portions 7 are formed to fix the wing member 1 and anticorrosion plate 2 together. The reason why pure Ti is used as the shim 5 is the same as in the case of TIC welding. However, these electron beam welding methods have the following drawbacks.

第7図で説明すると、最初の電子ビーム6aの照射によ
り電子ビーム溶接といえども実験的に確認した結果0.
5〜1m程度の溶接変形が生じ、次の電子ビーム6bの
照射時に溶接変形の影響を受け、ffi子ビーム溶接部
のビード幅は、周知のように、このような動翼の場合、
1m以下であるため。
To explain this with reference to FIG. 7, it has been experimentally confirmed that electron beam welding is 0.
Welding deformation of about 5 to 1 m occurs, and it is affected by the welding deformation during the next irradiation with the electron beam 6b, and as is well known, in the case of such a rotor blade, the bead width of the ffi beam weld is
Because it is less than 1m.

目外れ欠陥、すなわち、未溶着部8が生じる。このため
、溶接作業に非常に高い精度が要求されるが、最初の溶
接の変形は避は難く、かつ5次の溶接時の溶接中の変形
も加わるため、目外れ欠陥が発生する危険性が大きかっ
た。さらに、この欠点を補う方法として第9図に示すよ
うに、電子ビーム6aおよび6bを矢印Bの方向に揺動
させ、翼部材1とシム5および防食板を一度に溶接し、
電子ビーム溶接部7を形成する方法があるが、この場合
、電子ビーム溶接部7は、それぞれの材質を混合した組
織となり、熱処理後、逆に、硬度が翼部材1(ピーカー
ス硬度320〜360)より高く(ピーカース硬度39
0〜420)なってしまう欠点がある。 また、第10
図に示すJ型の防食板2の場合も同様の欠点をもち、こ
の場合、電子ビーム6b、6cの照射で、翼部材1と防
食板2が溶接部9で固着されるが、この部分は、運転中
の曲げ疲労によりビード幅が狭いため破断すると同時に
、破断部のミクロ的な亀裂のため応力集中により、亀裂
が進展する恐れがある。
A misalignment defect, that is, an unwelded portion 8 occurs. For this reason, extremely high precision is required for welding work, but deformation during the first weld is unavoidable, and deformation during welding during the fifth weld is also added, so there is a risk of misalignment defects occurring. It was big. Furthermore, as a method to compensate for this drawback, as shown in FIG. 9, the electron beams 6a and 6b are swung in the direction of arrow B to weld the wing member 1, shim 5, and anti-corrosion plate all at once.
There is a method of forming the electron beam welded part 7, but in this case, the electron beam welded part 7 has a structure that is a mixture of the respective materials, and after heat treatment, the hardness is on the contrary the same as that of the wing member 1 (Pekers hardness 320 to 360). Higher (Peakers hardness 39
0 to 420). Also, the 10th
The case of the J-shaped anti-corrosion plate 2 shown in the figure has a similar drawback; in this case, the wing member 1 and the anti-corrosion plate 2 are fixed at the welded part 9 by irradiation with the electron beams 6b and 6c; Due to bending fatigue during operation, the narrow bead width causes the bead to fracture, and at the same time, there is a risk that the crack will propagate due to stress concentration due to microscopic cracks at the fractured portion.

本発明は、翼部材と防食板を、溶接変形が少なく、未溶
着等が発生せず、翼部材と防食板の間に確実に軟化層を
もつ良好な防食性のTi合金製タービン動翼を提供する
ことを目的とする。
The present invention provides a Ti alloy turbine rotor blade with good corrosion resistance, which has little welding deformation between the blade member and the corrosion protection plate, does not cause unwelded parts, and has a reliably softened layer between the blade member and the corrosion protection plate. The purpose is to

〔問題点を解決するための手段〕 本発明の目的はTi合金製タービン動翼の翼部材と防食
板をシム(中間媒体金層)を介して電子ビーム溶接する
場合、予めシム材を、翼部材および防食板に電子ビーム
溶接で固着し、それぞれを機械加工後、最終的に翼部材
とシムおよび、シムと防食片を電子ビーム溶接により固
着することにより、達成され、最初の電子ビーム溶接の
変形の影響を受けることなく、溶接欠陥(目外れ)の発
生の危険のない良好なTi合金製タービン動翼を提供す
ることができる。
[Means for Solving the Problems] An object of the present invention is that when electron beam welding the blade member of a Ti alloy turbine rotor blade and a corrosion protection plate via a shim (intermediate gold layer), the shim material is This was achieved by fixing the parts and the anti-corrosion plate by electron beam welding, and after machining each, finally fixing the wing member to the shim and the shim to the anti-corrosion plate by electron beam welding. It is possible to provide a good Ti alloy turbine rotor blade that is not affected by deformation and has no risk of welding defects (misalignment).

〔作用〕[Effect]

予め防食片および翼部材を荒仕上の状態でそれぞれにシ
ムを取付け、電子ビーム溶接を実施する。
Shims are attached to the anti-corrosion piece and wing member in a roughly finished state, and electron beam welding is performed.

この時に発生する溶接変形は、0.5〜1m程度であり
、これを機械加工等により加工し、溶接線(工開先)を
再加工し、最終的に翼部材+シムと防食片+シムの部片
を電子ビーム溶接する。それによって、最初の溶接変形
の影響はなく溶接欠陥(目外れ)は発生せず、さらに、
TIG溶接等に比較して電子ビーム溶接は変形も少ない
ため残留応力も少なく、さらに、真空中溶接であり他の
溶接欠陥(ブロホール等)の発生も少ない高品質の溶接
部が得られ、確実に翼部材と防食板の間に軟化層を残す
ことが可能とする。
The welding deformation that occurs at this time is about 0.5 to 1 m, and this is processed by machining etc., the weld line (work groove) is reprocessed, and the final product is the wing member + shim and anticorrosion plate + shim. Electron beam welding the pieces. As a result, there is no influence of initial welding deformation, weld defects (misalignment) do not occur, and furthermore,
Compared to TIG welding, etc., electron beam welding causes less deformation and therefore less residual stress.Furthermore, since it is welded in a vacuum, it is possible to obtain high-quality welds with fewer occurrences of other weld defects (such as blowholes). It is possible to leave a softened layer between the wing member and the anti-corrosion plate.

〔実施例〕〔Example〕

以下、本発明の実施例を図面により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

まず、■型の防食板にて説明するが第1図は防食板2に
単品の状態でシム5を取付け、電子ビーム6を照射する
。この場合、第1図(a)の対向する側より電子ビーム
6を照射することも可能である。
First, explanation will be given using a type 2 corrosion protection plate. In FIG. 1, a shim 5 is attached as a single item to the corrosion protection plate 2, and an electron beam 6 is irradiated. In this case, it is also possible to irradiate the electron beam 6 from the opposite sides in FIG. 1(a).

この状態では仕上代があり1発生した溶接変形を機械加
工等により仕上げ、シム側に電子ビーム溶接用の工開先
を加工する。同様に、(b)に示すように、翼部材1に
シム5を電子ビーム6を照射し、この時の溶接変形を機
械加工等により仕上げ電子ビーム用の工開先を加工する
。最終的に、(c)に示すように、防食片2+シム5を
翼部材1+シム5に電子ビーム6aおよび6bを照射し
、溶接金層7を形成して溶接を完了する。本実施例によ
れば、溶込み深さが第6図に示したものの約半分である
ことより、電子ビーム6a、6bの入熱も少なくてよく
、変形も少なく、最初の溶接し第1図(a)および(b
)の溶接変形の影響も受けず、目外れ欠陥の発生もない
高品質の溶接部が形成され、さらに、純Tiのシム5の
部分が確実に形成され、翼部材1と防食板2の間のシム
5の部分に軟化層が形成され、応力腐食割れが万一発生
しても、確実に、軟化層で、亀裂は停留する。
In this state, there is a finishing allowance, and the welding deformation that has occurred is finished by machining, etc., and a cutting edge for electron beam welding is processed on the shim side. Similarly, as shown in (b), the shim 5 is irradiated with the electron beam 6 on the wing member 1, and the welding deformation at this time is processed by machining or the like to form a finishing groove for the electron beam. Finally, as shown in (c), the anti-corrosion piece 2 + shim 5 and the wing member 1 + shim 5 are irradiated with electron beams 6a and 6b to form a weld metal layer 7 and welding is completed. According to this embodiment, since the penetration depth is about half of that shown in FIG. (a) and (b)
) A high-quality welded part is formed that is not affected by the welding deformation of A softened layer is formed in the shim 5, and even if stress corrosion cracking should occur, the crack will surely stop in the softened layer.

さらに、第10図に示した溶接部9も本実施例によれば
、形成されず、運転中の曲げ疲労による亀裂の発生のな
い良好なTi合製タービン動翼の製作が可能となる。
Further, according to this embodiment, the welded portion 9 shown in FIG. 10 is not formed, and it is possible to manufacture a good Ti composite turbine rotor blade without cracking due to bending fatigue during operation.

第2図に従来構造への適用(工型突合せ)例を示すが、
この場合、予め防食板2にシム5を電子ビーム溶接して
おき、上記と同様に、機械加工後。
Figure 2 shows an example of application to a conventional structure (mold matching).
In this case, the shim 5 is electron beam welded to the anti-corrosion plate 2 in advance, and then machined in the same manner as above.

最終的に電子ビーム6をシム5と翼部材1の間に ・照
射し、溶接を完了する。しかし、第2図の場合。
Finally, the electron beam 6 is irradiated between the shim 5 and the wing member 1 to complete welding. However, in the case of Figure 2.

第1図(c)に示したJ型の防食板2とより、断面的に
見ても大きくなり、動翼全体に対して防食板の占める割
り合いが増す。前述のように、翼部材1はTi−6%A
M−4%vで密度は4.42 g /dであるのに対し
、防食板2はTi−15%M〇−5%Zrで5.06g
/cjTi−15%Mo −5%Zr−3%Anで5.
03g/aJであり、第2図の実施例では断面積が増加
しただけ、重くなり、運転時3600 r p mで回
転するため、遠心応力が増し、翼部材の強度がその増加
分必要となり第3図に示したJ型の方が、タービン動翼
としては適している。
It is larger in cross section than the J-shaped corrosion protection plate 2 shown in FIG. 1(c), and the ratio of the corrosion protection plate to the entire rotor blade increases. As mentioned above, the wing member 1 is made of Ti-6%A
The density of M-4%v is 4.42 g/d, while the density of anti-corrosion plate 2 is 5.06 g/d with Ti-15%M〇-5%Zr.
/cjTi-15%Mo-5%Zr-3%An5.
03 g/aJ, and in the example shown in Fig. 2, the weight increases as the cross-sectional area increases, and since it rotates at 3600 rpm during operation, centrifugal stress increases, and the strength of the blade member needs to be increased by the increased strength. The J type shown in Figure 3 is more suitable as a turbine rotor blade.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、溶接欠陥(目外れ)の危険性もなく、
また、電子ビーム溶接で、防食板とシムと翼部材の溶接
を実施するため、熱影響が少なく、かつ、翼全体の変形
を非常に小さくでき、残留応力も少なく、変形修正がほ
とんど必要ない。
According to the present invention, there is no risk of welding defects (misalignment),
In addition, since the anti-corrosion plate, shim, and wing member are welded using electron beam welding, the effect of heat is small, and deformation of the entire wing can be minimized. Residual stress is also small, and deformation correction is hardly necessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のタービン、動翼先端部の断
面図、第2図は本発明の他の実施例の断面図、第3図は
タービン動翼全体図、第4図ないし10図は従来技術の
タービン動翼先端部の防食板の固着例を示す断面図であ
る。 ¥J/区 (−ビ=、ン 第2図 5−flvlψ材漠 第30 (llt)           CMン第4図
Fig. 1 is a sectional view of a turbine according to an embodiment of the present invention and the tip of a rotor blade, Fig. 2 is a sectional view of another embodiment of the present invention, Fig. 3 is an overall view of a turbine rotor blade, and Figs. FIG. 10 is a sectional view showing an example of fixation of a corrosion protection plate at the tip of a turbine rotor blade according to the prior art. ¥J/ku (-bi =, n Fig. 2 5 - flvlψ material desert No. 30 (llt) CM n Fig. 4

Claims (1)

【特許請求の範囲】 1、翼部材と防食板からなるTi合金製タービン動翼の
、前記翼部材と前記防食板の間に、前記翼部材および前
記防食板より硬度の低い中間媒体金属を介して、電子ビ
ーム溶接で固着するTi合金製タービン動翼において、 予め前記中間媒体金属を、前記防食板又は、前記翼部材
に、電子ビーム溶接で固着しておき、最終的に前記中間
媒体金属と前記翼部材もしくは、前記中間媒体金属と、
前記防食板を電子ビーム溶接で固着し、前記翼部材と前
記防食板の間に硬度の低い層を設けたことを特徴とする
Ti合金製タービン動翼。
[Scope of Claims] 1. In a Ti alloy turbine rotor blade consisting of a blade member and a corrosion protection plate, between the blade member and the corrosion protection plate, an intermediate metal having a hardness lower than that of the blade member and the corrosion protection plate is interposed, In a Ti alloy turbine rotor blade that is fixed by electron beam welding, the intermediate metal is fixed to the corrosion protection plate or the blade member by electron beam welding in advance, and the intermediate metal and the blade are finally bonded together. the member or the intermediate medium metal;
A Ti alloy turbine rotor blade, characterized in that the corrosion protection plate is fixed by electron beam welding, and a layer with low hardness is provided between the blade member and the corrosion protection plate.
JP24132386A 1986-10-13 1986-10-13 Turbine moving blade made of ti alloy Pending JPS6397802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24132386A JPS6397802A (en) 1986-10-13 1986-10-13 Turbine moving blade made of ti alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24132386A JPS6397802A (en) 1986-10-13 1986-10-13 Turbine moving blade made of ti alloy

Publications (1)

Publication Number Publication Date
JPS6397802A true JPS6397802A (en) 1988-04-28

Family

ID=17072585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24132386A Pending JPS6397802A (en) 1986-10-13 1986-10-13 Turbine moving blade made of ti alloy

Country Status (1)

Country Link
JP (1) JPS6397802A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02144803U (en) * 1989-05-09 1990-12-07
JPH0463902A (en) * 1990-07-03 1992-02-28 Toshiba Corp Manufacture of titanium alloy turbine rotor blade
US6596411B2 (en) * 2001-12-06 2003-07-22 General Electric Company High energy beam welding of single-crystal superalloys and assemblies formed thereby
EP2883651A1 (en) 2013-11-13 2015-06-17 Mitsubishi Hitachi Power Systems, Ltd. method of fabricatind a steam turbine blade equipped with erosion shield with electron beam welding using a shim
EP2584149A3 (en) * 2011-10-20 2016-07-27 Mitsubishi Hitachi Power Systems, Ltd. Turbine blade with erosion shield plate
EP3209456A1 (en) * 2014-10-24 2017-08-30 GKN Aerospace Sweden AB Crack stopper for welds
EP3418497A4 (en) * 2016-04-14 2019-05-15 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine rotor blade, steam turbine, and method for manufacturing steam turbine rotor blade

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02144803U (en) * 1989-05-09 1990-12-07
JPH0463902A (en) * 1990-07-03 1992-02-28 Toshiba Corp Manufacture of titanium alloy turbine rotor blade
US6596411B2 (en) * 2001-12-06 2003-07-22 General Electric Company High energy beam welding of single-crystal superalloys and assemblies formed thereby
EP2584149A3 (en) * 2011-10-20 2016-07-27 Mitsubishi Hitachi Power Systems, Ltd. Turbine blade with erosion shield plate
EP2883651A1 (en) 2013-11-13 2015-06-17 Mitsubishi Hitachi Power Systems, Ltd. method of fabricatind a steam turbine blade equipped with erosion shield with electron beam welding using a shim
EP3209456A1 (en) * 2014-10-24 2017-08-30 GKN Aerospace Sweden AB Crack stopper for welds
EP3209456B1 (en) * 2014-10-24 2021-05-26 GKN Aerospace Sweden AB Method of manufacturing an aero-engine component with cracks stoppers for the welds
US11311972B2 (en) 2014-10-24 2022-04-26 Gkn Aerospace Sweden Ab Crack stopper for welds
EP3418497A4 (en) * 2016-04-14 2019-05-15 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine rotor blade, steam turbine, and method for manufacturing steam turbine rotor blade
US10934847B2 (en) 2016-04-14 2021-03-02 Mitsubishi Power, Ltd. Steam turbine rotor blade, steam turbine, and method for manufacturing steam turbine rotor blade

Similar Documents

Publication Publication Date Title
EP1105243B1 (en) Turbine rotor modernization and repair method
JP3175109B2 (en) Repair methods for turbine component wear surfaces.
US6596411B2 (en) High energy beam welding of single-crystal superalloys and assemblies formed thereby
US3660882A (en) Process for the production of turbine blades
JP2818947B2 (en) Repair methods for turbine component wear surfaces.
US4832252A (en) Parts for and methods of repairing turbine blades
EP2298489A1 (en) Superalloy composition and method of forming a turbine engine component
US5795412A (en) Method of manufacturing and repairing a blade made of α-β titanium
EP2774716A2 (en) Method of producing a hollow airfoil
JPS6397802A (en) Turbine moving blade made of ti alloy
JPH0523920A (en) Junction of corrosion protective piece of turbine rotor blade
Kujanpää Weld defects in austenitic stainless steel sheets-- effect of welding parameters.
JPH01182505A (en) Manufacture of turbine blade
US20130259698A1 (en) Method of Joining at Least Two Components, a Method for Rendering a Component Resistant to Eroision, and a Turbine Blade
JP3192805B2 (en) Steam turbine nozzle box
JPH0424525B2 (en)
JPH03271352A (en) Method for bonding ti-alloy turbine blade and ti alloy
JPH01182504A (en) Reforming method for surface of turbine blade
JPS5829196B2 (en) Method for joining anti-corrosion pieces on turbine blades
Richter Laser material processing in the aero engine industry. Established, cutting-edge and emerging applications
JPS61226504A (en) Method for repairing turbine blade
JPH0463902A (en) Manufacture of titanium alloy turbine rotor blade
JPS6394001A (en) Turbine movable vane made of ti alloy
JPS5985387A (en) Welding method of erosion preventive piece of turbine blade
Fontana et al. Laser welding in the manufacture of superalloy components