JPS639706B2 - - Google Patents

Info

Publication number
JPS639706B2
JPS639706B2 JP55052672A JP5267280A JPS639706B2 JP S639706 B2 JPS639706 B2 JP S639706B2 JP 55052672 A JP55052672 A JP 55052672A JP 5267280 A JP5267280 A JP 5267280A JP S639706 B2 JPS639706 B2 JP S639706B2
Authority
JP
Japan
Prior art keywords
signal
circuit
terminal device
communication
communication state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55052672A
Other languages
Japanese (ja)
Other versions
JPS56149145A (en
Inventor
Takashi Akao
Tadashi Yatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Fujitsu Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Nippon Telegraph and Telephone Corp filed Critical Fujitsu Ltd
Priority to JP5267280A priority Critical patent/JPS56149145A/en
Publication of JPS56149145A publication Critical patent/JPS56149145A/en
Publication of JPS639706B2 publication Critical patent/JPS639706B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/50Testing arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

【発明の詳細な説明】 本発明はおり返しループ自動作成回路、特に一
端におり返しループを形成し伝送品質の測定を行
う通信網内加入者回線におけるおり返しループ自
動作成回路に関す。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic return loop creation circuit, and particularly to an automatic return loop creation circuit for a subscriber line in a communication network that forms a return loop at one end and measures transmission quality.

通信網が収容加入者に良品質の通信サービスを
提供するためには、通信網加入者回線の伝送品質
を常時測定監視し、網内伝送品質の劣化に対し予
防保全を行うことが必要である。
In order for a communication network to provide high-quality communication services to its accommodated subscribers, it is necessary to constantly measure and monitor the transmission quality of communication network subscriber lines and to perform preventive maintenance to prevent deterioration of the transmission quality within the network. .

第1図はデータ交換網における従来ある網内伝
送品質測定監視方式の一例を示す図である。第1
図において、データ交換網Nに収容される端末装
置T1をデータ交換機SW1に接続する加入者回
線L1の伝送品質測定は、該加入者回線L1を終
端装置TE1においており返し接続し、データ交
換機SW1において誤り率測定器M1を接続して
加入者回線L1に対し測定信号を送信し、終端装
置TE1からおり返し返送される信号を該誤り率
測定器M1で受信して送信した測定信号と比較す
ることにより実施される。かかる測定方法によれ
ば、測定期間中は端末装置T1に対するデータ通
信サービスを中断せざるを得ずデータ交換網N加
入者に対し迷惑をかける。また測定の度に終端装
置TE1において加入者回線L1をおり返し接続
する等の労力を必要とする。従つてかかる測定方
法によつてはデータ交換網内加入者回線の伝送品
質を常時測定監視することは困難である。前述の
欠点の対策として次の測定監視方式が提案されて
いる。即ち第1図において、データ交換機SW2
が収容端末装置T2の通信状態を常時監視し、無
通信状態の端末装置T2に対する加入者回線L2
を測定部M2に接続し、該加入者回線L2の終端
装置TE2に加入者回線L2に対しおり返しルー
プを作成させる信号を送信し、加入者回線L2を
ループ状態としたのち、測定部M2内の送信器S
から測定信号を加入者回線L2に送出し、終端装
置TE2においており返し返送される信号を測定
部M2内の受信器Rで受信し、送出した測定信号
と比較することにより加入者回線L2の誤り率が
測定可能となる。測定監視中に端末装置T2に対
する呼が発生すると、データ交換機SW2で該呼
を検出し、直ちに前記測定を中断させ、呼の処理
を行わしめる。呼の終了後データ交換機は再び前
記測定を再開する。かかる伝送品質測定監視方式
によれば、データ交換網N内加入者回線L2の伝
送品質を加入者に対する通信サービスを損うこと
なく常時測定監視することが出来、網内伝送品質
の劣化に対し予防保全を行うことが可能となる。
然し本伝送品質測定監視方式においても終端装置
TE2においており返しループを作成させるため
の信号をデータ交換機SW2から加入者回線L2
を経由して伝送する必要があり、加入者回線L2
に使用される信号体系に制約を設けることとな
る。
FIG. 1 is a diagram showing an example of a conventional intra-network transmission quality measurement and monitoring system in a data exchange network. 1st
In the figure, to measure the transmission quality of a subscriber line L1 that connects a terminal device T1 accommodated in a data exchange network N to a data exchange SW1, the subscriber line L1 is connected back at a terminal device TE1, and then at the data exchange SW1. Connecting the error rate measuring device M1 and transmitting a measurement signal to the subscriber line L1, and comparing the signal sent back from the terminal device TE1 with the measurement signal received and transmitted by the error rate measuring device M1. Implemented by According to such a measurement method, the data communication service to the terminal device T1 must be interrupted during the measurement period, causing inconvenience to the subscribers of the data exchange network N. Furthermore, it requires labor to reconnect the subscriber line L1 at the terminal device TE1 every time a measurement is made. Therefore, it is difficult to constantly measure and monitor the transmission quality of subscriber lines within the data exchange network using such measurement methods. The following measurement and monitoring method has been proposed as a countermeasure for the above-mentioned drawbacks. That is, in FIG. 1, the data exchanger SW2
constantly monitors the communication status of the accommodated terminal device T2, and connects the subscriber line L2 to the terminal device T2 that is in a non-communicating state.
is connected to the measurement unit M2, and a signal is sent to the termination device TE2 of the subscriber line L2 to create a return loop for the subscriber line L2, and after the subscriber line L2 is in a loop state, transmitter S
A measurement signal is sent to the subscriber line L2 from the terminating device TE2, and the signal sent back is received by the receiver R in the measurement unit M2 and compared with the transmitted measurement signal to detect errors in the subscriber line L2. rate becomes measurable. When a call to the terminal device T2 occurs during measurement monitoring, the data exchange SW2 detects the call, immediately interrupts the measurement, and processes the call. After the end of the call, the data exchange resumes the measurements again. According to this transmission quality measurement and monitoring method, the transmission quality of the subscriber line L2 within the data exchange network N can be constantly measured and monitored without impairing the communication service to the subscribers, thereby preventing deterioration of the transmission quality within the network. It becomes possible to perform maintenance.
However, in this transmission quality measurement and monitoring method, the terminal equipment
A signal for creating a return loop at TE2 is sent from data exchange SW2 to subscriber line L2.
It is necessary to transmit via the subscriber line L2.
This will place restrictions on the signal system used for this purpose.

本発の目的は、従来ある網内伝送品質測定監視
方式の前述の如き欠点を除去し、加入者回線に使
用される信号体系に影響を与えることなく加入者
回線伝送品質の常時測定監視を可能とするおり返
しループ自動作成回路の実現にある。
The purpose of this invention is to eliminate the above-mentioned drawbacks of conventional in-network transmission quality measurement and monitoring methods, and to enable constant measurement and monitoring of subscriber line transmission quality without affecting the signal system used in subscriber lines. The goal is to realize a circuit that automatically creates a return loop.

この目的は本発明によれば端末装置と交換機間
の加入者回線に設けられ、交換機側及び端末装置
側の無通信状態を夫々検出する無通信状態検出回
路と、交換機側と端末装置側の通信要求信号を
夫々検出する通信要求信号検出回路を有し、無通
信状態検出回路が共に無通信状態を検出した際に
は、選択回路でおり返しループが形成され、端末
装置側、又は交換機側のいづれかからの通信要求
信号を通信要求信号検出回路が検出した時には、
選択回路における、おり返し回路は開放されるこ
とを特徴とするおり返しループ自動作成回路によ
つて達成される。
According to the present invention, this purpose is to provide a non-communication state detection circuit which is provided in the subscriber line between the terminal device and the exchange and detects a non-communication state on the exchange side and the terminal device side, and a communication state between the exchange side and the terminal device side. It has a communication request signal detection circuit that detects each request signal, and when both no-communication state detection circuits detect a no-communication state, a return loop is formed in the selection circuit, and the terminal device side or exchange side When the communication request signal detection circuit detects a communication request signal from one of the
This is achieved by an automatic return loop creation circuit in the selection circuit, which is characterized in that the return circuit is open.

以下、本発明の一実施例を第2図および第3図
により説明する。第2図は本発明の一実施例によ
るデータ交換網内加入者回線の終端装置に設けた
おり返しループ自動作成回路の構成図であり、第
3図は第2図に示されるおり返しループ自動作成
回路と、データ交換機および端末装置との間に授
受される信号シーケンス図である。今端末装置が
無通信状態であるとすると、おり返しループ自動
作成回路に、データ交換機SWからの信号路Efお
よび端末装置Tからの信号路Dfは何れも無通信
状態にある。第2図における無通信状態検出回路
3は信号路Efの無通信状態を検出し、また無通
信状態検出回路5は信号路Dfの無通信状態を検
出し、両回路3および5の出力信号S1およびS
2は共にゲイト12を介してフリツプフロツプ回
路8および10にセツト信号Sを送る。該信号S
によりセツトされたフリツプフロツプ回路8の出
力信号F1は、選択回路1の入力I0を出力に接
続させ、また該信号Sによりセツトされたフリツ
プフロツプ回路10の出力信号F2は、選択回路
9の入力I0を出力に接続させる。従つてデータ
交換機SWからの信号路Efとデータ交換機SWに
至る信号路Ebとの間には、遅延回路2、経路LP
および選択回路1を経由するおり返しループが形
成されており、また端末装置Tに至る信号路Db
には無通信状態信号発生回路7から選択回路9を
経由して無通信状態信号Db1が送出される(第
3図時点ta以前)。第3図における時点taにおい
て、端末装置Tからの信号路Dfに通信要求信号
Df2が到来すると、第2図にある通信要求信号
検出回路6が該通信要求信号Df2を検出し、ゲ
イト13を経由してフリツプフロツプ回路8にリ
セツト信号R2を送る。また無通信状態検出回路
5が出力信号S2並びにゲイト12を経由してフ
リツプフロツプ回路8に送出中のセツト信号Sを
停止する。従つてフリツプフロツプ回路8はリセ
ツトされ、その出力信号F1は選択回路1の入力
I0と出力との接続を断ち、入力I1を出力に接
続させる。以上でデータ交換機SWに対する信号
路EfおよびEb間に形成中のおり返しループ回路
は断たれ、端末装置Tから信号路Df上に送られ
て来た通信要求信号Df2は、遅延回路12によ
り時間t1の遅延を受けたのち、選択回路1を経
由してデータ交換機SWに至る信号路Eb上に通信
要求信号Eb2として送出される。また通信要求
検出回路6の出力信号R2は遅延回路11によ
り、時間t2後にゲイト14を経由してフリツプ
フロツプ回路10にリセツト信号R3を送る。従
つてフリツプフロツプ回路10はリセツトされ、
その出力信号F2は選択回路9の入力I0と出力
との接続を断ち、入力I1を出力に接続させる。
一方加入者回線を経由して通信要求信号Ef2を
受信したデータ交換機SWは端末装置Tに向けて
応答信号Ef3を送出する。該応答信号Ef3は第
3図における時点tbに信号路Ef上に到来し、遅延
回路2により時間t3の遅延を受けたのち選択回
路9を経由して端末装置Tに対する信号路Db上
に応答信号Db3として送出される。以上でおり
返しループ自動作成回路を経由して、信号路Df
とEbおよびEfとDbが、それぞれ接続状態とな
り、端末装置Tとデータ交換機SWは通信可能状
態となる。通信終了後第3図における時点tcに端
末装置Tからの信号路Dfが無通信状態となると、
遅延回路12および選択回路1を経由し、時間t
1後データ交換機SWに至る信号路Ebも無通信状
態となる。続いて第3図における時点tdにデータ
交換機SWからの信号路Efも無通信状態となる
と、遅延回路2および選択回路9を経由して時間
t3後端末装置Tに至る信号路Dbも無通信状態
となる。信号路DfおよびEfの無通信状態は、無
通信状態検出回路5および3によりそれぞれ検出
され、両回路3および5の出力信号S1およびS
2はゲイト12を経由してフリツプフロツプ回路
8および10にセツト信号Sを送る。該セツト信
号Sによりセツトされたフリツプフロツプ回路8
の出力信号F1は選択回路1に入力I1と出力と
の接続を断ち、入力I0を出力と接続させる。ま
たセツト信号Sによりセツトされたフリツプフロ
ツプ回路10の出力信号F2は選択回路9に入力
I1と出力との接続を断ち、入力I0を出力と接
続させる。従つてデータ交換機SWからの信号路
Efとデータ交換機SWに至る信号路Ebとの間に
は、再び遅延回路2、経路LPおよび選択回路1
を経由するおり返しループが形成され、また端末
装置Tに至る信号路Dbには無通信状態信号発生
回路7から選択回路9を経由して無通信状態信号
Db1が再び送出される。信号路Dbが通信終了し
てから無通信状態信号Db1が送出される迄の所
要期間は時間t4かかる。次に第3図における時
点teにデータ交換機SWからの信号路Efに通信要
求信号Ef2が到来すると、第2図にある通信要
求信号検出回路4が該通信要求信号Ef2を検出
し、ゲイト13および14を経由してフリツプフ
ロツプ回路8および10にリセツト信号R1を送
る。また無通信状態検出回路3の出力信号S1は
停止し、ゲイト12からフリツプフロツプ回路8
および10に送出中のセツト信号Sは停止する。
従つてフリツプフロツプ回路8はリセツトされ、
その出力信号F1は選択回路1の入力I0と出力
との接続を断ち、入力I1を出力に接続させる。
またリセツトされたフリツプフロツプ回路10の
出力信号F2は選択回路9の入力I0と出力との
接続を断ち、入力I1を出力に接続する。従つて
データ交換機SWに対する信号路EfおよびEb間に
形成中のおり返しループは解放され、信号路Ef
に到来した通信要求信号Ef2は遅延回路2によ
り時間t3の遅延を受けたのち、選択回路9を経
由して端末装置Tに対する信号路Db上に通信要
求信号Db2として送出される。続いて第3図に
おける時点tfに端末装置Tから信号路Df上に到来
した応答信号Df3は、遅延回路12により時間
t1の遅延を受けたのち、選択回路1を経由して
データ交換機SWに対する信号路Eb上に応答信号
Eb3として送出され、データ交換機SWと端末装
置Tは通信可能状態となる。
An embodiment of the present invention will be described below with reference to FIGS. 2 and 3. FIG. 2 is a block diagram of an automatic return loop creation circuit provided in a terminal device of a subscriber line in a data exchange network according to an embodiment of the present invention, and FIG. 3 is a diagram showing the automatic return loop creation circuit shown in FIG. FIG. 2 is a signal sequence diagram that is exchanged between a creation circuit, a data exchanger, and a terminal device. Assuming that the terminal device is currently in a non-communication state, the signal path Ef from the data exchange SW and the signal path Df from the terminal device T are both in a non-communication state in the return loop automatic creation circuit. The no-communication state detection circuit 3 in FIG. 2 detects the no-communication state of the signal path Ef, and the no-communication state detection circuit 5 detects the no-communication state of the signal path Df, and the output signal S1 of both circuits 3 and 5 is and S
2 sends a set signal S to flip-flop circuits 8 and 10 through gate 12. The signal S
The output signal F1 of the flip-flop circuit 8 set by S connects the input I0 of the selection circuit 1 to the output, and the output signal F2 of the flip-flop circuit 10 set by the signal S connects the input I0 of the selection circuit 9 to the output. Connect to. Therefore, there is a delay circuit 2 and a path LP between the signal path Ef from the data exchanger SW and the signal path Eb leading to the data exchanger SW.
and a return loop passing through the selection circuit 1, and a signal path Db leading to the terminal device T.
The no-communication state signal Db1 is sent from the no-communication state signal generating circuit 7 via the selection circuit 9 (before time ta in FIG. 3). At time ta in FIG. 3, a communication request signal is sent from the terminal device T to the signal path Df.
When Df2 arrives, the communication request signal detection circuit 6 shown in FIG. 2 detects the communication request signal Df2 and sends a reset signal R2 to the flip-flop circuit 8 via the gate 13. Also, the no-communication state detection circuit 5 stops the output signal S2 and the set signal S being sent to the flip-flop circuit 8 via the gate 12. The flip-flop circuit 8 is therefore reset and its output signal F1 disconnects the input I0 of the selection circuit 1 from the output and connects the input I1 to the output. As described above, the feedback loop circuit being formed between the signal paths Ef and Eb for the data exchanger SW is cut off, and the communication request signal Df2 sent from the terminal device T onto the signal path Df is transmitted by the delay circuit 12 at the time t1. After receiving a delay of , it is sent out as a communication request signal Eb2 via the selection circuit 1 onto the signal path Eb leading to the data exchange SW. Further, the output signal R2 of the communication request detection circuit 6 is sent by the delay circuit 11 to the flip-flop circuit 10 as a reset signal R3 via the gate 14 after time t2. Therefore, the flip-flop circuit 10 is reset,
The output signal F2 disconnects the input I0 of the selection circuit 9 from the output and connects the input I1 to the output.
On the other hand, the data exchange SW which has received the communication request signal Ef2 via the subscriber line sends a response signal Ef3 to the terminal device T. The response signal Ef3 arrives on the signal path Ef at time tb in FIG. Sent as Db3. With the above steps, the signal path Df is
and Eb and Ef and Db are respectively connected, and the terminal device T and data exchange SW are in a communicable state. When the signal path Df from the terminal device T becomes non-communicative at time tc in FIG. 3 after the end of communication,
Via the delay circuit 12 and the selection circuit 1, the time t
After 1, the signal path Eb leading to the data exchanger SW is also in a non-communication state. Subsequently, at time td in FIG. 3, when the signal path Ef from the data exchanger SW also goes into a no-communication state, the signal path Db leading to the terminal device T after time t3 via the delay circuit 2 and selection circuit 9 also goes into a no-communication state. becomes. The non-communication state of the signal paths Df and Ef is detected by the non-communication state detection circuits 5 and 3, respectively, and the output signals S1 and S of both circuits 3 and 5 are detected.
2 sends a set signal S to flip-flop circuits 8 and 10 via gate 12. Flip-flop circuit 8 set by the set signal S
The output signal F1 causes the selection circuit 1 to disconnect the input I1 from the output and connect the input I0 to the output. Further, the output signal F2 of the flip-flop circuit 10 set by the set signal S causes the selection circuit 9 to disconnect the input I1 from the output and connect the input I0 to the output. Therefore, the signal path from the data exchanger SW
Between Ef and the signal path Eb leading to the data exchanger SW, there is again a delay circuit 2, a path LP, and a selection circuit 1.
A return loop is formed via the terminal device T, and a no-communication state signal is sent from the no-communication state signal generation circuit 7 via the selection circuit 9 to the signal path Db leading to the terminal device T.
Db1 is sent again. It takes time t4 from the end of communication on the signal path Db until the no-communication state signal Db1 is sent out. Next, when the communication request signal Ef2 arrives at the signal path Ef from the data exchanger SW at time te in FIG. 3, the communication request signal detection circuit 4 shown in FIG. 2 detects the communication request signal Ef2, and the gate 13 and A reset signal R1 is sent to flip-flop circuits 8 and 10 via 14. Further, the output signal S1 of the no-communication state detection circuit 3 is stopped, and the output signal S1 from the gate 12 to the flip-flop circuit 8 is stopped.
And the set signal S being sent to 10 is stopped.
Therefore, the flip-flop circuit 8 is reset,
The output signal F1 disconnects the input I0 of the selection circuit 1 from the output and connects the input I1 to the output.
Further, the output signal F2 of the reset flip-flop circuit 10 disconnects the input I0 and output of the selection circuit 9, and connects the input I1 to the output. Therefore, the return loop being formed between the signal paths Ef and Eb to the data exchanger SW is released, and the signal path Ef
The communication request signal Ef2 that has arrived is delayed for a time t3 by the delay circuit 2, and then sent out on the signal path Db to the terminal device T via the selection circuit 9 as the communication request signal Db2. Subsequently, the response signal Df3 that arrives on the signal path Df from the terminal device T at time tf in FIG. Response signal on road Eb
It is sent as Eb3, and the data exchange SW and terminal device T become communicable.

以上の説明から明らかな如く、本実施例によれ
ば加入者回線の終端装置内に設けられたおり返し
ループ自動作成回路において、データ交換機SW
に対する信号路EfおよびEbの間には、無通信状
態時おり返しループが自動的に形成され、データ
交換機SWから加入者回線の伝送品質測定を実施
するために、おり返しループ作成用の信号を終端
装置に対し送出する必要はない。また端末装置T
またはデータ交換機SWから加入者回線上に通信
要求信号Df2またはEf2が送出されればおり返
しループ自動作成回路は直ちにデータ交換機SW
に対する信号路EfおよびEb間に形成中のおり返
しループを解放し、端末装置Tに対する信号路
DfおよびDbとの間を接続して通信可能状態とす
る。従つて加入者回線に使用される信号体系は、
データ交換機SW側から実施される加入者回線の
伝送品質測定のために何等影響を受けることはな
い。更におり返しループを自動的に形成すること
により、加入者に対する通信サービスを損うこと
は避けられる。
As is clear from the above explanation, according to this embodiment, in the automatic return loop creation circuit provided in the subscriber line termination device, the data exchange SW
A return loop is automatically formed between the signal paths Ef and Eb when there is no communication, and a signal for creating a return loop is sent from the data exchange SW to measure the transmission quality of the subscriber line. There is no need to send it to the end device. Also, the terminal device T
Or, if the communication request signal Df2 or Ef2 is sent from the data exchange SW to the subscriber line, the feedback loop automatic creation circuit immediately returns to the data exchange SW.
The return loop being formed between the signal paths Ef and Eb for the terminal device T is released, and the signal path for the terminal device T is
Connect Df and Db to enable communication. Therefore, the signaling system used for subscriber lines is
This is not affected in any way by the transmission quality measurement of the subscriber line performed from the data exchange SW side. Moreover, by automatically forming a return loop, loss of communication service to the subscriber is avoided.

なお第2図および第3図はあく迄本発明の一実
施例に過ぎず、例えば自動的に作成するおり返し
ループはデータ交換機SWに対する信号路Efおよ
びEb間に限定されず、端末装置Tに対する信号
路DfおよびDb間、更にはデータ交換機SWなら
びに端末装置Tの両者に対する信号路上に作成す
ることも考慮されるが、何れの場合にも本発明の
効果は変らない。またおり返しループ自動作成回
路の設置個所は加入者回線終端装置に限定される
ことはなく、例えば中継器等に設ける場合にも本
発明の効果は変らない。更に通信網の種別はデー
タ交換網に限定されるものではない。
Note that FIGS. 2 and 3 are only one embodiment of the present invention, and for example, the automatically created return loop is not limited to the signal paths Ef and Eb for the data exchange SW, but also for the signal paths Ef and Eb for the terminal device T. It may be considered to create the signal path between the signal paths Df and Db, or further on the signal path for both the data exchange SW and the terminal device T, but the effects of the present invention do not change in either case. Further, the installation location of the automatic return loop creation circuit is not limited to the subscriber line termination device, and the effects of the present invention will remain the same even if it is installed, for example, in a repeater. Furthermore, the type of communication network is not limited to a data exchange network.

以上、本発明によれば、加入者回線に使用され
る信号体系に影響を与えることなく、然も加入者
に対する通信サービスを損うことなく加入者回線
の伝送品質を常時測定監視可能とするおり返しル
ープ自動作成回路が実現出来る。
As described above, according to the present invention, it is possible to constantly measure and monitor the transmission quality of a subscriber's line without affecting the signal system used in the subscriber's line and without impairing the communication service provided to the subscriber. A return loop automatic creation circuit can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はデータ交換網における従来ある網内伝
送品質測定監視方式の一例を示す図、第2図は本
発明の一実施例によるおり返しループ自動作成回
路の構成図、第3図は第2図におけるデータ交換
機および端末装置に対する信号路上の信号シーケ
ンス図である。 図において、N……データ交換網、T1,T
2,T……端末装置、TE1,TE2……終端装
置、L1,L2……加入者回線、SW1,SW2,
SW……データ交換機、M1……誤り率測定器、
M2……測定部、Ef,Eb,Df,Db……信号路、
1,9……選択回路、2,11,12……遅延回
路、7……無通信状態信号発生回路、8,10…
…フリツプフロツプ回路、3,5……無通信状態
検出回路、4,6……通信要求信号検出回路、1
2,13,14……ゲイト、Db1……無通信状
態信号、Df2,Eb2,Ef2,Db2……通信要求
信号、Ef3,Db3,Df3,Eb3……応答信号。
FIG. 1 is a diagram showing an example of a conventional intra-network transmission quality measurement and monitoring method in a data exchange network, FIG. 2 is a configuration diagram of an automatic return loop creation circuit according to an embodiment of the present invention, and FIG. FIG. 3 is a signal sequence diagram on a signal path for the data exchanger and terminal device in the figure. In the figure, N...data exchange network, T1, T
2, T... terminal device, TE1, TE2... terminal device, L1, L2... subscriber line, SW1, SW2,
SW...Data exchanger, M1...Error rate measuring device,
M2...measuring section, Ef, Eb, Df, Db...signal path,
1, 9... Selection circuit, 2, 11, 12... Delay circuit, 7... No communication state signal generation circuit, 8, 10...
...Flip-flop circuit, 3, 5...No communication state detection circuit, 4, 6...Communication request signal detection circuit, 1
2, 13, 14...Gate, Db1...No communication state signal, Df2, Eb2, Ef2, Db2...Communication request signal, Ef3, Db3, Df3, Eb3...Response signal.

Claims (1)

【特許請求の範囲】[Claims] 1 端末装置と交換機間の加入者回線に設けら
れ、交換機側及び端末装置側の無通信状態を夫々
検出する無通信状態検出回路と、交換機側と端末
装置側の通信要求信号を夫々検出する通信要求信
号検出回路を有し、無通信状態検出回路が共に無
通信状態を検出した際には、選択回路でおり返し
ループが形成され、端末装置側、又は交換機側の
いづれかからの通信要求信号を通信要求信号検出
回路が検出した時には、選択回路における、おり
返し回路は開放されることを特徴とするおり返し
ループ自動作成回路。
1. A no-communication state detection circuit installed in the subscriber line between the terminal device and the exchange, which detects a no-communication state on the exchange side and the terminal device side, respectively, and a communication circuit that detects a communication request signal on the exchange side and the terminal device side, respectively. It has a request signal detection circuit, and when both of the no-communication state detection circuits detect a no-communication state, a return loop is formed in the selection circuit, and a communication request signal from either the terminal device side or the exchange side is detected. An automatic return loop creation circuit characterized in that a return circuit in a selection circuit is opened when a communication request signal detection circuit detects a communication request signal.
JP5267280A 1980-04-21 1980-04-21 Automatic forming circuit for return loop Granted JPS56149145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5267280A JPS56149145A (en) 1980-04-21 1980-04-21 Automatic forming circuit for return loop

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5267280A JPS56149145A (en) 1980-04-21 1980-04-21 Automatic forming circuit for return loop

Publications (2)

Publication Number Publication Date
JPS56149145A JPS56149145A (en) 1981-11-18
JPS639706B2 true JPS639706B2 (en) 1988-03-01

Family

ID=12921355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5267280A Granted JPS56149145A (en) 1980-04-21 1980-04-21 Automatic forming circuit for return loop

Country Status (1)

Country Link
JP (1) JPS56149145A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139306U (en) * 1988-03-16 1989-09-22
JPH01139305U (en) * 1988-03-16 1989-09-22

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516570A (en) * 1978-07-21 1980-02-05 Nec Corp Subscribersigma return circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516570A (en) * 1978-07-21 1980-02-05 Nec Corp Subscribersigma return circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139306U (en) * 1988-03-16 1989-09-22
JPH01139305U (en) * 1988-03-16 1989-09-22

Also Published As

Publication number Publication date
JPS56149145A (en) 1981-11-18

Similar Documents

Publication Publication Date Title
EP0915635B1 (en) Delay monitoring of telecommunication networks
US5563938A (en) Subscriber telephone diverter switch
CA2306271A1 (en) Fault location and performance testing of communication networks
US4766594A (en) Digital network system having arrangement for testing digital subscriber line
FI109737B (en) Method and system for controlling the fuse of the recipients' frequency-frequency central channels in a digital transmission device
US5479650A (en) Method and apparatus for switching communications from a secondary channel to a primary channel
KR100233261B1 (en) Method of switching 1+1 line protection using remote defect indication
JPS639706B2 (en)
US7046693B1 (en) Method and system for determining availability in networks
US4654807A (en) Method of measuring communication channel impairement in polling applications
US6707829B1 (en) Enhanced automatic timing adjustment for alternate routing of HFC systems
CN100423495C (en) Method and apparatus for resolving deadlock of auto-negotiation sequence between switches
US6775841B1 (en) Dual rate periodic ranging system to reduce time to ascertain cable modem failure
CA2234984A1 (en) Fax back confirmation
US8553530B1 (en) Operating state control in redundancy protection systems
GB2242100A (en) Alarm communication controller
GB2253533A (en) Optical transmission monitoring
JP2856607B2 (en) Remote test method
JP3230035B2 (en) Dedicated line switching method
JP2658518B2 (en) Multi-way multiplex communication system
JP3976399B2 (en) Line connection device
JP3003774B2 (en) Optical communication system having PDS configuration and loopback test method thereof
JPS6372244A (en) Signal repeater
JPH01227544A (en) Repeater
JPS6135052A (en) Test system of relay line continuity