JPS6397221A - Vacuum vessel - Google Patents

Vacuum vessel

Info

Publication number
JPS6397221A
JPS6397221A JP24138986A JP24138986A JPS6397221A JP S6397221 A JPS6397221 A JP S6397221A JP 24138986 A JP24138986 A JP 24138986A JP 24138986 A JP24138986 A JP 24138986A JP S6397221 A JPS6397221 A JP S6397221A
Authority
JP
Japan
Prior art keywords
vacuum vessel
protective layer
cross
vacuum container
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24138986A
Other languages
Japanese (ja)
Inventor
Kenichi Suzuki
謙一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24138986A priority Critical patent/JPS6397221A/en
Publication of JPS6397221A publication Critical patent/JPS6397221A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/006Processes utilising sub-atmospheric pressure; Apparatus therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Particle Accelerators (AREA)

Abstract

PURPOSE:To prevent buckling caused by external pressure by providing a junction part to the part different from a linear symmetrical part of the cross-section of a vacuum vessel in the vacuum vessel wherein a ceramic layer is coated to the outside of the cylinder of the vacuum vessel having a noncircular cross- section joined with the plate end of an extremely thin-walled nonmagnetic metallic plate. CONSTITUTION:An inner vacuum vessel cylinder 1 is formed by using one sheet or plural sheets of nonmagnetic metallic plates having about 0.2mm thickness and rounding them so that the cross-section is made to a noncircular cylindrical shape and joining the plate ends. A protective layer 4 is provided by laminating and applying ceramics on the outer surface. (In the vacuum vessel having this constitution, stress sigma caused in the interface between the inner vacuum vessel cylinder 1 and the protective layer 4 has peaks in (a), a1, (b) and b1 on linear symmetry and stress sigma becomes zero in A, A1, B and B1 on rectilinear parts. Therefore the peeling of the protective layer 4 from the junction part which is caused by external pressure can be prevented by previously performing numerical analysis and providing the junction part to the part different from the parts on the linear symmetry of the cross-section of the vacuum vessel.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は例えば粒子加速器などに使用される真空容器に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a vacuum vessel used, for example, in a particle accelerator.

(従来の技術) 現在ウランを光の速さまで加速して他のウランに衝突さ
せて諸現象を解明するための高エネルギ重イオン装置の
開発が進められている。重イオン装置は、ウランのよう
な重イオンを真空中で強い磁界によって高いエネルギに
加速するものであるから、超高真空容器が必要である。
(Prior Art) Currently, a high-energy heavy ion device is being developed to accelerate uranium to the speed of light and collide it with other uranium to elucidate various phenomena. Since heavy ion equipment accelerates heavy ions such as uranium to high energy in a vacuum using a strong magnetic field, an ultra-high vacuum container is required.

しかも、この真空容器の周囲には強磁界を作るための電
磁石が配置されているので、真空容器は非磁性で且つ超
薄肉、例えばO,b+aの金属材料で作って、うず電流
損を極小にすることが必要である。しかし超薄肉材料で
作った真空容器では、外圧によるバックリングを防ぐ必
要がある。
Moreover, since electromagnets are placed around the vacuum container to create a strong magnetic field, the vacuum container must be made of non-magnetic and ultra-thin metal material, such as O, B+A, to minimize eddy current loss. It is necessary to do so. However, in vacuum containers made of ultra-thin materials, it is necessary to prevent buckling due to external pressure.

そこで第4図および第5図に示すように、内側真空容器
筒■の両端にフランジ■を設けるほか、外側にプラズマ
溶射により、セラミックスを積層コーティングして保護
層(イ)を形成し、この保護(へ)によって内側真空容
器筒■を機械的に補強する方策が考えられた。この場合
、溶射セラミックスの剛性が金属材料のそれに比して低
いので、保護層(4)の厚さは数m以上にする必要があ
るが、このセラミックスは非磁性で且つ絶縁体なので、
うず電流損の問題は生じない。
Therefore, as shown in Figures 4 and 5, in addition to providing flanges (2) at both ends of the inner vacuum container cylinder (2), a protective layer (A) is formed by coating the outside with ceramics by plasma spraying. A method was devised for mechanically reinforcing the inner vacuum container cylinder ■ by (f). In this case, since the rigidity of sprayed ceramics is lower than that of metal materials, the thickness of the protective layer (4) must be several meters or more, but since this ceramic is non-magnetic and an insulator,
The problem of eddy current losses does not arise.

プラズマ溶射によるセラミックスのコーティングは第6
図に示すように、セラミックスの粉末がプラズマガン0
によってプラズマジェット6中に供給され、溶融しつつ
加速され飛行して内側真空容器筒■に衝突して、内側真
空容器筒■に濡れながら熱を奪われ、固化して保護層(
イ)を形成するものである。その結果、内側真空容器筒
■と保護層(へ)の界面には第6図中に示す密着力σA
が生じ、外圧によるバックリングから内側真空容器筒■
を機械的に補強する効果が得られる。
Ceramic coating by plasma spraying is the 6th
As shown in the figure, ceramic powder is
is supplied to the plasma jet 6, melts and accelerates, flies and collides with the inner vacuum container cylinder (■), where it absorbs heat while getting wet and solidifies into a protective layer (
b). As a result, the interface between the inner vacuum container cylinder ■ and the protective layer has an adhesion force σA shown in Figure 6.
This occurs and the inner vacuum container cylinder is damaged due to buckling due to external pressure.
The effect of mechanically reinforcing the

ところで、第4図中の■−■線に沿う矢視断面の構造を
示す第5図から明らかなように、真空容器は一般に真線
部と円弧部からなる扁平な筒状を有する。そして、内側
真空容器筒■は前記超薄肉の金属板を丸めて、74G溶
接やEB溶接などによって板端を接合して、扁平な筒状
ら形成するのであるが、その接合部は通常、真空容器断
面形状の対称性から、第5図に示す横線中心線(X)、
縦中心線(Y)における線対称の部位(a)、 (al
) 、あるいは(b)、(b、)に設けていた。
By the way, as is clear from FIG. 5, which shows the structure of the cross section taken along the line ■-■ in FIG. The inner vacuum container cylinder (2) is formed by rolling the ultra-thin metal plate and joining the ends of the plates by 74G welding or EB welding to form a flat cylindrical shape. Due to the symmetry of the cross-sectional shape of the vacuum vessel, the horizontal line center line (X) shown in Fig. 5,
A line-symmetrical part (a) with respect to the vertical center line (Y), (al
), or (b), (b,).

ところが、真空容器1のFEM (有限要素法)解析に
よれば外圧によって、内側真空容器筒(υと保護層(イ
)の界面に生ずる応力σは第7図に示すように線対称の
部位に位置する接合部(a)、 (al)と(b) 、
 (b□)で向きは反対であるがピークを示すことがわ
かった。他方、一般にTIG溶接やEB溶接などによる
接合部には多少の目違い、アンダカットや裏波などが生
ずることがさけられないが、内側真空容器筒■の場合前
記のように超薄肉金属板を用いるため、目違い、アンダ
カットや裏波などに対する充分な修正を行なうことが難
しい。その結果、接合部の外表面形状は第8図に示すよ
うに他の部位に比較して不連続となるため内側真空容器
筒■と保護層(イ)の接合部における密着力σ8は他の
部位における密着カσカよりも劣ることになる。さらに
、接合部では、TIG溶接やEB溶接などによる溶接金
属や母材の機械的性質の差や残留応力が存在するため、
外圧によって内側真空容器筒(ト)と保護層@)の界面
に生ずる応力σが局部的に集中する可能性もある。
However, according to the FEM (finite element method) analysis of the vacuum vessel 1, the stress σ generated at the interface between the inner vacuum vessel cylinder (υ and the protective layer (A)) due to external pressure is distributed at line-symmetrical locations as shown in Figure 7. The joints located (a), (al) and (b),
It was found that (b□) shows a peak although the direction is opposite. On the other hand, it is generally unavoidable that some misalignment, undercuts, and undercuts occur in joints made by TIG welding, EB welding, etc.; , it is difficult to make sufficient corrections for misalignment, undercuts, undercuts, etc. As a result, as shown in Figure 8, the outer surface shape of the joint becomes discontinuous compared to other parts, so the adhesion force σ8 at the joint between the inner vacuum container cylinder (■) and the protective layer (A) This will be inferior to the adhesion force at the site. Furthermore, at joints, there are differences in mechanical properties and residual stress between weld metal and base metal due to TIG welding, EB welding, etc.
There is also a possibility that stress σ generated at the interface between the inner vacuum container cylinder (g) and the protective layer @) due to external pressure is locally concentrated.

(発明が解決しようとする問題点) 以上のように内側真空容器筒■の接合部は保護層に)と
の密着力が劣る点や局部的な応力集中の点から強度上の
弱点であるにも拘わらず、外圧によって内側真空容器筒
■と保護層(イ)の界面に生ずる応力σが引張側あるい
は圧縮側のピークとなる部位に位置するため、外圧によ
って接合部から保護層のはく離や割れが生ずる危険性が
ある。
(Problems to be Solved by the Invention) As mentioned above, the joint of the inner vacuum container cylinder (■) is a weak point in terms of strength due to poor adhesion with the protective layer (protective layer) and local stress concentration. Nevertheless, since the stress σ generated at the interface between the inner vacuum container cylinder (■) and the protective layer (A) by external pressure is located at the peak on the tensile or compressive side, the protective layer may peel or crack from the joint due to external pressure. There is a risk that this may occur.

そこで、本発明の目的は、うず電流損を極力小さくする
とともに機械的補強も施こされて外圧に耐え得る信頼性
の高い真空容器を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a highly reliable vacuum container that can withstand external pressure by minimizing eddy current loss and also being mechanically reinforced.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は上記目的を達成するために、厚さが0.2I程
度(0,1〜0.3mmが良い)の超薄肉の非磁性金属
板で作った断面非円形の内側真空容器筒の外面にプラズ
マ溶射によりセラミックスを積層コーティングして保護
層を形成する非円形の真空容器において、超薄肉金属板
端の接合部を真空容器断面の線対称上の部位とは異なる
部位に設ける。
(Means for Solving the Problems) In order to achieve the above object, the present invention is made of an ultra-thin non-magnetic metal plate with a thickness of about 0.2 I (0.1 to 0.3 mm is preferable). In a non-circular vacuum vessel, the outer surface of the internal vacuum vessel tube with a non-circular cross section is coated with a layer of ceramic by plasma spraying to form a protective layer. Provided in a different location from the location.

(作 用) 第7図は第5図に示した直線部と円弧部からなる扁平な
筒状の内側真空容器筒■において、外圧によって内側真
空容器筒■と保護層(イ)の界面に生ずる応力σの分布
を示すものであるが、前記のように線対称上の部位al
a工、b、b、には引張側あるいは圧縮側のピークがあ
るが、直線部上のA。
(Function) Figure 7 shows the phenomenon that occurs at the interface between the inner vacuum vessel cylinder (■) and the protective layer (A) due to external pressure in the flat cylindrical inner vacuum vessel cylinder (■) shown in Figure 5, which consists of a straight part and an arcuate part. This shows the distribution of stress σ, and as mentioned above, the line-symmetrical part al
A, b, and b have peaks on the tension side or compression side, but A on the straight section.

八〇、B、B□では応力σが零になる。以下、この理由
を説明する。第9図に示すように、円形状の内側真空容
器筒■の場合には外圧によって内側真空容器筒■と保護
層に)との界面に発生する応力σはどの部位においても
均一な圧縮応力となる。しかし、上記のような扁平な筒
状の真空容器の場合には、応力σは曲げ応力の影響が比
較的大きくなり、第7図にしたように、直線部分上の特
定の部位で応力σが零になる。従って接合部を真空容器
断面の線対称上の部位とは異なる部位、とりわけ直線部
上の応力がほぼ零となる。部位に設けることにより、前
記のように保護層(イ)との密着力が劣る点や、局部的
な応力集中の点から強度上の弱点となる接合部における
応力を引張側および圧縮側のピーク応力よりも大幅に低
下させることができる。
At 80, B, and B□, the stress σ becomes zero. The reason for this will be explained below. As shown in Figure 9, in the case of a circular inner vacuum container cylinder (■), the stress σ generated at the interface between the inner vacuum container cylinder (■ and the protective layer) due to external pressure is a uniform compressive stress in all parts. Become. However, in the case of a flat cylindrical vacuum vessel like the one mentioned above, the stress σ is relatively influenced by bending stress, and as shown in Figure 7, the stress σ is Becomes zero. Therefore, the stress on the bonded portion at a portion different from the line-symmetrical portion of the cross section of the vacuum vessel, particularly on the straight portion, becomes almost zero. By providing it at the joint, the stress at the joint, which is a weak point in terms of strength due to poor adhesion with the protective layer (a) and local stress concentration, as mentioned above, can be reduced to the peaks on the tension side and compression side. The stress can be significantly lowered.

(実施例) 実施例1 以下、本発明の第1の実施例における真空容器を第1の
実施例における真空容器を第1図を参照されていた。
(Examples) Example 1 Hereinafter, a vacuum container in a first embodiment of the present invention will be described with reference to FIG. 1.

この実施例においては、厚さが0.1noの超薄肉非磁
性金属板を2枚丸めて板端を接合部C,C。
In this embodiment, two ultra-thin non-magnetic metal plates with a thickness of 0.1 mm are rolled up and their ends are connected to joints C and C.

にて接合し、直線部と円弧部からなる扁平な筒状の内側
真空容器筒■を形成する。内側真空容器の接合部はC,
C,の2ケ所であり、各々直線部上で横中心線(X)お
よび縦中心線(Y)上とは異なる部位に設けられている
。内側直空容器筒(1)をフランジ■に溶接部(3)に
て溶接すること、および保護層(イ)を溶射にて設ける
ことは従来と同様である。
to form a flat cylindrical inner vacuum container tube (2) consisting of a straight portion and an arcuate portion. The joint part of the inner vacuum container is C,
C, and are provided at two locations on the straight portion, each of which is different from the horizontal center line (X) and the vertical center line (Y). Welding the inner direct air container cylinder (1) to the flange (3) at the welding part (3) and providing the protective layer (A) by thermal spraying are the same as in the conventional case.

次に作用について説明する。Next, the effect will be explained.

この接合部C,C1はあらかじめFEMなどの数値解析
によって、外圧による保護層(へ)との界面に発生する
応力がほぼ零となる部位に定められている。
The joints C and C1 are determined in advance by numerical analysis such as FEM at locations where the stress generated at the interface with the protective layer due to external pressure is almost zero.

従って、前記のように強度上の弱点となる接合部から保
護層(イ)がはく離したり、割れが生ずることを防止す
ることができる。そして内側真空容器筒■は0.1mm
厚さであるから、うず電流損は極めて少なくなる。
Therefore, it is possible to prevent the protective layer (a) from peeling off or cracking from the joint, which is a weak point in terms of strength, as described above. And the inner vacuum container cylinder ■ is 0.1mm
Because of the thickness, eddy current losses are extremely low.

実施例2 第2図は本発明による第2の実施例を示す。これは1枚
の超薄肉金属板1枚を丸めたもので、内側真空容器筒■
の接合部は1か所であり、直線部上の縦、横中心線X、
Yの線対称上とは異なる部位dに設けられている。他は
実施例1と同様であり、作用効果も実施例1と同様であ
る。
Embodiment 2 FIG. 2 shows a second embodiment according to the present invention. This is a single ultra-thin metal plate rolled up, with an inner vacuum container cylinder.
There is only one joint, and the vertical and horizontal center lines X on the straight part,
It is provided at a location d that is different from the Y line symmetry. The rest is the same as in Example 1, and the effects are also the same as in Example 1.

第3図は本発明による第3の実施例を示す。これは内側
真空容器筒■が楕円状の横断面を有している。ここで内
側真空容器筒■の接合部は2か所であり、各々縦、横中
心線X、Yの線対称上とは異なる部位C,C1に設けら
れでいる。他は実施例1と同様であり、作用効果も実施
例1と同様であり、作用効果も実施例1と同様である。
FIG. 3 shows a third embodiment according to the invention. In this case, the inner vacuum container cylinder (1) has an elliptical cross section. Here, there are two joints of the inner vacuum container cylinder (2), and they are provided at positions C and C1 that are different from the line symmetry of the vertical and horizontal center lines X and Y, respectively. The rest is the same as in Example 1, and the effect is also the same as in Example 1. The effect is also the same as in Example 1.

〔発明の効果〕〔Effect of the invention〕

以」二のように、本発明においては、非磁性金属板で超
薄肉に作った内側真空容器筒の外側に、プラズマ溶射に
よりセラミックスを積層コーティングして保護層を形成
する横断面が非円形の真空容器において、超薄肉金属板
の接合部を真空容器断面の線対称上の部位とは異なる部
位に設けたので、真空容器の外圧によるバックリングを
防止するために必要な厚肉で内側真空容器筒との、はく
離や割れのない保護層を有する真空容器が得られる。
As described above, in the present invention, a protective layer is formed by laminating ceramics by plasma spraying on the outside of the inner vacuum container cylinder made of an ultra-thin non-magnetic metal plate.The cross section is non-circular. In this vacuum vessel, the joints of the ultra-thin metal plates are placed in locations that are different from the line-symmetrical areas of the vacuum vessel's cross section. A vacuum container having a protective layer that does not peel or crack between the vacuum container cylinder and the vacuum container cylinder is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明による真空容器のそれぞれ
異なる実施例を示す横断面図、第4図は従来および本発
明の各実施例に共通な部分を示す真空容器縦断面図、第
5図は第4図の従来例の場合の横断面図、第6図は一般
的なプラズマ溶射によるセラミックスコーティングを示
す説明図、第7図および第9図は真空容器と保護層の界
面に発生する応力の分布図、第8図は真空容器の接合部
近傍の拡大断面図である。 1・・・内側真空容器筒、 2・・・フランジ、4・・
・保護層、     aT811blb11cIcI 
Id”’接合部。 代理人 弁理士  井 上 −男 第  3  図 第  41!!!!
1 to 3 are cross-sectional views showing different embodiments of the vacuum container according to the present invention, FIG. 4 is a vertical cross-sectional view of the vacuum container showing parts common to the conventional and each embodiment of the present invention, and FIG. The figure is a cross-sectional view of the conventional example shown in Figure 4, Figure 6 is an explanatory diagram showing a general ceramic coating by plasma spraying, and Figures 7 and 9 show the phenomenon occurring at the interface between the vacuum container and the protective layer. The stress distribution diagram, FIG. 8, is an enlarged sectional view of the vicinity of the joint of the vacuum container. 1...Inner vacuum container cylinder, 2...Flange, 4...
・Protective layer, aT811blb11cIcI
Id"' Junction. Agent Patent Attorney Inoue - Male Figure 3 Figure 41!!!!!

Claims (1)

【特許請求の範囲】[Claims] 厚さが0.2mm程度の超薄肉の非磁性金属板を1枚又
は複数枚用いて、横断面が非円形の筒状になるように丸
めて板端を接合した内側真空容器筒と、その外面にプラ
ズマ溶射によりセラミックスを積層コーティングして形
成した保護層とを有する真空容器において、前記接合部
を真空容器断面の線対称部位とは異なる部位に設けたこ
とを特徴とする真空容器。
An inner vacuum container cylinder made of one or more ultra-thin non-magnetic metal plates with a thickness of about 0.2 mm, rolled so that the cross section becomes a non-circular cylinder shape, and the ends of the plates joined; 1. A vacuum container having a protective layer formed by laminated ceramic coating on the outer surface of the vacuum container by plasma spraying, characterized in that the joint portion is provided at a location different from a line-symmetrical location in a cross section of the vacuum container.
JP24138986A 1986-10-13 1986-10-13 Vacuum vessel Pending JPS6397221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24138986A JPS6397221A (en) 1986-10-13 1986-10-13 Vacuum vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24138986A JPS6397221A (en) 1986-10-13 1986-10-13 Vacuum vessel

Publications (1)

Publication Number Publication Date
JPS6397221A true JPS6397221A (en) 1988-04-27

Family

ID=17073555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24138986A Pending JPS6397221A (en) 1986-10-13 1986-10-13 Vacuum vessel

Country Status (1)

Country Link
JP (1) JPS6397221A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2460487A (en) * 2008-05-23 2009-12-09 Tesla Engineering Ltd A vacuum chamber with multi-layered walls

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2460487A (en) * 2008-05-23 2009-12-09 Tesla Engineering Ltd A vacuum chamber with multi-layered walls

Similar Documents

Publication Publication Date Title
US3072225A (en) Honeycomb sandwich structure
US3071853A (en) Method and apparatus for making brazed honeycomb
US20060250097A1 (en) Particle beam accelerator
US7574835B2 (en) Composite-to-metal joint
US20120318838A1 (en) Method for cutting glass sheet
JPH0378764B2 (en)
JPS6397221A (en) Vacuum vessel
JPH04305383A (en) Manufacture of clad steel material
CN113246486A (en) Laser riveting welding method for thermoplastic composite material and metal lap joint structure
CN113070550B (en) Flexible composite welding liner and use method thereof
JPS58199679A (en) Composite material
US5268530A (en) Superconductive tube for magnetic shielding and manufacturing method therefor
CN206875111U (en) A kind of aluminum oxide abrasion-resistant ceramic lining plate
EP0947606A4 (en) Plated steel plate
JPH02280971A (en) Welding joining method of surface treated steel plates
JPH1154300A (en) Deflection electromagnet and manufacture of the same
JPH06277857A (en) Method of assembly
GB2093386A (en) Magnetic head
JPH0433781A (en) Resistant welded steel tube manufactured with surface treated steel strip such as hot-dip galvanized steel strip as raw material and its manufacture
KR20180120412A (en) Cladding panel and method for manufacturing the same
JPS63222804A (en) Manufacture of vacuum vessel
CN201942999U (en) Bridge deck of high-speed railway steel bridge
JPH06106235A (en) Manufacture of square steel tube column
JP2001138055A (en) Method of joining members by stud welding
CN115365469A (en) Rectangular-section thin-wall air duct with stable structure and manufacturing method thereof