JPS6396634A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPS6396634A
JPS6396634A JP24343486A JP24343486A JPS6396634A JP S6396634 A JPS6396634 A JP S6396634A JP 24343486 A JP24343486 A JP 24343486A JP 24343486 A JP24343486 A JP 24343486A JP S6396634 A JPS6396634 A JP S6396634A
Authority
JP
Japan
Prior art keywords
spacers
gap
liquid crystal
pieces
dispersion density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24343486A
Other languages
Japanese (ja)
Inventor
Junichi Asada
潤一 麻田
Nobuyasu Yamagishi
庸恭 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24343486A priority Critical patent/JPS6396634A/en
Publication of JPS6396634A publication Critical patent/JPS6396634A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13392Gaskets; Spacers; Sealing of cells spacers dispersed on the cell substrate, e.g. spherical particles, microfibres

Abstract

PURPOSE:To extremely minimize the dispersion in the gap thickness of two sheets of glass substrates and to obtain good image quality by specifying the dispersion density of spacers at the time of sticking the substrates to each other via the spherical spacers. CONSTITUTION:Transparent electrode layers 3 and oriented films 4 are laminated on two sheets of the glass substrates 2. The substrates are stuck to each other via the peripheral sealing material and resinous spherical spacers 5 and are exposed to a high temp. under pressurization. The spacers generate creep strain and the gap thickness decreases to the value smaller than the target if the dispersion density of the spacers is small at this time. The dispersion density of the spacers is, thereupon, increased to >=120 pieces/mm<2> and <=250 pieces/mm<2>. The generation of plastic strain and the degradation in contrast are prevented and the dispersion in the gap thickness is extremely minimized if the spacers are formed to such dispersion density. The good image quality is thus obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は液晶表示装置に関するものであり、特に液晶セ
ルの厚みをつくるために樹脂性の球状スペーサを用いた
液晶表示装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device using resin spherical spacers to increase the thickness of a liquid crystal cell.

従来の技術 従来、液晶表示素子の製造において、以下の様な工程が
考えられている。即ち、透明電極層および配向膜を表面
に形成した二枚のガラス基板のうち一方の基板の配向膜
上にガラスファイバ等のスペーサを均一に分散し、この
スペーサおよび、二枚のガラス基板のもう一方の周辺部
にスクリーン印刷されたシール剤を介して二枚のガラス
基板を貼合せ、高温下で加圧しながらシール剤を硬化さ
せた後、液晶を側基板の間隙に注入する。
BACKGROUND OF THE INVENTION Conventionally, the following steps have been considered in manufacturing liquid crystal display elements. That is, spacers such as glass fibers are uniformly dispersed on the alignment film of one of two glass substrates on which a transparent electrode layer and an alignment film are formed, and this spacer and the other glass substrate are Two glass substrates are bonded together with a sealant screen-printed on the periphery of one, and after the sealant is cured under pressure at high temperatures, liquid crystal is injected into the gap between the side substrates.

上記した工程において、両ガラス基板の間隙を、基板の
全体にわたって均一に所定の大きさにつくるだめのスペ
ーサ材としては従来ガラスファイバを用いたものが一般
的であった。
In the above-described process, glass fiber has conventionally been generally used as a spacer material to uniformly create the gap between the two glass substrates to a predetermined size over the entire substrate.

しかし、スペーサを気中分散などの方法により基板上に
分散した場合、棒状のガラスファイバの多くが静電気の
影響により基板と垂直な方向に立った形で基板上に分散
されるため、二枚の基板を貼合せた状態において、ガラ
スファイバが透明電極層に損傷を与えることがあり、こ
れが対向電極ショートによる不良原因の一つとなってい
た。このような不良原因による工程の歩留り低下を防ぐ
だめに、スペーサ材として棒状のガラスファイバの代り
に球状の樹脂性ビーズスペーサを用いたものが考えられ
ている。すなわち、球状のビーズスペーサの場合、棒状
のガラスファイバのように静電気によって基板に垂直に
立ち、透明電極層に突刺さったシすることがないので透
明電極層に損傷を与えることがない。
However, when spacers are dispersed on a substrate by a method such as aerial dispersion, many of the rod-shaped glass fibers are dispersed on the substrate in a vertical direction due to the influence of static electricity. When the substrates are bonded together, the glass fibers may damage the transparent electrode layer, which is one of the causes of defects due to short-circuiting of the counter electrode. In order to prevent a decrease in process yield due to such defects, it has been proposed to use spherical resin bead spacers instead of rod-shaped glass fibers as spacer materials. That is, in the case of a spherical bead spacer, unlike a rod-shaped glass fiber, it stands perpendicularly to the substrate due to static electricity and does not pierce the transparent electrode layer, thereby causing no damage to the transparent electrode layer.

発明が解決しようとする問題点 しかし、スペーサとして樹脂性ビーズを用いた場合、以
下のような問題点があった。
Problems to be Solved by the Invention However, when resin beads are used as spacers, there are the following problems.

すなわち、透明電極層および配向膜を表面に積層した二
枚のガラス基板の一方にビーズスペーサを分散し、周辺
部にシール材が印刷されたもう一方のガラス基板と貼合
せた後、シール材を硬化させる際物−なギャップをつく
るために、ノくネルを加圧しながら高温下に置く。この
ときビーズスペーサにも高温高圧がかかるため、分散密
度が小さい、すなわち基板をやとうビーズの量が少ない
と、ビーズスペーサがクリープ歪を生じる。まだカラー
表示の場合に用いられるカラーフィルタはゼラチン系の
軟らかい物質からなるので、これが加圧の際、スペーサ
のある部分で少し凹みを生ずるため、側基板間のギャッ
プ厚が目標とする大きさよりかなり小さいものができて
しまう。
That is, bead spacers are dispersed on one of two glass substrates on which a transparent electrode layer and an alignment film are laminated, and after bonding to the other glass substrate on which a sealant is printed on the periphery, a sealant is applied. In order to create a gap during curing, the flask is placed under high temperature under pressure. At this time, high temperature and high pressure are also applied to the bead spacer, so if the dispersion density is low, that is, the amount of beads that cover the substrate is small, the bead spacer will suffer from creep strain. The color filter used for color display is made of a gelatin-based soft material, so when pressurized, it creates a slight dent in the area where the spacer is, so the gap thickness between the side substrates may be much larger than the target size. I end up with something small.

一方、ビーズスペーサの分散密度を十分多くすると、凝
集による局所的な非配向が生じたり、コントラストが低
下する等の画質上の問題がある。
On the other hand, if the dispersion density of bead spacers is sufficiently increased, there are problems in image quality, such as local non-orientation due to aggregation and a decrease in contrast.

さらに、高温下で加圧する製造方法によらない場合にも
、分散密度が少なければ、一つのノζネルについて面内
でのギャップむらが発生したり、ビーズスペーサの弾性
変形量が大きくなってギャップ厚が小さくなる等の間悪
がある。本発明は上記問題点を解決することを目的とす
るものである。
Furthermore, even if the manufacturing method does not involve pressurizing at high temperatures, if the dispersion density is low, gap unevenness will occur in the plane of one channel, or the amount of elastic deformation of the bead spacer will increase, resulting in a gap There is evil while the thickness decreases, etc. The present invention aims to solve the above problems.

問題点を解決するだめの手段 本発明は二枚のガラス基板の少なくとも一方に透明電極
層および配向膜を積層して形成し、前記二枚のガラス基
板を周辺シール材および樹脂性の球状スペーサを介して
対向させて貼合せ、前記二枚のガラス基板の間隙に液晶
を封入するよう構成し、前記間隙を4〜8μmとし、前
記球状スペーサの径を前記間隙と同じか少し大き目に設
定し、前記間隙に対応する径を有する前記樹脂性の球状
スペーサの分散密度が120個/mm2以上250個/
mm2以下であることを特徴とする液晶表示装置である
Means for Solving the Problems The present invention comprises laminating a transparent electrode layer and an alignment film on at least one of two glass substrates, and surrounding the two glass substrates with a peripheral sealing material and a resin spherical spacer. The two glass substrates are laminated to face each other through the glass substrate, and the liquid crystal is sealed in the gap between the two glass substrates, the gap is set to 4 to 8 μm, and the diameter of the spherical spacer is set to be the same as or slightly larger than the gap, The dispersion density of the resin spherical spacers having a diameter corresponding to the gap is 120 pieces/mm2 or more and 250 pieces/mm2 or more.
This is a liquid crystal display device characterized in that the size is less than mm2.

作用 上記のように球状スペーサの分散密度を120個/M以
上250個/mm2以下に設定することによって、二枚
のガラス基板のギャップ厚をより正確に設定することが
でき、しかも画質を劣化させることがないものである。
Effect As described above, by setting the dispersion density of spherical spacers to 120 pieces/M or more and 250 pieces/mm2 or less, the gap thickness between the two glass substrates can be set more accurately, and the image quality is not degraded. It is something that never happens.

実施例 以下第2図を用いて、本発明の一実施例を説明する。Example An embodiment of the present invention will be described below with reference to FIG.

第2図は、基板上のビーズスペーサの分散密度と、二枚
の基板間のギャップ厚との関係を示すものであり、10
kq/ff程度の圧縮弾性率を持つ、基板間ギャップ厚
に近い3種類の径の大きさのビーズスペーサについてそ
れぞれプロットしたものである。なお、第2図で1の曲
線は、目標ギャップ厚より0.5〜1.0μm 大きい
径をもつビーズスペーサによるものであり、2の曲線は
0.5μm以下の範囲で目標ギャップ厚より大きい径、
3は0.6μm以下の範囲で目標ギャップ厚より小さい
径をもつビーズスペーサによるものである。
Figure 2 shows the relationship between the dispersion density of bead spacers on a substrate and the gap thickness between two substrates.
This is a plot of bead spacers having a compressive modulus of elasticity on the order of kq/ff and having three types of diameters close to the inter-substrate gap thickness. In addition, the curve 1 in Figure 2 is for a bead spacer with a diameter 0.5 to 1.0 μm larger than the target gap thickness, and the curve 2 is for a bead spacer with a diameter larger than the target gap thickness in the range of 0.5 μm or less. ,
3 is based on a bead spacer having a diameter smaller than the target gap thickness in the range of 0.6 μm or less.

また、シール材の硬化工程において、ガラス基板の両面
には150°Cで2時間、1気圧の圧力がかかるものと
する。
Further, in the curing process of the sealant, a pressure of 1 atmosphere is applied to both surfaces of the glass substrate at 150° C. for 2 hours.

第2図に示す曲線から明らかなように、分散密度が12
0個/+u以下である場合、分散密度に対する基板間ギ
ャップ厚の勾配がかなり大きくなっており、120個/
朋を越えるとほぼ一定となる。
As is clear from the curve shown in Figure 2, the dispersion density is 12
When it is less than 0 pieces/+u, the gradient of the inter-substrate gap thickness with respect to the dispersion density is quite large, and it is 120 pieces/+u.
It becomes almost constant once you surpass your friend.

taわち、ビーズスペーサの分散密度が120個/罰以
下の領域においては、ビーズスペーサ1個当りにかかる
荷重がかなり大きく、クリープによる塑性歪が生じてい
ると考えられる。このため、分散密度のわずかなバラツ
キによりギャップ厚が大きく異なる。一方、分散密度が
120個/ ao+を越える領域では、ビーズスペーサ
にかかる荷重はクリープによる塑性歪はほとんど起こら
ず、はぼ一定の弾性変形量となる。従って、ビーズスペ
ーサがクリープによる塑性変形をほとんど生じない12
0個/zm以上の分散密度を設定すれば、はぼ一定のギ
ャップ厚を持つ液晶表示装置が得られる。
That is, in a region where the dispersion density of bead spacers is 120 pieces/pull or less, the load applied to each bead spacer is quite large, and it is considered that plastic strain due to creep occurs. Therefore, the gap thickness varies greatly due to slight variations in the dispersion density. On the other hand, in a region where the dispersion density exceeds 120 particles/ao+, the load applied to the bead spacer causes almost no plastic strain due to creep, and the amount of elastic deformation is approximately constant. Therefore, the bead spacer hardly undergoes plastic deformation due to creep.
If the dispersion density is set to 0 particles/zm or more, a liquid crystal display device with a nearly constant gap thickness can be obtained.

一方、分散密度が250個/ff11を越える程度にな
ると、第2図の斜影部で示される領域に入ることになり
、この領域においては、コントラストの低下や、ビーズ
スペーサの凝集による局所的な非配向等、画質の劣化が
見られる。従ってほぼ一定の目標とするギャップ厚を得
、かつ画質に影響のない分散密度としては120個/y
xy以上250個/H以下が良い。
On the other hand, when the dispersion density exceeds 250 particles/ff11, it enters the region shown by the shaded area in Figure 2, and in this region, contrast decreases and local non-conformity due to aggregation of bead spacers occurs. Deterioration of image quality, such as orientation, is observed. Therefore, the dispersion density is 120 pieces/y to obtain the target gap thickness that is almost constant and does not affect the image quality.
It is preferable that the number is not less than xy and not more than 250 pieces/H.

また、第2図において、10曲線で表わされる、目標ギ
ャップより0.5〜1 、 Q pH大きい径のビーズ
スペーサの場合、分散密度が250個/朋に近い領域で
は、目標ギャップ厚の範囲をやや越え、かつ画質の低下
も生じやすい。このため目標ギャップ厚より0.5〜1
.0μm大きい径を有するビーズスペーサを用いる場合
には、120個/門以上250個/mm2以下の領域の
中でもより小さい方の範囲で分散密度を制御した方がよ
い。一方、3の曲線で表わされる、最適ギャップ値より
小さい径を有するビーズスペーサの場合、ギャップ厚が
全体的に目標の範囲より小さい。しかし、一般にギャッ
プ厚が小さいとコントラストが低下する等画質上問題と
なることが多く、また製造工程において対抗7目−ト等
の不良が発生しやすい。一方、ギャップ厚が大きいと、
液晶の応答性がやや悪くなる等の画質上の問題はあるが
、製造上安定性があり、1μm以上大きくならなければ
比較的安定した特性をもつ液晶表示装置が得られる。従
って、コントラスト、視野角等の点から最適なギヤツブ
厚?設定すれば、使用するスペーサ径の選定基準として
は、ビーズスペーサの歪を考慮して最適なギャップ厚よ
り1μmをこえない範囲でやや大きい径を持つものが良
い。
In addition, in the case of bead spacers with a diameter 0.5 to 1 Q pH larger than the target gap, which is represented by the 10 curve in Fig. 2, in the region where the dispersion density is close to 250 pieces/h, the range of the target gap thickness is Slightly exceeds the limit, and image quality is likely to deteriorate. Therefore, 0.5 to 1
.. When using bead spacers having a diameter larger by 0 μm, it is better to control the dispersion density in the smaller range of 120 beads/gate to 250 beads/mm 2 . On the other hand, in the case of a bead spacer having a diameter smaller than the optimum gap value, represented by curve 3, the gap thickness is overall smaller than the target range. However, in general, when the gap thickness is small, there are many problems in terms of image quality, such as a decrease in contrast, and defects such as a 7th hole are likely to occur in the manufacturing process. On the other hand, if the gap thickness is large,
Although there are problems in image quality, such as the responsiveness of the liquid crystal being slightly deteriorated, it is stable in manufacturing, and a liquid crystal display device with relatively stable characteristics can be obtained as long as the size does not exceed 1 μm. Therefore, what is the optimal gear thickness in terms of contrast, viewing angle, etc.? Once set, the selection criteria for the spacer diameter to be used is preferably one that has a slightly larger diameter within a range of not more than 1 μm than the optimum gap thickness, taking into account the distortion of the bead spacer.

前記したように、本発明によれば、樹脂性ビーズスペー
サ散布後、周辺シール材を硬化させる際、高温下で基板
を加圧しても目標とするギャップ精度を保ち、画質に悪
影響のない液晶表示装置を安定して得ることができる。
As described above, according to the present invention, the target gap accuracy can be maintained even when the substrate is pressurized at high temperatures when curing the peripheral sealing material after dispersing the resin bead spacers, and the liquid crystal display can have no adverse effect on image quality. The device can be stably obtained.

表面に透明電極層および配向膜を形成した1fi厚の二
枚のガラス基板を用い、一方の基板に、圧縮弾性率の高
い(1o kg/ynt以上)6μm径の樹脂性ビーズ
を120個/mm2以上250個/ Mm 未満の密度
で均一に分散した後、もう一方の周辺部にシール材を施
した基板と貼り合せ、150°Cで2時間、1気圧の圧
力を基板に加えた。なお、ここではコントラスト、視野
角の点から最適なギャップ厚を5.8μmとしている。
Two glass substrates with a thickness of 1fi on which a transparent electrode layer and an alignment film are formed are used, and 120 pieces/mm2 of resin beads with a diameter of 6 μm and a high compressive modulus (more than 1 kg/ynt) are placed on one of the substrates. After uniformly dispersing the particles at a density of less than 250 pieces/Mm, they were bonded to the other substrate with a sealant applied to the periphery, and a pressure of 1 atmosphere was applied to the substrate at 150°C for 2 hours. Here, the optimum gap thickness is set to 5.8 μm in terms of contrast and viewing angle.

この結果を第3図に示す。第3図に示されるように分散
密度は120個/mm2以上250個/H以下でばらつ
きがあったが、第3図に示すようにほぼ一定の目標ギャ
ップ厚精度を有する液晶表示装置が安定して得られた。
The results are shown in FIG. As shown in Fig. 3, the dispersion density varied from 120 pieces/mm2 to 250 pieces/H, but as shown in Fig. 3, the liquid crystal display device with almost constant target gap thickness accuracy was stable. obtained.

第1図は本発明における液晶表示装置の構成の一部を示
す断面図であり、1は偏光板、2はガラス板、3は透明
電極層、4は配向膜、5は樹脂性のビーズスペーサ、6
は液晶層である。
FIG. 1 is a cross-sectional view showing a part of the structure of a liquid crystal display device according to the present invention, in which 1 is a polarizing plate, 2 is a glass plate, 3 is a transparent electrode layer, 4 is an alignment film, and 5 is a resin bead spacer. ,6
is the liquid crystal layer.

なお、上述のギャップ厚は4〜8μmで、スペーサの径
はこれと同じか少し大きい程度(+1μm程度)のもの
を使用することができる。
Note that the above-mentioned gap thickness is 4 to 8 μm, and the spacer diameter can be the same or slightly larger (about +1 μm).

発明の詳細 な説明したように本発明によれば、ギャップ厚のばらつ
きのきわめて小さい、良好な画質を得る液晶表示装置を
提供することができる。
DETAILED DESCRIPTION OF THE INVENTION As described in detail, according to the present invention, it is possible to provide a liquid crystal display device that exhibits extremely small variations in gap thickness and provides good image quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における液晶表示装置の一部
分の断正面図、第2図、第3図は同装置説明のだめの分
散密度と基板間ギャップ厚の関係を示す特性図でちる。 1・・・・・・偏光板、2・・・・・・ガラス板、3・
・・・・・透明電極層、4・・・・・配向膜、5・・・
・・・ビーズスペーサ、6・・・・・・液晶層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 01θI!l lπ     zoo   2.リ  
 3θθづ6さ ’i  1J5 刀((イ圓/mnル
2ジ第3図
FIG. 1 is a sectional front view of a portion of a liquid crystal display device according to an embodiment of the present invention, and FIGS. 2 and 3 are characteristic diagrams showing the relationship between the dispersion density and the inter-substrate gap thickness, which are used to explain the device. 1...Polarizing plate, 2...Glass plate, 3.
...Transparent electrode layer, 4...Alignment film, 5...
...Bead spacer, 6...Liquid crystal layer. Name of agent: Patent attorney Toshio Nakao and 1 other person 1st
Figure 2 01θI! l lπ zoo 2. Li
3θθzu6sa 'i 1J5 Sword ((Ien/mnru2ji Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)二枚のガラス基板の少なくとも一方に透明電極層
および配向膜を積層して形成し、前記二枚のガラス基板
を周辺シール材および樹脂性の球状スペーサを介して対
向させて貼合せ、前記二枚のガラス基板の間隙に液晶を
封入するよう構成し、前記間隙を4〜8μmとし、前記
球状スペーサの径を前記間隙と同じか少し大き目に設定
し、前記間隙に対応する径を有する前記樹脂性の球状ス
ペーサの分散密度が120個/mm^2以上250個/
mm^2以下であることを特徴とする液晶表示装置。
(1) A transparent electrode layer and an alignment film are laminated and formed on at least one of two glass substrates, and the two glass substrates are bonded to face each other with a peripheral sealant and a resin spherical spacer interposed therebetween; The liquid crystal is sealed in a gap between the two glass substrates, the gap is set to 4 to 8 μm, and the diameter of the spherical spacer is set to be the same as or slightly larger than the gap, and has a diameter corresponding to the gap. The dispersion density of the resin spherical spacers is 120 pieces/mm^2 or more and 250 pieces/mm^2 or more.
A liquid crystal display device characterized in that the size is less than mm^2.
(2)樹脂性球状スペーサの径が、貼合せた二枚のガラ
ス基板の間隙の大きさよりも1μm以下の範囲で大きい
ことを特徴とする特許請求の範囲第1項記載の液晶表示
装置。
(2) The liquid crystal display device according to claim 1, wherein the resin spherical spacer has a diameter that is 1 μm or less larger than the gap between the two glass substrates bonded together.
JP24343486A 1986-10-14 1986-10-14 Liquid crystal display device Pending JPS6396634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24343486A JPS6396634A (en) 1986-10-14 1986-10-14 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24343486A JPS6396634A (en) 1986-10-14 1986-10-14 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPS6396634A true JPS6396634A (en) 1988-04-27

Family

ID=17103812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24343486A Pending JPS6396634A (en) 1986-10-14 1986-10-14 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPS6396634A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120826A (en) * 1988-10-31 1990-05-08 Catalysts & Chem Ind Co Ltd Method for spreading powder, and base plate and liquid crystal cell
JP2001221998A (en) * 1991-08-01 2001-08-17 Seiko Epson Corp Liquid crystal display element and electronic instrument

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251721A (en) * 1986-04-25 1987-11-02 Seiko Instr & Electronics Ltd Manufacture of liquid-crystal display element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251721A (en) * 1986-04-25 1987-11-02 Seiko Instr & Electronics Ltd Manufacture of liquid-crystal display element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120826A (en) * 1988-10-31 1990-05-08 Catalysts & Chem Ind Co Ltd Method for spreading powder, and base plate and liquid crystal cell
JP2001221998A (en) * 1991-08-01 2001-08-17 Seiko Epson Corp Liquid crystal display element and electronic instrument

Similar Documents

Publication Publication Date Title
JPS62210423A (en) Liquid crystal cell utilizing electric control double refraction effect and making of the same and negative optical anisotropic single axis medium use therefor
JPH05107531A (en) Ferroelectric liquid crystal panel and display device
JPH02235026A (en) Production of liquid crystal display device
JPH10186397A (en) Liquid crystal display device and its production
JPS6396634A (en) Liquid crystal display device
JPH09258176A (en) Curved surface panel and its production
JPH02101426A (en) Production of liquid crystal display element
US10919282B1 (en) Flexible display module and flexible display device
JP2007033982A (en) Manufacturing method of liquid crystal display
JPH01195421A (en) Manufacture of liquid crystal display device
JPH0194318A (en) Liquid crystal display element
JPH05119325A (en) Liquid crystal panel
JPS606982A (en) Liquid crystal display body
JP2798788B2 (en) Phase plate with peelable sheet
JPS59224826A (en) Liquid crystal display cell
JPH06110063A (en) Color liquid crystal optical device and its production
JP3653008B2 (en) Manufacturing method of liquid crystal display panel
KR100388229B1 (en) Film for controlling vertically vibrating light in polarizing plate and manufacturing method thereof
CN101221313A (en) LCD panel production method and its structure
JPH02139518A (en) Production of liquid crystal panel
JP3780626B2 (en) Display element and manufacturing method thereof
JPH01142532A (en) Production of liquid crystal panel
JPH01106016A (en) Liquid crystal display device
JPH0688951A (en) Method for injecting liquid crystal
JPH05281555A (en) Color liquid crystal panel