JPS6396899A - Beam monitor for synchrotron radiation beam - Google Patents

Beam monitor for synchrotron radiation beam

Info

Publication number
JPS6396899A
JPS6396899A JP24365286A JP24365286A JPS6396899A JP S6396899 A JPS6396899 A JP S6396899A JP 24365286 A JP24365286 A JP 24365286A JP 24365286 A JP24365286 A JP 24365286A JP S6396899 A JPS6396899 A JP S6396899A
Authority
JP
Japan
Prior art keywords
synchrotron radiation
vacuum
light
monitor
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24365286A
Other languages
Japanese (ja)
Inventor
清 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24365286A priority Critical patent/JPS6396899A/en
Publication of JPS6396899A publication Critical patent/JPS6396899A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Particle Accelerators (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はシンクロトロン放射光のビームモニタに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a beam monitor of synchrotron radiation.

(従来の技術) 従来、シンクロトロン放射光のモニタとしては例えば1
982年に発行された刊行物フィジカル・レビュー(P
hysical Review)B26巻、4112頁
に開示されている。シンクロトロン放射光の光路の途中
に金属メツシュを挿入し、金属メツシュから放出される
光電子をチャネルトロン等で検出するもの、または、1
985年に発行された刊行物ジャパニーズ。
(Prior art) Conventionally, as a monitor for synchrotron radiation, for example, 1
Publication Physical Review (P
Physical Review) Volume B26, page 4112. One in which a metal mesh is inserted in the middle of the optical path of synchrotron radiation light and the photoelectrons emitted from the metal mesh are detected with a channeltron, etc., or 1
Publication Japanese published in 1985.

ジャーナル・オブ・アプライド・フィジックス、(Ja
panese Journal of Applied
 Physics)、24巻、611頁に開示されてい
る様な、シンクロトロン放射光をイオンチェンバ中を通
過させて測定する方法が行われている。
Journal of Applied Physics, (Ja
panese Journal of Applied
A method of measuring synchrotron radiation by passing it through an ion chamber, as disclosed in ``Physics'', Vol. 24, p. 611, has been used.

(′発明が解決しようとする問題点) 以上述べた方法では、以下の欠点を有している。金属メ
ツシュを使用する場合は超高真空1月二金属メツシュ、
チャネルトロンを配置し、チャネルトロンに外部から高
電圧を印加しなければならないため、(曵構が複雑とな
る。
('Problems to be Solved by the Invention) The method described above has the following drawbacks. When using metal mesh, ultra-high vacuum 1/2 metal mesh,
Since the channeltron must be placed and a high voltage must be applied to the channeltron from the outside, the construction becomes complicated.

逆にイオンチェンバを使用する方法は真空中では行えな
いため、シンクロトロン放射光を真空中で使用する装置
では使用できない。
On the other hand, the method using an ion chamber cannot be performed in a vacuum, so it cannot be used in a device that uses synchrotron radiation in a vacuum.

本発明の目的は、このような従来の欠点を除去して、シ
ンクロトロン放射光をほとんど減衰させず、検出部が簡
単な構造であり、真空中を通過するシンクロトロン放射
光を測定できるシンクロトロン放射充用ビームモニタを
提供することにある。
The object of the present invention is to eliminate such conventional drawbacks, to provide a synchrotron that hardly attenuates synchrotron radiation, has a simple detection section, and can measure synchrotron radiation that passes through a vacuum. An object of the present invention is to provide a radiation charging beam monitor.

(問題点を解決するための手段) 本発明のシンクロトロン放射光用ビームモニタは、シン
クロトロン放射光の可視部を真空中で反射させる鏡と、
反射光を大気中に取り出すための真空窓と窓の外に設け
られた光計測器を有することを特徴としている。
(Means for Solving the Problems) The synchrotron radiation beam monitor of the present invention includes a mirror that reflects the visible part of the synchrotron radiation in a vacuum;
It is characterized by having a vacuum window for extracting reflected light into the atmosphere and an optical measuring device installed outside the window.

(作用) 本発明においては真空ビームライン中には鏡のみを設計
することにより真空内の装置を簡素化し、また小型化し
ている。また、反射させる光はシンクロトロン放射光の
減衰が少ない。さらに、計測部は大気中に置かれ、通常
の可視光計測装置が使用できる。
(Function) In the present invention, only a mirror is designed in the vacuum beam line, thereby simplifying and downsizing the equipment in the vacuum. Furthermore, the reflected light has less attenuation of synchrotron radiation light. Furthermore, the measurement unit is placed in the atmosphere, and a normal visible light measurement device can be used.

(実施例) 次に第1図から第3図を参照して本発明の実施例につい
て説明する。
(Example) Next, an example of the present invention will be described with reference to FIGS. 1 to 3.

第1図は一実施例を示す平面図でシンクロトロン放射光
1の光路に小さな鏡(例えば表面を研磨したアルミニウ
ム板)3が取り付けられており、反射された光は真空容
器2に取り付けられ真空窓4から大気中に取り出され光
測定素子5で測定される。
FIG. 1 is a plan view showing one embodiment, in which a small mirror (for example, an aluminum plate with a polished surface) 3 is attached to the optical path of synchrotron radiation 1, and the reflected light is attached to a vacuum container 2 and vacuum The light is taken out into the atmosphere through the window 4 and measured by the light measuring element 5.

第2図はシクトロトロン放射光の位置測定を行う場合の
一実施例で、図を簡略化するために真空容器は省略され
ている。縦長の鏡13とフォトダイオードアレイ15を
使用することにより光源の条件により変化するシンクロ
トロン放射光の上下方向の位置を測定できる。また、フ
ォトダイオードアレイを用いなくても、光測定素子を上
下方向に走査することにより同様の測定をすることがで
きる。
FIG. 2 shows an embodiment in which the position of cyclotron radiation is measured, and the vacuum vessel is omitted to simplify the drawing. By using the vertically elongated mirror 13 and the photodiode array 15, it is possible to measure the vertical position of the synchrotron radiation, which changes depending on the conditions of the light source. Further, even without using a photodiode array, similar measurements can be made by scanning the optical measurement element in the vertical direction.

第3図はシンクロトロン放射光のスペクトルの一例であ
る。シンクロトロン放射光はX線から赤外線までの広い
波長を有しており、スペクトルは光源となるストーレシ
リングを周回している電子のエネルギーと軌道半径のみ
で決定される。X線、真空紫外光は鏡で反射されないた
め、本発明では可視光のみを真空外に取り出し、測定す
ることができ、例えば、波長5000人の可視光の強度
を測定すれば波長1人のX線の強度はその25倍、波長
10人の軟X線の強度は50倍という具合に各波長にお
けるシンクロトロン放射光の強度を知ることができる。
FIG. 3 is an example of the spectrum of synchrotron radiation. Synchrotron radiation has a wide wavelength range from X-rays to infrared rays, and its spectrum is determined only by the energy and orbital radius of the electrons orbiting the Stole Schilling, which serves as the light source. Since X-rays and vacuum ultraviolet light are not reflected by mirrors, in the present invention, only visible light can be taken out of the vacuum and measured. For example, if the intensity of visible light for 5000 wavelengths is measured, the The intensity of synchrotron radiation at each wavelength can be determined by 25 times the intensity of the X-ray, and 50 times the intensity of soft X-rays at 10 wavelengths.

(発明の効果) 以上、詳述した如く、本発明によればシンクロトロン放
射光の一部を使用するだけで、はとんど減衰させず、真
空中を通過するシンクロトロン放射光の強度や位置を測
定することができる。また、真空内に設置する部分は鏡
だけで良いので構造が簡単で広い場所を必要としない。
(Effects of the Invention) As detailed above, according to the present invention, by using only a part of the synchrotron radiation, the intensity of the synchrotron radiation passing through a vacuum can be reduced without attenuating the synchrotron radiation. Position can be measured. In addition, since the only part to be installed in the vacuum is a mirror, the structure is simple and does not require a large space.

さらに、検出すべき光は可視光であるため、通常の光測
定素子が使用できる。
Furthermore, since the light to be detected is visible light, ordinary light measurement elements can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明に係るシンクロトロン放射光
用ビームモニタの一実施例を示す図、第3図は典型的な
シンクロトロン放射光のスペクトルを示す図。 1・・・シンクロトロン放射光  2・・・真空容器3
・・・鏡            4・・・真空窓第1
図 第2図 第3図 波長(A) 光子エネルギー(eV)
1 and 2 are diagrams showing an embodiment of a beam monitor for synchrotron radiation according to the present invention, and FIG. 3 is a diagram showing a typical spectrum of synchrotron radiation. 1... Synchrotron radiation light 2... Vacuum container 3
...Mirror 4...Vacuum window 1
Figure 2 Figure 3 Wavelength (A) Photon energy (eV)

Claims (1)

【特許請求の範囲】[Claims] (1)シンクロトロン放射光の可視部を真空中で反射さ
せる鏡と反射光を大気中に取り出すための真空窓と、窓
の外に設けられた光計測器とを有することを特徴とする
シンクロトロン放射光用ビームモニタ。
(1) A synchronizer characterized by having a mirror that reflects the visible part of synchrotron radiation light in a vacuum, a vacuum window that extracts the reflected light into the atmosphere, and an optical measuring device installed outside the window. Beam monitor for TRON synchrotron radiation.
JP24365286A 1986-10-13 1986-10-13 Beam monitor for synchrotron radiation beam Pending JPS6396899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24365286A JPS6396899A (en) 1986-10-13 1986-10-13 Beam monitor for synchrotron radiation beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24365286A JPS6396899A (en) 1986-10-13 1986-10-13 Beam monitor for synchrotron radiation beam

Publications (1)

Publication Number Publication Date
JPS6396899A true JPS6396899A (en) 1988-04-27

Family

ID=17107000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24365286A Pending JPS6396899A (en) 1986-10-13 1986-10-13 Beam monitor for synchrotron radiation beam

Country Status (1)

Country Link
JP (1) JPS6396899A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159543A (en) * 1993-12-08 1995-06-23 Ishikawajima Harima Heavy Ind Co Ltd Beam monitor of particle accelerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159543A (en) * 1993-12-08 1995-06-23 Ishikawajima Harima Heavy Ind Co Ltd Beam monitor of particle accelerator

Similar Documents

Publication Publication Date Title
US3143651A (en) X-ray reflection collimator adapted to focus x-radiation directly on a detector
Jasny et al. A single‐shot spectrograph for the soft x‐ray region
TW575729B (en) X-ray reflectometer
JPS58146879A (en) Detector for scintilation of roentgen rays scanner
US4933558A (en) X-ray sensitive area detection device
Saemann et al. Absolute calibration of a flat field spectrometer in the wavelength range 10–70 Å
JPS6396899A (en) Beam monitor for synchrotron radiation beam
Nash et al. Spatially and temporally resolved crystal spectrometer for diagnosing high-temperature pinch plasmas on Z
US4271353A (en) X-ray spectroscope
Ghisellini et al. The blazar PKS 0528+ 134: new results from BeppoSAX observations
JP2677369B2 (en) Infrared measuring device
Borso et al. Application of a directly exposed self‐scanning photodiode array as a linear position sensitive detector in a small‐angle x‐ray scattering instrument
Yanagihara et al. Performance tests of a 2-meter grasshopper monochromator at Photon Factory
Hart et al. A 0.3–40 Micron Wavelength Modulation Spectrometer
JP2638914B2 (en) X-ray intensity measurement method for exposure
Tirsell et al. Sub-nanosecond plastic scintillator time response studies using laser produced X-ray pulsed excitation
Tsunemi et al. Application of a newly developed CCD for spectral-width measurements of a 53 eV germanium laser
Luhman et al. A new Fabry-Perot spectrometer for observations of diffuse near-infrared line emission
Shevelko Absolute measurements in the VUV spectral range with a luminescent detector
Monot et al. High-sensitivity, portable, tunable imaging X-ray spectrometer based on a spherical crystal and MCP
RU2593423C1 (en) Spectrometer for soft x-ray and vuv ranges
US4117330A (en) Gamma radiation detector
RU2599923C1 (en) Beyond rowland spectrometer for soft x-ray and vuv range
Buchtemann Modulation transfer function of extrinsic Si-detector arrays affected by optical crosstalk
Henry et al. Large area extreme ultraviolet focusing collector