JPS6394001A - Turbine movable vane made of ti alloy - Google Patents

Turbine movable vane made of ti alloy

Info

Publication number
JPS6394001A
JPS6394001A JP23796186A JP23796186A JPS6394001A JP S6394001 A JPS6394001 A JP S6394001A JP 23796186 A JP23796186 A JP 23796186A JP 23796186 A JP23796186 A JP 23796186A JP S6394001 A JPS6394001 A JP S6394001A
Authority
JP
Japan
Prior art keywords
alloy
blade
turbine rotor
movable vane
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23796186A
Other languages
Japanese (ja)
Inventor
Takeo Uehara
上原 壮夫
Takamitsu Nakasaki
中崎 隆光
Takeshi Onoda
武志 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23796186A priority Critical patent/JPS6394001A/en
Publication of JPS6394001A publication Critical patent/JPS6394001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To prevent the generation of minute cracks by melting the surface of the projecting part formed at the center part of a movable vane and adding the alloy elements and forming a hardened layer through the heat treatment after cooling. CONSTITUTION:Projecting parts 3a and 3b are formed at the center part of a turbine movable vane 2. A metal foil 5 is installed onto the surface of the projecting part 3a, 3b, and melted by electron beam 6. After the keeping at about 500 deg.C for 5hr, the part is cooled to form a hardened layer. Therefore, the hardness of the contact surface is increased, and the generation of minute cracks due to the fretting corrosion, fretting fatigue, etc. can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、火力ンーヒンおよび原子力タービンのTi合
金製タービン動翼に係り特に、翼の連結部のフレッティ
ングコロ−ジョン防止に好適なタービン動翼に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to Ti alloy turbine rotor blades for thermal power turbines and nuclear power turbines, and in particular to turbine rotor blades suitable for preventing fretting corrosion at the joints of blades. Regarding wings.

〔従来の技術〕[Conventional technology]

従来技術は、特開昭55−64103号公報に記載のよ
うに、耐摩耗用部材を動翼に、局部的な加熱のろう付け
により、固着していた。特に、Ti合金製動翼について
は精密真空誘導加熱によりろう付けが用いられている。
In the prior art, as described in Japanese Unexamined Patent Publication No. 55-64103, a wear-resistant member is fixed to a rotor blade by brazing with local heating. Particularly, for Ti alloy rotor blades, brazing is used by precision vacuum induction heating.

しかし、この技術では、翼材であるTi−6%AΩ−4
%■の合金で、B変態点(995℃付近)以上に加熱す
る必要があり、精密真空誘導加熱によるろう付けであっ
ても、その熱影響部の範囲は、狭いものの、数十ミリ以
上となり翼部材の機械的性質が局部的に低下するという
問題があった。
However, with this technology, the blade material Ti-6%AΩ-4
% ■ alloy, it is necessary to heat it above the B transformation point (nearly 995°C), and even if brazing is done by precision vacuum induction heating, the range of the heat-affected zone is narrow, but it is several tens of millimeters or more. There was a problem in that the mechanical properties of the wing member were locally degraded.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

タービン動翼は1回転中の遠心力により捩り戻り現象の
ため、連結部にはこじり力が働く、このこじり力を解消
するため、通常、動翼の連結部材を接触させて、動翼の
模れ戻り現象を拘束(翼アンツイスト拘束)する、いわ
ゆる、接触型の連結部材を採用するが、接触面に生じる
相対微小すべりが起因となって、フレッティングコロ−
ジョン及びフレッティング疲労が発生する可能性がある
Turbine rotor blades twist back due to centrifugal force during one rotation, which causes a prying force to act on the connecting parts.To eliminate this prying force, the connecting members of the rotor blades are usually brought into contact to simulate the rotor blades. A so-called contact-type connecting member is used to restrain the deflection phenomenon (blade untwist restraint), but due to the relative minute slip that occurs on the contact surface, the fretting roller
John and fretting fatigue may occur.

接触面にプレツテイングコロージョン等が発生すれば、
面圧によって微小亀裂が進展し、翼本体にまで亀裂が進
展する恐れがある。
If presetting corrosion etc. occurs on the contact surface,
Microcracks develop due to surface pressure, and there is a risk that the cracks may extend to the wing body.

そのため、特開昭55−64103号公報では、耐摩耗
用部材を接触面にろう付しているが、この方式ではろう
付により、翼材(T i −6%AΩ−4%V)に熱影
響部が発生し、機械的性質の低下を招き、その範囲ま無
視できない。
Therefore, in Japanese Patent Application Laid-Open No. 55-64103, a wear-resistant member is brazed to the contact surface, but in this method, heat is applied to the blade material (T i -6%AΩ-4%V) by brazing. An affected zone occurs, leading to a decline in mechanical properties, and the extent of this cannot be ignored.

本発明の目的は、動翼に作用する捩り戻りを拘束し、翼
材への熱影響を少なくした耐フレツテイングコロ−ジョ
ン性のTi合金製タービン動翼を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a Ti alloy turbine rotor blade which is resistant to fretting corrosion and which restrains the torsion acting on the rotor blade and reduces thermal effects on the blade material.

〔問題点を解決するための手段〕 本発明は、上記目的を達成するために、Ti合金製ター
ビン動翼の翼中央部に突起部を備え、その突起部の表面
を電子ビーム、又は、不活性ガス雰囲気中でのアーク溶
接等により溶融すると同時に、合金元素を添加する。そ
うすれば、冷却後、表面に合金層が形成する。その後、
熱処理することにより目的は達成される。なお、電子ビ
ーム、又は、不活性ガス雰囲気中でのアーク溶接に溶融
するのは、Tiは活性な金属であるため、酸素、窒素等
と化合物を形成しやすいためである。さらに、熱の集中
性等及び溶接変形を考慮すると真空中で実施する電子ビ
ームが最適である。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a protrusion in the center of a Ti alloy turbine rotor blade, and exposes the surface of the protrusion to an electron beam or an inert gas. The alloying element is added at the same time as it is melted by arc welding or the like in an active gas atmosphere. Then, after cooling, an alloy layer will be formed on the surface. after that,
The purpose is achieved by heat treatment. The reason why Ti is melted by electron beam or arc welding in an inert gas atmosphere is because Ti is an active metal and easily forms compounds with oxygen, nitrogen, etc. Furthermore, considering heat concentration and welding deformation, electron beams performed in a vacuum are optimal.

〔作用〕[Effect]

翼中央部の突起部表面の合金層は、表面数ミリ程度まで
形成され、熱処理することによりこの合金層の硬度はビ
ッカース硬度でHv工500〜520程度となる。この
突起部は隣接するタービン動翼の突起部と接触し、接触
型の翼連結部材を形成する。その結果、回転中の遠心力
による翼の援り戻り現象は拘束される。この時、上記の
接触面では、相対微小すべりが発生するが、接触面は硬
度が高く、フレッティングコロ−ジョンや、フレッティ
ング疲労による微小亀裂の発生を防止する働きをする。
The alloy layer on the surface of the protrusion at the center of the blade is formed to a depth of several millimeters, and by heat treatment, the hardness of this alloy layer becomes approximately 500 to 520 Hv on Vickers hardness. This protrusion comes into contact with the protrusion of an adjacent turbine rotor blade, forming a contact type blade connecting member. As a result, the deflection phenomenon of the blade due to centrifugal force during rotation is restrained. At this time, relative micro-slip occurs on the contact surface, but the contact surface has high hardness and functions to prevent fretting corrosion and micro-cracks due to fretting fatigue.

さらに、電子ビーム等で表面のみを溶融するため、熱影
響は非常に少なく、翼材の機械的性質の低下範囲も非常
に小さい。
Furthermore, since only the surface is melted using an electron beam or the like, the influence of heat is very small, and the extent to which the mechanical properties of the blade material deteriorate is also very small.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面により説明する。 An embodiment of the present invention will be described below with reference to the drawings.

すなわち、第3図はタービン動翼全体を示し、ダブテー
ル部1、翼本体2、翼連結部3およびコロ−ジョンシー
ル片4により構成されており、第4図は第3図のIV−
IV断面で、隣接翼との速結状態を示す、第4図におい
て、回転中、動翼の捩り戻り現象において翼連結部3a
と3bの間でフレッティングコロ−ジョンが発生する。
That is, FIG. 3 shows the entire turbine rotor blade, which is composed of a dovetail portion 1, a blade main body 2, a blade connecting portion 3, and a corrosion seal piece 4, and FIG.
In FIG. 4, which shows a state of quick connection with an adjacent blade in the IV cross section, the blade connecting portion 3a is
Fretting corrosion occurs between and 3b.

第1図は第3図のI−I断面を示し、Ti合金(Ti−
6%AQ−4%V)製動翼における本発明の一実施例を
示す、翼連結部3a、3bの隣接翼との接触面に、厚さ
、O,lal程度の金属箔5(Mo)を取付けておく、
その後その上から電子ビーム6により、表面より1.2
m程度まで溶融させる。その結果、翼連結部の表面に合
金属を形成させる。この時、電子ビーム6を第1図の矢
印Bで示す方向に揺動させて溶融深さが均一となるよう
にする。
Figure 1 shows the I-I cross section in Figure 3, and shows the Ti alloy (Ti-
6%AQ-4%V) metal foil 5 (Mo) having a thickness of approximately O, lal is placed on the contact surfaces of the blade connecting portions 3a and 3b with the adjacent blades, showing an embodiment of the present invention in a rotor blade made of 6%AQ-4%V). Install the
After that, the electron beam 6 is applied from above to 1.2 mm from the surface.
Melt to about m. As a result, an alloy metal is formed on the surface of the blade connecting portion. At this time, the electron beam 6 is swung in the direction shown by arrow B in FIG. 1 to make the melting depth uniform.

合金層の厚さは、1.2臘程度であり非溶融部に比較し
て著しく小さいため変形もほとんどなく、熱影響部も、
1〜2mと非常に狭い、その後で、合金層を翼本体とと
もに熱処理、すなわち、500℃で五時間保持後、放冷
すると合金層は硬化する。
The thickness of the alloy layer is about 1.2 mm, which is significantly smaller than the non-melted part, so there is almost no deformation, and the heat-affected zone is also small.
After that, the alloy layer is heat-treated together with the blade body, i.e., held at 500°C for 5 hours, and then allowed to cool, which hardens the alloy layer.

なお、翼本体はこの熱処理では影響を受けない。Note that the blade body is not affected by this heat treatment.

硬度分布の一例を第3図に示す1合金層は溶融された深
さまで、ビッカース硬度560〜600程度の値を示し
ており、はぼ、均一な硬化層が形成され、プレツテイン
グコロージョンの防止となる。
An example of the hardness distribution is shown in Figure 3.The first alloy layer shows a Vickers hardness of about 560 to 600 up to the depth of melting, and a uniform hardened layer is formed to prevent pre-setting corrosion. becomes.

なお、Ti−6%An−4%V製の場合、N。In addition, in the case of Ti-6%An-4%V, N.

の添加量を変化させて、電子ビームで溶融し、熱処理後
の合金層の硬度を調べた結果、Mu量を10〜15%で
、ビッカース硬度は500以上が得られる。
The hardness of the alloy layer after melting with an electron beam and heat treatment was examined by varying the amount of Mu added. As a result, a Vickers hardness of 500 or more was obtained when the Mu amount was 10 to 15%.

さらに、第1図は、金層箔を使用したが1合金元素の添
加は、粉末やワイヤを電子ビームに添加して溶融するこ
とで可能である。
Furthermore, although gold layer foil is used in FIG. 1, it is possible to add one alloying element by adding powder or wire to an electron beam and melting it.

(発明の効果〕 本発明によれば、従来に比較して変形が少なく。(Effect of the invention〕 According to the present invention, there is less deformation than in the past.

かつ、翼本体への熱影響が少なく、翼連結部が良好な耐
フレツテイングコロ−ジョン性のタービン動翼を提供す
ることができる。
In addition, it is possible to provide a turbine rotor blade with less thermal influence on the blade body and with good fretting corrosion resistance in the blade connecting portion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の翼連結部の断面図、第2
図は、実験による翼連結部の硬度分布図、第3図は、タ
ービン動翼全体図、第4図は、翼連結部の説明図である
。 1・・・ダブテール部、2・・・翼本体、3 (3a、
3b。 3c、3d)・・・翼連結部、4・・・コロージョンシ
ー箒2n ’at)・  ″
FIG. 1 is a cross-sectional view of a blade connecting portion according to an embodiment of the present invention, and FIG.
The figure is a hardness distribution diagram of the blade connecting part based on an experiment, FIG. 3 is an overall view of the turbine rotor blade, and FIG. 4 is an explanatory diagram of the blade connecting part. 1... Dovetail part, 2... Wing body, 3 (3a,
3b. 3c, 3d)...Wing connection part, 4...Corrosion sea broom 2n'at)・''

Claims (1)

【特許請求の範囲】 1、タービン動翼の中央部に突起部を備え、前記突起部
が隣接する前記タービン動翼の突起部と、タービン運転
中に相互に接触する構造のTi合金製タービン動翼にお
いて、 前記突起部の表面を溶融させ合金元素を添加することに
より、冷却後、表面に合金層を形成し、その後、熱処理
により、前記合金層を硬化させ、硬化層を、フレツテイ
ングコロージヨン防止層とすることを特徴とするTi合
金製タービン動翼。 2、特許請求の範囲第1項において、 添加する前記合金元素をモリブデンとすることを特徴す
るTi合金製タービン動翼。
[Scope of Claims] 1. A Ti alloy turbine rotor having a structure in which a protrusion is provided at the center of the turbine rotor blade, and the protrusion comes into contact with the protrusion of the adjacent turbine rotor blade during turbine operation. In the blade, the surface of the protrusion is melted and an alloy element is added to form an alloy layer on the surface after cooling, and then the alloy layer is hardened by heat treatment, and the hardened layer is formed into a fretting corrosion. A Ti alloy turbine rotor blade characterized by having a prevention layer. 2. The Ti alloy turbine rotor blade according to claim 1, wherein the alloying element added is molybdenum.
JP23796186A 1986-10-08 1986-10-08 Turbine movable vane made of ti alloy Pending JPS6394001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23796186A JPS6394001A (en) 1986-10-08 1986-10-08 Turbine movable vane made of ti alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23796186A JPS6394001A (en) 1986-10-08 1986-10-08 Turbine movable vane made of ti alloy

Publications (1)

Publication Number Publication Date
JPS6394001A true JPS6394001A (en) 1988-04-25

Family

ID=17023029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23796186A Pending JPS6394001A (en) 1986-10-08 1986-10-08 Turbine movable vane made of ti alloy

Country Status (1)

Country Link
JP (1) JPS6394001A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083903A (en) * 1990-07-31 1992-01-28 General Electric Company Shroud insert for turbomachinery blade
JP2009191733A (en) * 2008-02-14 2009-08-27 Toshiba Corp Steam turbine blade and method for modifying its surface
WO2013133997A1 (en) * 2012-03-09 2013-09-12 United Technologies Corporation Erosion resistant and hydrophobic article
JP2015140807A (en) * 2014-01-29 2015-08-03 ゼネラル・エレクトリック・カンパニイ High chord bucket with dual part span shrouds and curved dovetail

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083903A (en) * 1990-07-31 1992-01-28 General Electric Company Shroud insert for turbomachinery blade
JP2009191733A (en) * 2008-02-14 2009-08-27 Toshiba Corp Steam turbine blade and method for modifying its surface
WO2013133997A1 (en) * 2012-03-09 2013-09-12 United Technologies Corporation Erosion resistant and hydrophobic article
US9827735B2 (en) 2012-03-09 2017-11-28 United Technologies Corporation Erosion resistant and hydrophobic article
US10814580B2 (en) 2012-03-09 2020-10-27 Raytheon Technologies Corporation Erosion resistant and hydrophobic article
JP2015140807A (en) * 2014-01-29 2015-08-03 ゼネラル・エレクトリック・カンパニイ High chord bucket with dual part span shrouds and curved dovetail

Similar Documents

Publication Publication Date Title
US4098450A (en) Superalloy article cleaning and repair method
US7314670B2 (en) Welded component
Henderson et al. Nickel based superalloy welding practices for industrial gas turbine applications
US6364971B1 (en) Apparatus and method of repairing turbine blades
EP2298489A1 (en) Superalloy composition and method of forming a turbine engine component
Albert et al. Soft zone formation in dissimilar welds between two Cr-Mo steels
US6652677B2 (en) Process of welding gamma prime-strengthened nickel-base superalloys
Mattheij Role of brazing in repair of superalloy components–advantages and limitations
US5340530A (en) Method of forming an insert on a part to be clad that is made of steel or of titanium alloy
US20120183410A1 (en) Titanium alloy turbine blade
EP2147737A1 (en) Valve gear
JPS6394001A (en) Turbine movable vane made of ti alloy
WO2000032350A1 (en) Improved welding method for joining dissimilar steel workpieces
EP1512482B1 (en) Method for Improved weld penetration by means of the formation of a surface oxide layer, and the resulting article.
JPS6397802A (en) Turbine moving blade made of ti alloy
JP3210398B2 (en) Repair method of bucket
CN106903453B (en) Alloy, welded article and welding method
JPH03271352A (en) Method for bonding ti-alloy turbine blade and ti alloy
JPH01182504A (en) Reforming method for surface of turbine blade
JPH01182505A (en) Manufacture of turbine blade
JPS62113802A (en) Turbine blade
JPH10118764A (en) Method for joining tial turbine impeller with rotor shaft
JPS63154802A (en) Titanium alloyed turbine moving blade
JPS62250124A (en) Turbine moving blade made of ti alloy
US11603880B2 (en) Turbocharger shaft with cladding