JPS6396560A - Immobilizing method - Google Patents

Immobilizing method

Info

Publication number
JPS6396560A
JPS6396560A JP24274686A JP24274686A JPS6396560A JP S6396560 A JPS6396560 A JP S6396560A JP 24274686 A JP24274686 A JP 24274686A JP 24274686 A JP24274686 A JP 24274686A JP S6396560 A JPS6396560 A JP S6396560A
Authority
JP
Japan
Prior art keywords
liposome
liposomes
igg
physiologically active
compd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24274686A
Other languages
Japanese (ja)
Other versions
JPH07107535B2 (en
Inventor
Masaaki Kida
正章 木田
Isako Kitahata
北端 伊佐子
Kazuhisa Kubotsu
窪津 和久
Yoshitsugu Sakata
佐方 由嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP24274686A priority Critical patent/JPH07107535B2/en
Priority to US07/051,349 priority patent/US4861597A/en
Priority to AT87107259T priority patent/ATE72973T1/en
Priority to ES198787107259T priority patent/ES2032776T3/en
Priority to EP87107259A priority patent/EP0247497B1/en
Priority to DE8787107259T priority patent/DE3776966D1/en
Publication of JPS6396560A publication Critical patent/JPS6396560A/en
Publication of JPH07107535B2 publication Critical patent/JPH07107535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

PURPOSE:To immobilize an immunonogically active material such as antigen or antibody or physiologically active material such as hapten or drug to liposome by preliminarily incorporating an amphiphilic compd. into the liposome. CONSTITUTION:The amphiphilic compd. of about 50,000-30,000mol.wt. is preliminarily incorporated into the liposome at the time of preparing the liposome and the immunonogically active material, physiologically active material, etc., are bonded to the liposome via said compd. These materials are then immobilized in the position adequately apart from the liposome surface and, therefore, the damaging of the film surface of the liposome by the immobilization is prevented. In addition, the stable and efficient immobilization is exedutable. Polysaccharides such as lipopolysaccharide and natural polypeptide having a hydrophobic property, etc., are used as the amphiphilic compd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、医薬品のrラグ・デリバリ−や、臨床検査、
免疫学等の分野に於て用いられる、生理活性物質、免疫
活性物質等のリポソームへの固定化法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to r-lag delivery of pharmaceuticals, clinical testing,
This invention relates to a method for immobilizing physiologically active substances, immunologically active substances, etc. in liposomes used in fields such as immunology.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

リポソームに抗原、抗体やその他の蛋白質等を固定化す
る方法としては、これまでに下記(1)〜(1■)に示
す方法が知られている。
As methods for immobilizing antigens, antibodies, other proteins, etc. on liposomes, the following methods (1) to (1) are known.

(1)蛋白質に疎水性基を導入することにより、リポソ
ームに対して親和性をもたせ、これを別途調製したIJ
 、dソームに組み込む方法(Bi och imi 
ca etBiophysica Acta、 812
.116(1985)等。〕。
(1) By introducing a hydrophobic group into the protein, it has affinity for liposomes, and this is separately prepared for IJ.
, a method for incorporating into dsomes (Bioch imi
ca et Biophysica Acta, 812
.. 116 (1985) etc. ].

(i+)リポンーム調製時に予め化学修飾が可能な基を
有する物質、例えば、糖脂質等を混合しておき、その糖
を酸化剤で酸化することによジアルデヒド基を生成させ
、これと蛋白質のアミノ基とを反応させてシック塩基を
形成させることによシリポソームと蛋白質を結合させる
方法1:Btochimicaet Biophysi
ca Acta、 640.66 (1981)等。〕
(i+) At the time of lipome preparation, a substance having a group that can be chemically modified, such as a glycolipid, is mixed in advance, and the sugar is oxidized with an oxidizing agent to generate a dialdehyde group. Method 1 of binding siliposomes and proteins by reacting with amino groups to form thick bases: Btochimicaet Biophysi
ca Acta, 640.66 (1981), etc. ]
.

(iii) (ti)と同様にリポソーム調製時にSH
基と反応し得る官能基を持つ脂質を混合しておき、これ
に別途SH化剤で修飾した蛋白質を反応させて組み込む
方法[Journal of Immunorogic
al Method、 75.351(1984) ;
 Biochemical and Biophysi
cal ResearchCommunication
s、 117.399(1983) :特開昭60−1
17159号公報等。〕。
(iii) Similar to (ti), SH during liposome preparation
A method in which a lipid having a functional group that can react with a group is mixed, and a protein separately modified with an SH-forming agent is reacted and incorporated [Journal of Immunologic
al Method, 75.351 (1984);
Biochemical and Biophysics
calResearchCommunication
s, 117.399 (1983): Japanese Patent Publication No. 1983-1
Publication No. 17159, etc. ].

(1■)リポソームも蛋白質もそのままで、各々の持つ
官能基同士を架橋剤又は縮合剤等を用いて結合させる方
法(Biochemical and Biophys
ical ResearchCommunicatio
ns、 89.1114 (1979) ; Lipo
someTechnology、 155 、 (19
83) 、 CRCPress等。〕。
(1■) A method of bonding the functional groups of each liposome and protein with each other using a crosslinking agent or condensing agent (Biochemical and Biophys
ical ResearchCommunication
ns, 89.1114 (1979); Lipo
someTechnology, 155, (19
83), CRC Press et al. ].

しかしながら、これらの方法はいずれも、直接、架橋剤
等を用いて、リポソームの表面近くで反応させ固定化さ
せる方法なので、リポソームの膜構造が反応時に損傷を
受ける可能性が強く、また、リポソームマトリックスの
立体障害の為、蛋白質の結合率も必ずしも充分ではなく
効率が悪い。
However, all of these methods directly react and immobilize near the surface of liposomes using a crosslinking agent, so there is a strong possibility that the liposome membrane structure will be damaged during the reaction, and the liposome matrix Due to steric hindrance, the protein binding rate is not always sufficient and efficiency is low.

〔発明の目的〕[Purpose of the invention]

本発明は上記した如き状況に鑑みなされたもので、有用
物質を内包したリポソームに伺ら損傷を与えることなく
(内包物を流出させることなく)、且つ、結合率も充分
で効率良く、免疫活性物質、生理活性物質等をリポソー
ムに固定化させる方法を提供することを目的とする。
The present invention has been developed in view of the above-mentioned circumstances, and is capable of producing immune activation without damaging the liposomes containing useful substances (without causing the contents to flow out), and with sufficient binding efficiency and efficiency. The object of the present invention is to provide a method for immobilizing substances, physiologically active substances, etc. onto liposomes.

〔発明の概要〕[Summary of the invention]

上記目的を達成する為、本発明は下記の構成から成る。 In order to achieve the above object, the present invention consists of the following configuration.

「リポソームに抗原、抗体等の免疫活性物質やハプテン
、薬物等の生理活性物質を固定化するに当り、予めリポ
ソームに導入された分子量5,000〜30.000程
度の両親媒性化合物を介してこれを行うことを特徴とす
る免疫活性物質又は生理活性物質のリポソームへの固定
化法。」 即ち、本発明者らは、リポソームに何等損傷を与えるこ
となく、且つ、結合率よく免疫活性物質、生理活性物質
等をリポソームに固定化させる方法について鋭意研究を
重ねた結果、リポソーム調製時に予め分子量5,000
〜30,000程度の両親媒性化合物を組み込んでおき
、これを介して免疫活性物質、生理活性物質等を結合さ
せれば必然的にリポソーム表面と適当に離れた位置で固
定化されるので、膜表面上の乱れも少なく、安定に且つ
効率よく固定化できることを見出し、本発明を完成する
に到った。
"When immobilizing immunologically active substances such as antigens and antibodies, or physiologically active substances such as haptens and drugs, into liposomes, it is necessary to A method for immobilizing an immunologically active substance or a physiologically active substance onto a liposome, which is characterized in that the present inventors immobilize an immunoactive substance or a physiologically active substance in a liposome without causing any damage to the liposome and with a high binding rate. As a result of extensive research into methods for immobilizing physiologically active substances, etc., on liposomes, we found that the molecular weight of 5,000
If ~30,000 amphiphilic compounds are incorporated and an immunologically active substance, physiologically active substance, etc. is bound to the liposome through this, it will inevitably be immobilized at an appropriate distance from the liposome surface. The present invention was completed based on the discovery that stable and efficient immobilization can be achieved with little disturbance on the membrane surface.

リポソームに組み込む分子量5,000〜30,000
程度の両親媒性化合物としては、例えばリポ多糖(以下
、LPSと略す。)のような多糖類、疎水性基を有する
天然のポリペブチP若しくは疎水性基を導入した天然の
ポリ被プチド(例えば、インシーリンのアミノ基又はカ
ルボキシル基に疎水性基を導入したもの。)、疎水性基
を有する合成ポリペプチド、末端を疎水化した親水性ポ
リマー等が挙げられる。
Molecular weight incorporated into liposomes: 5,000-30,000
Examples of amphipathic compounds include polysaccharides such as lipopolysaccharide (hereinafter abbreviated as LPS), natural polypeptides having hydrophobic groups, and natural polypeptides having hydrophobic groups introduced therein (for example, Examples include products in which a hydrophobic group is introduced into the amino group or carboxyl group of incyrin), synthetic polypeptides having a hydrophobic group, and hydrophilic polymers with hydrophobicized terminals.

これら両親媒性化合物を介して免疫活性物質、生理活性
物質等をリポソームに固定化させる方法としては、両親
媒性化合物の官能基を活性化して反応させる方法、1価
性架橋剤、2価性架橋剤等架橋剤を用いて結合させS方
法、結合剤を用いる方法等自体公知の方法が全て挙げら
れる。
Methods for immobilizing immunologically active substances, physiologically active substances, etc. to liposomes via these amphipathic compounds include methods of activating and reacting the functional groups of amphipathic compounds, monovalent cross-linking agents, divalent cross-linking agents, etc. All methods known per se such as the S method of bonding using a cross-linking agent such as a cross-linking agent, and the method of using a binder can be mentioned.

本発明に係るリポソームの構成素材としては、天然レシ
チン(例えば、卵黄レシチン、大豆レシチン等)やジパ
ルミトイルフォスファチジルコリ7 (DPPC) 、
 シミリストイルフォスファチジルコリン(DMPC)
 、ジステアロイルフォスファチジルコリン(DSPC
) 、ジオレオイルフォスファチジルコリン(DOPC
) 、ノミリストイルフォスファチジルエタノールアミ
ン(DMPE) 、ジノぐルミトイルフォスファチジル
グリセロール(DPPG) 、ジミリストイルフォスフ
ァチジン酸(DMPA)等のリン脂質の一種又は二種以
上、或はこれらとコレステロール類との混合系等、既存
のリポソームの製造法に於て通常用いられる構成素材は
全て使用可能なものとして挙げられる。また、本発明に
係るリポソームが内包可能な化合物としては、例えば、
酵素、遺伝子、核酸、ポリヌクレオチド、ホルモン、免
疫グロブ+)7mA等から、各種薬剤や抗生物質、更に
は色素、螢光性物質、発光化合物等に到るまで、既存の
リポソームに封入可能な物質は全て挙げられる。
Constituent materials for the liposome according to the present invention include natural lecithin (e.g., egg yolk lecithin, soybean lecithin, etc.), dipalmitoylphosphatidyl coli 7 (DPPC),
Similistoylphosphatidylcholine (DMPC)
, distearoylphosphatidylcholine (DSPC)
), dioleoylphosphatidylcholine (DOPC)
), one or more phospholipids such as norimyristoylphosphatidylethanolamine (DMPE), dinoglumitoylphosphatidylglycerol (DPPG), and dimyristoylphosphatidic acid (DMPA), or these and cholesterol. All constituent materials that are commonly used in existing liposome production methods, such as mixtures with other liposomes, can be used. In addition, examples of compounds that can be encapsulated in the liposome according to the present invention include:
Substances that can be encapsulated in existing liposomes range from enzymes, genes, nucleic acids, polynucleotides, hormones, immunoglobulins (7mA), etc., to various drugs and antibiotics, as well as dyes, fluorescent substances, luminescent compounds, etc. All can be mentioned.

本発明に係るリポソームの調製法としては、従来からよ
く知られているポルチクスイング法、超音波法、界面活
性剤法、逆相蒸発法(REV法)、エタノール注入法、
エーテル注入法、プレーベシクル(Pre−Vesjc
le )法、フレンチプレスエクストル−′/′ヨン(
French Press Extrusion )法
、Ca2+融合法、アニーリング(Annealing
 )法、凍結融解融合法、W10/Wエマルジョン法等
の方法や、最近、S 、M、 Grunerら[Bio
chemistry、 24.2833 (1985)
 ’:1により報告された5table Pluril
amellar vesicle法(5PLV法)など
の方法、更には、内包量の大きな1巨大リポソーム(G
iant Liposoma )”と言われているリポ
ソームを調製する方法など、自体公知のリポソームの調
製法が全て挙げられる。
Methods for preparing liposomes according to the present invention include the conventionally well-known portic swing method, ultrasound method, surfactant method, reversed phase evaporation method (REV method), ethanol injection method,
Ether injection method, pre-vesicle (Pre-Vesjc)
le) method, French press extra-'/'yon (
French Press Extrusion method, Ca2+ fusion method, Annealing
) method, freeze-thaw fusion method, W10/W emulsion method, and recently, S., M., Gruner et al. [Bio
chemistry, 24.2833 (1985)
5table Pluril reported by ':1
Methods such as the amellar vesicle method (5PLV method), and even one giant liposome (G
All methods for preparing liposomes that are known per se, such as a method for preparing liposomes known as "Iant Liposoma", can be mentioned.

本発明の方法によシ固定化が可能な免疫活性物質、生理
活性物質としては、例えば、α−フェトプロティン、ガ
ン胎児性抗原(CEA) 、塩基性フェトプロティン(
RFP) 、膵ガン胎児性抗原(POA) 等の腫瘍マ
ーカー、例えばストレプトリジンO(SLO)。
Examples of immunologically active substances and physiologically active substances that can be immobilized by the method of the present invention include α-fetoprotein, carcinoembryonic antigen (CEA), and basic fetoprotein (
RFP), pancreatic carcinoembryonic antigen (POA), tumor markers such as streptolysin O (SLO).

C−反応性蛋白(CRP)等の抗原蛋白、IgA 、 
IgE。
Antigenic proteins such as C-reactive protein (CRP), IgA,
IgE.

IgG 、 IgM等の免疫グロブリン等の抗原或はこ
れらの抗原に対する抗体、更にはインシュリン、ヒト繊
毛性ゴナrトロピン()ICG)等のホルモンや各種薬
物、ハプテン抗原或はこれらの抗体等既存のリポソーム
に固定化し得る免疫活性物質、生理活性物質は全て挙げ
られる。
Antigens such as immunoglobulins such as IgG and IgM, or antibodies against these antigens, as well as hormones such as insulin and human ciliated gonal tropin (ICG), various drugs, hapten antigens, and existing liposomes such as these antibodies. Examples include all immunoactive substances and physiologically active substances that can be immobilized on.

本発明の方法の概略を、両親媒性化合物としてLPSを
用い、IgGを固定する場合を例にとって説明すると、
以下の如くなる。
The outline of the method of the present invention will be explained by using LPS as an amphipathic compound and immobilizing IgG as an example.
It will look like below.

即ち、先ずLPSを組み込んだLPS −IJボソーム
を、LPSの存在下前記自体公知の方法によりリポソー
ムを調製する特願昭61−115405号に記載の方法
に従って調製する。
That is, first, LPS-IJ bosomes incorporating LPS are prepared in the presence of LPS according to the method described in Japanese Patent Application No. 115405/1983, in which liposomes are prepared by the method known per se.

次にこのLPS−IJポソームの懸濁液〔通常、グツド
の緩衝液(HEPES 、 PIPES 、 MES等
〕、トリス緩衝液、炭酸緩衝液等の緩衝液に分散して使
用。〕に酸化剤(例えば、過ヨウ素酸カリウム、メタ過
ヨウ素酸ナトリウム等)の緩衝液溶液を加え、室温で1
乃至数時間攪拌反応させるとLPSの糖鎖部分が酸化さ
れてアルデヒP基が生成する。反応液を遠心分離して上
清を除き、再度適当な緩衝液に懸濁させた後、これにI
gGの緩衝液溶液を加えて室温で数時間攪拌反応させる
とシップ塩基が形成される。次いで、これに還元剤(例
えば、水素化ホウ素ナトリウム、水素化リチウムアルミ
ニウム等)の緩衝液溶液を加えて室温で1乃至数時間攪
拌反応させ、然る後遠心分離して上清を除けば、IgG
結合リポソームが高収率で得られる。
Next, an oxidizing agent (e.g., , potassium periodate, sodium metaperiodate, etc.) and incubate at room temperature for 1 hour.
When the reaction is stirred and reacted for several hours, the sugar chain moiety of LPS is oxidized and aldehyde P groups are generated. The reaction solution was centrifuged to remove the supernatant, resuspended in an appropriate buffer, and then added to
A ship base is formed by adding a buffer solution of gG and reacting with stirring at room temperature for several hours. Next, a buffer solution of a reducing agent (e.g., sodium borohydride, lithium aluminum hydride, etc.) is added to this, the reaction is stirred at room temperature for one to several hours, and then centrifuged to remove the supernatant. IgG
Conjugated liposomes are obtained in high yield.

以下に実施例を示すが、本発明はこれら実施例により何
等限定されるものではない。
Examples are shown below, but the present invention is not limited to these Examples in any way.

〔実施例〕〔Example〕

実施例1.  IgG結合リポソームの製造(1) L
PS−リポソームの調製 20 mM DPPC−りooホルム溶液325 fi
ll 、 20mMコレステロール−クロロホルム溶液
325μl 、 7.6mM DPPG−りooホルム
/メタノール(9515)溶185μ6.及びLPS 
(分子量約20,000)2”fをクロロホルム/メタ
ノール(1:1)1mlに懸濁させた溶液を試験管に入
れて混合し、ロータリーエバポレーターで溶媒を留去し
た。デシケータ−中で3時間乾燥させた後、クロロホル
ム、ジエチルエーテルを夫々0.5 TLlずつ加え、
アルカリフォスファターゼ(以下、 APと略称する。
Example 1. Production of IgG-binding liposomes (1) L
Preparation of PS-liposomes 20 mM DPPC-liooform solution 325 fi
20mM cholesterol-chloroform solution 325μl, 7.6mM DPPG-liooform/methanol (9515) solution 185μl6. and LPS
A solution of 2"f (molecular weight approximately 20,000) suspended in 1 ml of chloroform/methanol (1:1) was mixed in a test tube, and the solvent was distilled off using a rotary evaporator. In a desiccator for 3 hours. After drying, add 0.5 TLl each of chloroform and diethyl ether,
Alkaline phosphatase (hereinafter abbreviated as AP).

)溶液〔シグマ社製5,000 unit72.5m/
!の0.01M 、 HEPES (N −2−ヒドロ
キシエチルピ被うジン−N′−二タンスルホン酸)緩衝
液溶液pH7,4,[80μlを添加し、ポルテックス
ミキサーで激しく振とうした。これを水浴中(43〜4
8℃)、ロータリーエバポレーターで濃縮して有機溶媒
を留去し、0.OIMHEPES緩衝液l mlを加え
てポルテックスミキサーで均一に分散するまで攪拌した
。これを遠沈管に移し、4℃、34,000 rpmで
40分間×5回遠心分離を繰り返して遊離のAPを除去
した後、0,3M重炭酸ナトリウム緩衝液(pH8,2
,72,5mM NaC7含有)3mlを加えて懸濁さ
せ、4℃で保存した。
) solution [manufactured by Sigma 5,000 units 72.5 m/
! 80 μl of a 0.01 M HEPES (N-2-hydroxyethylpidecyl-N'-nitanesulfonic acid) buffer solution, pH 7.4, was added and the mixture was vigorously shaken with a portex mixer. I took this in a water bath (43-4
8°C) and concentrated using a rotary evaporator to remove the organic solvent. 1 ml of OIMHEPES buffer was added and stirred with a portex mixer until uniformly dispersed. This was transferred to a centrifuge tube and centrifuged 5 times for 40 minutes at 4°C and 34,000 rpm to remove free AP.
, 72, containing 5mM NaC7) was added to suspend the mixture and stored at 4°C.

(2) IgG結合リポソームの製造 (1)で得たリポソーム懸濁液1 mlにメタ過ヨウ素
酸ナトリウム0.706mFを0.3 M重炭酸ナトリ
ウム緩衝液1 ml (pH8,2)に溶かした溶1夜
を加え、室温で1時間攪拌した後遠沈管に移し、4℃、
34.000rpmで40分間×2回遠心分離を行った
。その間、洗浄は0.01M炭酸カリウム緩衝液(PH
9,5,72,5mMNaCt含有)で行い、最後に同
緩衝液l rnlに懸濁させた。これに1g03m9を
上記と同じ緩衝液に溶解した溶液を加え、室温で2時間
攪拌した後、水素化ホウ素ナトリウム0.6りを0.0
1M炭酸カリウム緩衝液100μlに溶解して加え、更
に1時間攪拌した。これを遠沈管に移し、4℃、34,
00 Q rpmで40分間×3回遠心分離を繰り返し
た。この間、洗浄は0. OI M HEPES緩衝液
で行い、最後に同緩衝液2 mlに懸濁させて4℃で保
存した。
(2) Production of IgG-binding liposomes Add 0.706 mF of sodium metaperiodate dissolved in 1 ml of 0.3 M sodium bicarbonate buffer (pH 8,2) to 1 ml of the liposome suspension obtained in (1). After stirring at room temperature for 1 hour, transfer to a centrifuge tube and store at 4°C.
Centrifugation was performed twice for 40 minutes at 34,000 rpm. Meanwhile, washing was carried out with 0.01M potassium carbonate buffer (PH
9,5,72,5mM NaCt), and finally suspended in the same buffer lrnl. A solution of 1g03m9 dissolved in the same buffer as above was added to this, and after stirring at room temperature for 2 hours, 0.6g of sodium borohydride was added to the solution.
The mixture was dissolved in 100 μl of 1M potassium carbonate buffer, added, and further stirred for 1 hour. Transfer this to a centrifuge tube and keep at 4℃ for 34 minutes.
Centrifugation was repeated 3 times for 40 minutes at 00 Q rpm. During this time, the cleaning is 0. It was carried out using OIM HEPES buffer, and finally suspended in 2 ml of the same buffer and stored at 4°C.

実施例2゜ リポソームに導入するLPS量、酸化剤Na IO4量
及びカップリングさせるIgG量を変化させて実施例1
.の方法に準じて3種のIgG結合リポソームを製造し
た。
Example 2゜Example 1 by changing the amount of LPS introduced into the liposome, the amount of oxidizing agent Na IO4, and the amount of IgG to be coupled.
.. Three types of IgG-binding liposomes were produced according to the method of .

結合IgG量(ローリ−法により測定)及び内包物(A
P )の活性保持率を表1に示す。また表中の0の場合
のIgG結合リポソームについて補体存在下でImmu
nolysisを行った結果を第1図に示す。
Amount of bound IgG (measured by Lowry method) and inclusions (A
Table 1 shows the activity retention rate of P). In addition, for the IgG-binding liposomes in the case of 0 in the table, Immunolysis was performed in the presence of complement.
The results of the nolysis are shown in FIG.

比較例1゜ 実施例2.に於けるLPSを低分子糖脂質のガングリオ
シド(分子量約2,000)に代える以外は実施例2.
と全く同様にして3種のIgG結合リポソームを製造し
た。結合IgG量及び内包物の活性保持率を表1に併せ
て示す。また、表中の■の場合のIgG結合リポソーム
について補体存在下でIrrrnunolys isを
行った結果を第2図に示す。
Comparative example 1゜Example 2. Example 2 except that LPS in Example 2 was replaced with a low molecular weight glycolipid ganglioside (molecular weight approximately 2,000).
Three types of IgG-binding liposomes were produced in exactly the same manner as described above. The amount of bound IgG and the activity retention rate of the inclusions are also shown in Table 1. Further, FIG. 2 shows the results of Irrnunolysis performed on the IgG-bound liposomes in the case of ■ in the table in the presence of complement.

尚、AP活性保持率は、rgG結合前後のAP内包量を
界面活性剤(Br1j 58)による1ysisから求
め、算出した。
The AP activity retention rate was calculated by determining the AP inclusion amount before and after rgG binding from 1ysis with a surfactant (Br1j 58).

また、第1図及び第2図は、各々のIgG結合リポソー
ムに、(a)各種濃度の補体を作用させたとき、及び、
(b) 500倍希釈の抗IgG抗体(抗血清)と各種
濃度の補体とを作用させたときにリポソームが損傷を受
けて放出するAP量に対応して基質であるp−ニトロフ
ェニルリン酸から生成するp−ニトロフェノールの41
0 nmの吸光度が補体の濃度に伴って変化する様子を
示したもので、縦軸は410 nmに於ける吸光度を、
また横軸は補体の濃度を夫々表わす。また、実線−は補
体のみを作用させたとき、破線−一一一一は抗体と補体
とを作用させたときを夫々表わす。
In addition, FIGS. 1 and 2 show the results when (a) various concentrations of complement were applied to each IgG-binding liposome, and
(b) The substrate p-nitrophenyl phosphate corresponds to the amount of AP released when liposomes are damaged when a 500-fold diluted anti-IgG antibody (antiserum) interacts with various concentrations of complement. 41 of p-nitrophenol produced from
It shows how the absorbance at 0 nm changes with the concentration of complement, and the vertical axis shows the absorbance at 410 nm.
Moreover, the horizontal axis represents the concentration of complement. Further, the solid line - represents the case when only complement was applied, and the broken line -1111 represents the case when antibody and complement were applied.

表1より明らかな如く、LPSをスペーサーとする本発
明の方法によりIgGを固定化したり?ソームは、低分
子糖脂質であるガングリオシドをスペーサーとしてIg
Gを固定化した方法(前記従来法(+Dの方法)に比べ
てIgG結合量が約2倍と高く、また、IgGとのカッ
プリング反応の前後に於ける内包APの活性保持率も後
者のそれが30〜45チ程度であるのに対し、60〜8
0チと遥かに高い。
As is clear from Table 1, IgG can be immobilized by the method of the present invention using LPS as a spacer. Somes contain Ig using gangliosides, which are low molecular weight glycolipids, as spacers.
The method in which G is immobilized (the amount of IgG binding is about twice as high as that of the conventional method (method +D), and the activity retention rate of the encapsulated AP before and after the coupling reaction with IgG is also higher than that of the conventional method (method +D). It is about 30 to 45 inches, while 60 to 8
It is much higher at 0chi.

このことは、IgGを結合させるカップリング反応時に
リポソームが蒙る損傷が本発明の方法の場合には従来法
と比べて極めて少ないことを示している。
This shows that liposomes are significantly less damaged in the method of the present invention during the coupling reaction for binding IgG than in the conventional method.

また、第1図及び第2図から明らかな如く、本発明の方
法によfiIgGを固定化したリポソーム(LPSをス
ペーサーとして使用)ではImmuno lys t 
sが明らかに認められるのに対し、低分子糖脂質である
ガングリオシドをス被−サーとしてIgGを固定化した
リポソームではImmuno 1y s t sが全く
認められなかった。
Furthermore, as is clear from FIGS. 1 and 2, in the liposomes (using LPS as a spacer) in which fiIgG was immobilized by the method of the present invention, Immunolys t
In contrast, in liposomes in which IgG was immobilized using ganglioside, which is a low-molecular-weight glycolipid, as a substrate, Immuno 1y s t s was not observed at all.

実施例3. ペプチド結合リポソームの製造REV法で
調製したリポソーム(LPS 2 my金含有懸濁液2
mlにメタ過ヨウ素酸ナトリウム2.1411gを0、
3 M重炭酸すl−’Jウム緩衝液1 mlに溶かした
溶液を加え、室温で1時間攪拌した後、遠沈管に移し、
4℃、34,000 rpmで40分間×2回遠心分離
を行った。その間、洗浄は0.01M炭酸カリウム緩衝
液で行い、最後に同緩衝液2 mlに懸濁させた。
Example 3. Production of peptide-bound liposomes Liposomes prepared by the REV method (LPS 2 my gold-containing suspension 2
ml of sodium metaperiodate 2.1411g,
Add a solution dissolved in 1 ml of 3 M bicarbonate sodium buffer and stir at room temperature for 1 hour, then transfer to a centrifuge tube.
Centrifugation was performed twice for 40 minutes at 4°C and 34,000 rpm. During that time, washing was performed with 0.01M potassium carbonate buffer and finally suspended in 2 ml of the same buffer.

これにhCGのβ−サブユニットのC末端ベプチr(C
TP 118〜145) 3■(約1μmol)を同緩
衝液l mlに溶かした溶液を加え、室温で2時間攪拌
した後水素化ホウ素す) IJウム0.9〜9を同緩衝
液100μlに溶解して加え、更に1時間攪拌した。こ
れを遠沈管に移し、4℃、34,000 rpmで40
分間×3回遠心分離を繰シ返した。この間、洗浄は0、
OIM HEPES緩衝液で行い、最後に同緩衝液2 
mlに懸濁させ、4℃で保存した。
This is added to the C-terminal peptide r of the β-subunit of hCG (C
Add a solution of TP 118-145) 3 (approximately 1 μmol) dissolved in 1 ml of the same buffer, stir at room temperature for 2 hours, and then dissolve IJium 0.9-9 in 100 μl of the same buffer. The mixture was added and stirred for an additional hour. Transfer this to a centrifuge tube and incubate for 40 min at 4°C and 34,000 rpm.
Centrifugation was repeated 3 times for 3 minutes. During this time, 0 washes,
Performed with OIM HEPES buffer, and finally with the same buffer 2.
ml and stored at 4°C.

上記のようにして調製したペプチドリポソームのペプチ
ド含量をフルオレッサミンを用いた螢光測定法で求めた
結果、9.6 nmolのペプチrが結合していること
がわかりた。即ち脂質1μmol当シ約1.5 nmo
lのベプチrが結合していることになる。
The peptide content of the peptide liposome prepared as described above was determined by fluorescence measurement using fluorescamine, and it was found that 9.6 nmol of peptide r was bound. That is, about 1.5 nmo per 1 μmol of lipid.
This means that the vepti r of l is bonded.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明は、有用物質を内包したリポソ
ームに何ら損傷を与えることなく、且つ、極めて効率よ
く免疫活性物質、生理活性物質等をリポソームに固定化
させる方法を提供するものであり、 ■本発明の方法により抗原又は抗体を固定化した場合に
は、抗体又は抗原と容易に抗原抗体反応してImnun
olysi sが起こるので、安定なImmunoly
posomeとして免疫測定への使用が可能である。
As described above, the present invention provides a method for immobilizing immunologically active substances, physiologically active substances, etc. onto liposomes in an extremely efficient manner without causing any damage to liposomes encapsulating useful substances. ■When an antigen or antibody is immobilized by the method of the present invention, it easily reacts with the antibody or antigen to cause Immunization.
lysis occurs, resulting in stable immunity
It can be used as a posome for immunoassay.

■また、本発明の方法により抗原を固定化した場合には
、このImmunolyposomeを免疫することに
より抗体産生に於ても有効である。
(2) Furthermore, when the antigen is immobilized by the method of the present invention, immunization with this Immunolyposome is effective in producing antibodies.

■更に、本発明の方法によシ抗体を固定化した場合には
jn vivoで標的細胞へ充分安定に内包物を取シ込
ませることも期待できる。
(2) Furthermore, when the antibody is immobilized by the method of the present invention, it can be expected that the inclusions can be introduced into target cells in a sufficiently stable manner in vivo.

等の点に顕著な作用効果を有するものである。It has remarkable effects in the following points.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例2.に於けるImmuno lys i
 sの結果を示す。また、第2図は比較例1.に於ける
Immunolys i sの結果を示す。第1図、第
2図共に、縦軸は410nmに於ける吸光度を、また、
横軸は補体の濃度を夫々示し、実線−はIgG結合リポ
ソームに補体のみを作用させた場合、また、破線−−−
−−はIgG結合リポソームに補体と抗IgG抗体(抗
血清)とを作用させた場合を夫々示す。 特許出願人  和光純薬工業株式会社 第 /I!1 罹体儂& (*釈傍牢ン 第2図 補゛体溝L(→航待牽)
FIG. 1 shows Example 2. Immunolys i in
The results of s are shown. In addition, FIG. 2 shows comparative example 1. The results of Immunolys is shown in FIG. In both Figures 1 and 2, the vertical axis represents the absorbance at 410 nm, and
The horizontal axis shows the concentration of complement, and the solid line - shows the case when only complement acts on the IgG-bound liposome, and the broken line -
-- indicates the case where complement and anti-IgG antibody (antiserum) were made to act on IgG-bound liposomes, respectively. Patent applicant: Wako Pure Chemical Industries, Ltd. No./I! 1 Victim & (*Explanation side prison Fig. 2 body groove L (→Navigation)

Claims (3)

【特許請求の範囲】[Claims] (1)リポソームに抗原、抗体等の免疫活性物質や、ハ
プテン、薬物等の生理活性物質を固定化するに当り、予
めリポソームに導入された分子量5,000〜30,0
00程度の両親媒性化合物を介してこれを行うことを特
徴とする免疫活性物質又は生理活性物質のリポソームへ
の固定化法。
(1) When immobilizing immunoactive substances such as antigens and antibodies, or physiologically active substances such as haptens and drugs, into liposomes, the molecular weight of 5,000 to 30,0
1. A method for immobilizing an immunologically active substance or a physiologically active substance in liposomes, which is characterized in that this is carried out via an amphipathic compound of about 0.000.
(2)両親媒性化合物の親水性部分を活性化することに
より、或は架橋剤若しくは縮合剤を用いることによりこ
れを行う特許請求の範囲第1項記載の固定化方法。
(2) The immobilization method according to claim 1, wherein this is carried out by activating the hydrophilic part of the amphiphilic compound or by using a crosslinking agent or a condensing agent.
(3)両親媒性化合物がリポ多糖(LPS)、疎水性基
を有する天然のポリペプチド若しくは疎水性基を導入し
た天然のポリペプチド、疎水性基を有する合成ポリペプ
チド、又は末端を疎水化した親水性ポリマーである特許
請求の範囲第1項又は第2項記載の固定化法。
(3) The amphipathic compound is lipopolysaccharide (LPS), a natural polypeptide with a hydrophobic group, a natural polypeptide into which a hydrophobic group has been introduced, a synthetic polypeptide with a hydrophobic group, or a hydrophobized terminal. The immobilization method according to claim 1 or 2, wherein the immobilization method is a hydrophilic polymer.
JP24274686A 1986-05-20 1986-10-13 Immobilization method Expired - Lifetime JPH07107535B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP24274686A JPH07107535B2 (en) 1986-10-13 1986-10-13 Immobilization method
US07/051,349 US4861597A (en) 1986-05-20 1987-05-19 Novel functionallized liposomes and a process for production thereof
AT87107259T ATE72973T1 (en) 1986-05-20 1987-05-19 LIPOSOMES CARRYING FUNCTIONAL GROUPS AND PROCESSES FOR THEIR PRODUCTION.
ES198787107259T ES2032776T3 (en) 1986-05-20 1987-05-19 NEW LIPOSOMES FUNCTIONALIZED AND A PROCEDURE FOR THEIR PRODUCTION.
EP87107259A EP0247497B1 (en) 1986-05-20 1987-05-19 Novel functionalized liposomes and a process for production thereof
DE8787107259T DE3776966D1 (en) 1986-05-20 1987-05-19 FUNCTIONAL GROUPS OF LIPOSOME AND METHOD FOR THE PRODUCTION THEREOF.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24274686A JPH07107535B2 (en) 1986-10-13 1986-10-13 Immobilization method

Publications (2)

Publication Number Publication Date
JPS6396560A true JPS6396560A (en) 1988-04-27
JPH07107535B2 JPH07107535B2 (en) 1995-11-15

Family

ID=17093643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24274686A Expired - Lifetime JPH07107535B2 (en) 1986-05-20 1986-10-13 Immobilization method

Country Status (1)

Country Link
JP (1) JPH07107535B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992004887A1 (en) * 1990-09-25 1992-04-02 Kyowa Hakko Kogyo Co., Ltd. Induction of cytotoxic t cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992004887A1 (en) * 1990-09-25 1992-04-02 Kyowa Hakko Kogyo Co., Ltd. Induction of cytotoxic t cell

Also Published As

Publication number Publication date
JPH07107535B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
US4861597A (en) Novel functionallized liposomes and a process for production thereof
US4598051A (en) Liposome conjugates and diagnostic methods therewith
US4483929A (en) Liposomes with glycolipid-linked antibodies
EP0932830B1 (en) Fluorescent energy transfer ligand interaction assay on a lipid film
JPH0779694B2 (en) Protection of proteins and similar products
EP0036277B1 (en) Covalently bonded liposome-protein-compositions and method of producing them
JPH11246593A6 (en) Protection of proteins and the like
WO1981002344A1 (en) Immunoassay products and methods
EP0208764A1 (en) Method for preserving liposomes
Snyder et al. Immunologic response to protein immobilized on the surface of liposomes via covalent azo-bonding
JPH06100601B2 (en) Immunological analysis reagent and analysis method using the same
Singh et al. Liposomes in immunodiagnostics
US5210040A (en) Process for coupling antibodies or antibody fragments to liposomes
US5248590A (en) Surface modified liposomes
Torchilin et al. Immobilization of proteins on liposome surface
Laukkanen et al. Use of genetically engineered lipid-tagged antibody to generate functional europium chelate-loaded liposomes Application in fluoroimmunoassay
JPS6396560A (en) Immobilizing method
US4731324A (en) Viral lysis assay
US4806466A (en) Cell agglutination reagent comprising conjugates of antibody covalently bound to liposomes
JPS61250558A (en) Immunological assaying method
US4971916A (en) Liposome based homogeneous immunoassay for diagnostic tests
JP2527434B2 (en) Liquid for measurement Single reagent
EP0382400A3 (en) Immunoassay process and liquid reagents used therefor
JPS60159652A (en) Reagent for immunological analysis
JPH0361859A (en) Liposome dispersion fluid stabilizer