JPH07107535B2 - Immobilization method - Google Patents

Immobilization method

Info

Publication number
JPH07107535B2
JPH07107535B2 JP24274686A JP24274686A JPH07107535B2 JP H07107535 B2 JPH07107535 B2 JP H07107535B2 JP 24274686 A JP24274686 A JP 24274686A JP 24274686 A JP24274686 A JP 24274686A JP H07107535 B2 JPH07107535 B2 JP H07107535B2
Authority
JP
Japan
Prior art keywords
liposome
liposomes
active substance
igg
buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24274686A
Other languages
Japanese (ja)
Other versions
JPS6396560A (en
Inventor
正章 木田
伊佐子 北端
和久 窪津
由嗣 佐方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP24274686A priority Critical patent/JPH07107535B2/en
Priority to US07/051,349 priority patent/US4861597A/en
Priority to EP87107259A priority patent/EP0247497B1/en
Priority to DE8787107259T priority patent/DE3776966D1/en
Priority to ES198787107259T priority patent/ES2032776T3/en
Priority to AT87107259T priority patent/ATE72973T1/en
Publication of JPS6396560A publication Critical patent/JPS6396560A/en
Publication of JPH07107535B2 publication Critical patent/JPH07107535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、医薬品のドラグ・デリバリーや、臨床検査、
免疫学等の分野に於て用いられる、生理活性物質、免疫
活性物質等のリポソームへの固定化法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to drug delivery, clinical testing,
The present invention relates to a method for immobilizing physiologically active substances, immunologically active substances and the like on liposomes, which are used in fields such as immunology.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

リポソームに抗原、抗体やその他の蛋白質等を固定化す
る方法としては、これまでに下記(i)〜(iv)に示す
方法が知られている。
As methods for immobilizing antigens, antibodies, other proteins, etc. on liposomes, the following methods (i) to (iv) are known so far.

(i)蛋白質に疎水性基を導入することにより、リポソ
ームに対して親和性をもたせ、これを別途調製したリポ
ソームに組み込む方法〔Biochimica et Biophysica Act
a,812,116(1985)等。〕。
(I) A method in which a hydrophobic group is introduced into a protein so that the protein has an affinity for the liposome and is incorporated into a separately prepared liposome [Biochimica et Biophysica Act
a, 812 , 116 (1985), etc. ].

(ii)リポソーム調製時に予め化学修飾が可能な基を有
する物質、例えば、糖脂質等を混合しておき、その糖を
酸化剤で酸化することによりアルデヒド基を生成させ、
これと蛋白質のアミノ基とを反応させてシッフ塩基を形
成させることによりリポソームと蛋白質を結合させる方
法〔Biochimica et Biophysica Acta.640,66(1981)
等。〕。
(Ii) A substance having a group capable of chemical modification, such as a glycolipid, is mixed in advance at the time of liposome preparation, and the aldehyde is generated by oxidizing the sugar with an oxidizing agent,
A method for binding a liposome to a protein by reacting this with an amino group of the protein to form a Schiff base [Biochimica et Biophysica Acta. 640 , 66 (1981)
etc. ].

(iii)(ii)と同様にリポソーム調製時にSH基と反応
し得る官能基を持つ脂質を混合しておき、これに別途SH
化剤で修飾した蛋白質を反応させて組み込む方法〔Jour
nal of Immunorogical Method,75,351(1984);Biochem
ical and Biophysical Research Communications,117,3
99(1983);特開昭60−117159号公報等。〕。
(Iii) As in (ii), a lipid having a functional group capable of reacting with the SH group is mixed at the time of liposome preparation, and this is separately added with SH.
A method of reacting and incorporating a protein modified with an agent [Jour
nal of Immunorogical Method, 75 , 351 (1984); Biochem
ical and Biophysical Research Communications, 117 , 3
99 (1983); JP-A-60-117159. ].

(iv)リポソームも蛋白質もそのままで、各々の持つ官
能基同士を架橋剤又は縮合剤等を用いて結合させる方法
〔Biochemical and Biophysical Research Communicati
ons,89,1114(1979);Liposome Technology,155,(198
3),CRC Press等。〕。
(Iv) A method in which the functional groups of the liposomes and proteins are bound to each other using a cross-linking agent or a condensing agent, etc. [Biochemical and Biophysical Research Communicati
ons, 89 , 1114 (1979); Liposome Technology, 155, (198
3), CRC Press, etc. ].

しかしながら、これらの方法はいずれも、直接、架橋剤
等を用いて、リポソームの表面近くで反応させ固定化さ
せる方法なので、リポソームの膜構造が反応時に損傷を
受ける可能性が強く、また、リポソームマトリックスの
立体障害の為、蛋白質の結合率も必ずしも充分ではなく
効率が悪い。
However, all of these methods are methods of directly reacting and immobilizing near the surface of the liposome by using a cross-linking agent and the like, so that the membrane structure of the liposome is highly likely to be damaged during the reaction, and the liposome matrix Due to steric hindrance, the protein binding rate is not always sufficient and the efficiency is poor.

〔発明の目的〕[Object of the Invention]

本発明は上記した如き状況に鑑みなされたもので、有用
物質を内包したリポソームに何ら損傷を与えることなく
(内包物を流出させることなく)、且つ、結合率も充分
で効率良く、免疫活性物質、生理活性物質等をリポソー
ムに固定化させる方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is an immunologically active substance that does not cause any damage to liposomes containing a useful substance (without causing the inclusion substance to flow out), has a sufficient binding rate, and is efficient. Another object of the present invention is to provide a method for immobilizing a physiologically active substance or the like on a liposome.

〔発明の概要〕[Outline of Invention]

上記目的を達成する為、本発明は下記の構成から成る。 In order to achieve the above object, the present invention has the following constitution.

「リポソームに抗原、抗体等の免疫活性物質やハプテ
ン、薬物等の生理活性物質を固定化するに当り、予めリ
ポソームに導入された分子量5,000〜30,000程度の両親
媒性化合物を介してこれを行うことを特徴とする免疫活
性物質又は生理活性物質のリポソームへの固定化法。」 即ち、本発明者らは、リポソームに何等損傷を与えるこ
となく、且つ、結合率よく免疫活性物質、生理活性物質
等をリポソームに固定させる方法について鋭意研究を重
ねた結果、リポソーム調製時に予め分子量5,000〜30,00
0程度の両親媒性化合物を組み込んでおき、これを介し
て免疫活性物質、生理活性物質等を結合させれば必然的
にリポソーム表面と適当に離れた位置で固定化されるの
で、膜表面上の乱れも少なく、安定に且つ効率よく固定
化できることを見出し、本発明を完成するに到った。
“To immobilize immunologically active substances such as antigens and antibodies and physiologically active substances such as haptens and drugs on liposomes, this should be done through amphipathic compounds with a molecular weight of about 5,000 to 30,000 previously introduced into liposomes. A method for immobilizing an immunologically active substance or a physiologically active substance on a liposome, which is characterized by the following: "That is, the present inventors did not damage the liposome at all and had a good binding rate to the immunologically active substance, the physiologically active substance, etc. As a result of extensive studies on a method for immobilizing liposomes on liposomes, the molecular weight of 5,000 to 30,00 was previously prepared at the time of liposome preparation.
If an amphipathic compound of about 0 is incorporated and an immunologically active substance or a physiologically active substance is bound via this, it will inevitably be immobilized at a position appropriately separated from the liposome surface. The present invention has been completed by finding that there is little disturbance and that it can be immobilized stably and efficiently.

リポソームに組み込む分子量5,000〜30,000程度の両親
媒性化合物としては、例えばリポ多糖(以下、LPSと略
す。)のような多糖類、疎水性基を有する天然のポリペ
プチド若しくは疎水性基を導入した天然のポリペプチド
(例えば、インシュリンのアミノ基又はカルボキシル基
に疎水性基を導入したもの。)、疎水性基を有する合成
ポリペプチド、末端を疎水化した親水性ポリマー等が挙
げられる。
Examples of the amphipathic compound having a molecular weight of about 5,000 to 30,000 to be incorporated in the liposome include, for example, a polysaccharide such as lipopolysaccharide (hereinafter abbreviated as LPS), a natural polypeptide having a hydrophobic group, or a natural group introduced with a hydrophobic group. (For example, one in which a hydrophobic group is introduced into the amino group or carboxyl group of insulin), a synthetic polypeptide having a hydrophobic group, a hydrophilic polymer having a hydrophobic terminal, and the like.

これら両親媒性化合物を介して免疫活性物質、生理活性
物質等をリポソームに固定化させる方法としては、両親
媒性化合物の官能基を活性化して反応させる方法、1価
性架橋剤,2価性架橋剤等架橋剤を用いて結合させる方
法、結合剤を用いる方法等自体公知の方法が全て挙げら
れる。
As a method for immobilizing an immunologically active substance, a physiologically active substance or the like on a liposome through these amphipathic compounds, a method of activating and reacting a functional group of an amphipathic compound, a monovalent crosslinking agent, a divalent All known methods such as a method of binding using a crosslinking agent such as a crosslinking agent and a method of using a binding agent can be mentioned.

本発明に係るリポソームの構成素材としては、天然レシ
チン(例えば、卵黄レシチン、大豆レシチン等)やジパ
ルミトイルフォスファチジルコリン(DPPC),ジミリス
トイルフォスファチジルコリン(DMPC),ジステアロイ
ルフォスファチジルコリン(DSPC),ジオレオイルフォ
スファチジルコリン(DOPC),ジミリストイルフォスフ
ァチジルエタノールアミン(DMPE),ジパルミトイルフ
ォスファチジルグリセロール(DPPG),ジミリストイル
フォスファチジン酸(DMPA)等のリン脂質の一種又は二
種以上、或はこれらとコレステロール類との混合系等、
既存のリポソームの製造法に於て通常用いられる構成素
材は全て使用可能なものとして挙げられる。また、本発
明に係るリポソームが内包可能な化合物としては、例え
ば、酵素、遺伝子、核酸、ポリヌクレオチド、ホルモ
ン、免疫グロブリン類等から、各種薬剤や抗生物質、更
には色素、螢光性物質、発光化合物等に到るまで、既存
のリポソームに封入可能な物質は全て挙げられる。
Examples of the constituent material of the liposome according to the present invention include natural lecithin (eg, yolk lecithin, soybean lecithin, etc.), dipalmitoylphosphatidylcholine (DPPC), dimyristoylphosphatidylcholine (DMPC), distearoylphosphatidylcholine. (DSPC), Dioleoylphosphatidylcholine (DOPC), Dimyristoylphosphatidylethanolamine (DMPE), Dipalmitoylphosphatidylglycerol (DPPG), Dimyristoylphosphatidic acid (DMPA) One or more, or a mixed system of these and cholesterols,
All the constituent materials usually used in the existing liposome production methods can be mentioned as usable ones. Examples of compounds that can be encapsulated by the liposome according to the present invention include, for example, enzymes, genes, nucleic acids, polynucleotides, hormones, immunoglobulins, various drugs and antibiotics, and further dyes, fluorescent substances, and luminescence. All the substances that can be encapsulated in existing liposomes are listed up to the compound.

本発明に係るリポソームの調製法としては、従来からよ
く知られているボルテクスイング法、超音波法、界面活
性剤法、逆相蒸発法(REV法)、エタノール注入法、エ
ーテル注入法、プレ−ベジクル(Pre−Vesicle)法、フ
レンチプレスエクストルージョン(French Press Extru
sion)法、Ca2+融合法、アニーリング(Annealing)
法、凍結融解融合法、W/O/Wエマルジョン法等の方法
や、最近、S.M.Grunerら〔Biochemistry,24,2833(198
5)〕により報告されたStable Plurilamellar vesicle
法(SPLV法)などの方法、更には、内包量の大きな“巨
大リポソーム(Giant Liposome)”と言われているリポ
ソームを調製する方法など、自体公知のリポソームの調
製法が全て挙げられる。
Examples of the method for preparing the liposome according to the present invention include well-known vortexing method, ultrasonic method, surfactant method, reverse phase evaporation method (REV method), ethanol injection method, ether injection method, pre-preparation method. Pre-Vesicle method, French Press Extru
sion method, Ca 2+ fusion method, Annealing
Method, freeze-thaw fusion method, W / O / W emulsion method, etc., and recently SMGruner et al. [Biochemistry, 24 , 2833 (198
5)] Reported by Stable Plurilamellar vesicle
Methods (SPLV method) and the like, as well as methods of preparing liposomes known per se, such as methods of preparing liposomes called "giant liposomes" having a large encapsulation amount, can be mentioned.

本発明の方法により固定化が可能な免疫活性物質、生理
活性物質としては、例えば、α−フェトプロテイン、ガ
ン胎児性抗原(CEA),塩基性フェトプロテイン(BF
P),膵ガン胎児性抗原(POA)等の腫瘍マーカー、例え
ばストレプトリジンO(SLO),C−反応性蛋白(CRP)等
の抗原蛋白、IgA,IgE,IgG,IgM等の免疫グロブリン等の
抗原或はこれらの抗原に対する抗体、更にはインシュリ
ン、ヒト繊毛性ゴナドトロピン(hCG)等のホルモンや
各種薬物、ハプテン抗原或はこれらの抗体等既存のリポ
ソームに固定化し得る免疫活性物質、生理活性物質は全
て挙げられる。
Examples of the immunologically active substance or physiologically active substance that can be immobilized by the method of the present invention include α-fetoprotein, carcinoembryonic antigen (CEA), and basic fetoprotein (BF
P), tumor markers such as fetal pancreatic cancer embryonic antigen (POA), antigen proteins such as streptolysin O (SLO), C-reactive protein (CRP), immunoglobulins such as IgA, IgE, IgG, IgM, etc. Antigens or antibodies against these antigens, further insulin, hormones such as human ciliated gonadotropin (hCG) and various drugs, hapten antigens or immunologically active substances that can be immobilized on existing liposomes such as these antibodies, physiologically active substances All can be mentioned.

本発明の方法の概略を、両親媒性化合物としてLPSを用
い、IgGを固定する場合を例にとって説明すると、以下
の如くなる。
The outline of the method of the present invention will be described below by taking LPS as an amphipathic compound and immobilizing IgG as an example.

即ち、先ずLPSを組み込んだLPS−リポソームを、LPSの
存在下前記自体公知の方法によりリポソームを調製する
特願昭61−115405号に記載の方法に従って調製する。
That is, first, LPS-liposomes incorporating LPS are prepared according to the method described in Japanese Patent Application No. 61-115405, in which liposomes are prepared by a method known per se in the presence of LPS.

次にこのLPS−リポソームの懸濁液〔通常、グッドの緩
衝液(HEPES,PIPES,MES等)、トリス緩衝液、炭酸緩衝
液等の緩衝液に分散して使用。〕に酸化剤(例えば、過
ヨウ素酸カリウム、メタ過ヨウ素酸ナトリウム等)の緩
衝液溶液を加え、室温で1乃至数時間撹拌反応させると
LPSの糖鎖部分が酸化されてアルデヒド基が生成する。
反応液を遠心分離して上清を除き、再度適当な緩衝液に
懸濁させた後、これにIgGの緩衝液溶液を加えて室温で
数時間撹拌反応させるとシッフ塩基が形成される。次い
で、これに還元剤(例えば、水素化ホウ素ナトリウム、
水素化リチウムアルミニウム等)の緩衝液溶液を加えて
室温で1乃至数時間撹拌反応させ、然る後遠心分離して
上清を除けば、IgG結合リポソームが高収率で得られ
る。
Next, this suspension of LPS-liposomes [usually used by dispersing in a buffer such as Good's buffer (HEPES, PIPES, MES, etc.), Tris buffer, carbonate buffer, etc.] ] To a buffer solution of an oxidizing agent (for example, potassium periodate, sodium metaperiodate, etc.), and stirring reaction is performed at room temperature for 1 to several hours.
The sugar chain portion of LPS is oxidized to generate an aldehyde group.
The reaction solution is centrifuged to remove the supernatant, resuspended in an appropriate buffer solution, and then a buffer solution of IgG is added thereto and the mixture is stirred at room temperature for several hours to form a Schiff base. Then, a reducing agent (for example, sodium borohydride,
A buffer solution of lithium aluminum hydride or the like) is added, the mixture is stirred at room temperature for 1 to several hours, and then centrifuged to remove the supernatant, whereby IgG-bound liposomes can be obtained in high yield.

以下に実施例を示すが、本発明はこれら実施例により何
等限定されるものではない。
Examples will be shown below, but the present invention is not limited to these examples.

〔実施例〕〔Example〕

実施例1. IgG結合リポソームの製造 (1)LPS−リポソームの調製 20mM DPPC−クロロホルム溶液325μ、20mMコレステロ
ール−クロロホルム溶液325μ、7.6mM DPPG−クロロ
ホルム/メタノール(95/5)溶液85μ、及びLPS(分
子量約20,000)2mgをクロロホルム/メタノール(1:1)
1mlに懸濁させて溶液を試験管に入れて混合し、ロータ
リーエバポレーターで溶媒を留去した。デシケーター中
で3時間乾燥させた後、クロロホルム、ジエチルエーテ
ルを夫々0.5mlずつ加え、アルカリフォスファターゼ
(以下、APと略称する。)溶液〔シグマ社製5,000unit/
2.5mlの0.01M,HEPES(N−2−ヒドロキシエチルピペラ
ジン−N′−エタンスルホン酸)緩衝液溶液pH7.4〕80
μを添加し、ボルテックスミキサーで激しく振とうし
た。これを水浴中(43〜48℃)、ロータリーエバポレー
ターで濃縮して有機溶媒を留去し、0.01M HEPES緩衝液1
mlを加えてボルテックスミキサーで均一に分散するまで
撹拌した。これを遠沈管に移し、4℃、34,000rpmで40
分間×5回遠心分離を繰り返して遊離のAPを除去した
後、0.3M重炭酸ナトリウム緩衝液(pH8.2、72.5mM NaCl
含有)3mlを加えて懸濁させ、4℃で保存した。
Example 1. Production of IgG-bound liposomes (1) Preparation of LPS-liposomes 20 mM DPPC-chloroform solution 325 µ, 20 mM cholesterol-chloroform solution 325 µ, 7.6 mM DPPG-chloroform / methanol (95/5) solution 85 µ, and LPS (molecular weight Approximately 20,000) 2 mg chloroform / methanol (1: 1)
The suspension was suspended in 1 ml, and the solution was put into a test tube and mixed, and the solvent was distilled off with a rotary evaporator. After drying in a desiccator for 3 hours, 0.5 ml each of chloroform and diethyl ether were added, and an alkaline phosphatase (hereinafter abbreviated as AP) solution [5,000 unit / manufactured by Sigma].
2.5 ml of 0.01 M, HEPES (N-2-hydroxyethylpiperazine-N'-ethanesulfonic acid) buffer solution pH 7.4] 80
μ was added and shaken vigorously with a vortex mixer. This was concentrated in a water bath (43-48 ° C) with a rotary evaporator to remove the organic solvent, and 0.01M HEPES buffer 1
ml was added and the mixture was stirred with a vortex mixer until uniformly dispersed. Transfer this to a centrifuge tube, and 40 at 34,000 rpm at 4 ℃.
After centrifugation was repeated 5 times for 5 minutes to remove free AP, 0.3M sodium bicarbonate buffer (pH 8.2, 72.5 mM NaCl was added.
3 ml) was added and suspended and stored at 4 ° C.

(2)IgG結合リポソームの製造 (1)で得たリポソーム懸濁液1mlにメタ過ヨウ素酸ナ
トリウム0.706mgを0.3M重炭酸ナトリウム緩衝液1ml(pH
8.2)に溶かした溶液を加え、室温で1時間撹拌した後
遠沈管に移し、4℃、34,000rpmで40分間×2回遠心分
離を行った。その間、洗浄は0.01M炭酸カリウム緩衝液
(pH9.5、72.5mM NaCl含有)で行い、最後に同緩衝液1m
lに懸濁させた。これにIgG3mgを上記と同じ緩衝液に溶
解した溶液を加え、室温で2時間撹拌した後、水素化ホ
ウ素ナトリウム0.6mgを0.01M炭酸カリウム緩衝液100μ
に溶解して加え、更に1時間撹拌した。これを遠沈管
に移し、4℃、34,000rpmで40分間×3回遠心分離を繰
り返した。この間、洗浄は0.01M HEPES緩衝液で行い、
最後に同緩衝液2mlに懸濁させて4℃で保存した。
(2) Production of IgG-bound liposomes 1 ml of the liposome suspension obtained in (1) was supplemented with 0.706 mg of sodium metaperiodate in 1 ml of 0.3M sodium bicarbonate buffer (pH).
The solution dissolved in 8.2) was added, and the mixture was stirred at room temperature for 1 hour, transferred to a centrifuge tube, and centrifuged at 4 ° C. and 34,000 rpm for 40 minutes × 2 times. During that time, wash with 0.01 M potassium carbonate buffer (pH 9.5, containing 72.5 mM NaCl), and finally with 1 m of this buffer.
suspended in l. To this, add a solution prepared by dissolving 3 mg of IgG in the same buffer as above, stir at room temperature for 2 hours, and then add 0.6 mg of sodium borohydride to 100 μM of 0.01M potassium carbonate buffer.
Was dissolved in and added, and the mixture was further stirred for 1 hour. This was transferred to a centrifuge tube, and the centrifugation was repeated 3 times at 4 ° C. for 40 minutes × 3 times. During this time, wash with 0.01 M HEPES buffer,
Finally, it was suspended in 2 ml of the same buffer and stored at 4 ° C.

実施例2. リポソームに導入するLPS量、酸化剤NaIO4量及びカップ
リングさせるIgG量を変化させて実施例1.の方法に準じ
て3種のIgG結合リポソームを製造した。
Example 2 Three types of IgG-bonded liposomes were produced according to the method of Example 1 by changing the amount of LPS introduced into the liposome, the amount of oxidizing agent NaIO 4 and the amount of IgG to be coupled.

結合IgG量(ローリー法により測定)及び内包物(AP)
の活性保持率を表1に示す。また表中のの場合のIgG
結合リポソームについて補体存在下でImmunolysisを行
った結果を第1図に示す。
Amount of bound IgG (measured by Lowry method) and inclusion (AP)
Table 1 shows the activity retention rate of the. IgG in the case of
The results of immunolysis of the bound liposomes in the presence of complement are shown in FIG.

比較例1. 実施例2.に於けるLPSを低分子糖脂質のガングリオシド
(分子量約2,000)に代える以外は実施例2.と全く同様
にして3種のIgG結合リポソームを製造した。結合IgG量
及び内包物の活性保持率を表1に併せて示す。また、表
中のの場合のIgG結合リポソームについて補体存在下
でImmunolysisを行った結果を第2図に示す。
Comparative Example 1. Three kinds of IgG-bonded liposomes were produced in exactly the same manner as in Example 2 except that LPS in Example 2 was replaced with a low molecular weight glycolipid ganglioside (molecular weight: about 2,000). The amount of bound IgG and the activity retention of the inclusions are also shown in Table 1. Further, FIG. 2 shows the results of Immunolysis in the presence of complement for IgG-bonded liposomes in the case of the table.

尚、AP活性保持率は、IgG結合前後のAP内包量を界面活
性剤(Brij58)によるlysisから求め、算出した。
The AP activity retention rate was calculated by calculating the amount of AP included before and after IgG binding from lysis with a surfactant (Brij58).

また、第1図及び第2図は、各々のIgG結合リポソーム
に、(a)各種濃度の補体を作用させたとき、及び、
(b)500倍希釈の抗IgG抗体(抗血清)と各種濃度の補
体とを作用させたときにリポソームが損傷を受けて放出
するAP量に対応して基質であるp−ニトロフェニルリン
酸から生成するp−ニトロフェノールの410nmの吸光度
が補体の濃度に伴って変化する様子を示したもので、縦
軸は410nmに於ける吸光度を、また横軸は補体の濃度を
夫々表わす。また、実線−補体のみを作用させたとき、 は抗体と補体とを作用させたときを夫々表わす。
In addition, FIGS. 1 and 2 show (a) various concentrations of complement on each IgG-bound liposome, and
(B) p-nitrophenyl phosphate, which is a substrate corresponding to the amount of AP released by damage to liposomes when 500-fold diluted anti-IgG antibody (antiserum) and various concentrations of complement are allowed to act The absorbance at 410 nm of the p-nitrophenol produced from the product changes with the concentration of complement. The vertical axis represents the absorbance at 410 nm and the horizontal axis represents the concentration of complement. Also, when the solid line-complement only is applied, Indicates the time when the antibody and the complement act on each other.

表1より明らかな如く、LPSをスペーサーとする本発明
の方法によりIgGを固定化したリポソームは、低分子糖
脂質であるガングリオシドをスペーサーとしてIgGを固
定化した方法(前記従来法(ii)の方法)に比べてIgG
結合量が約2倍と高く、また、IgGとのカップリング反
応の前後に於ける内包APの活性保持率も後者のそれが30
〜45%程度であるのに対し、60〜80%と遥かに高い。こ
のことは、IgGを結合させるカップリング反応時にリポ
ソームが蒙る損傷が本発明の方法の場合には従来法と比
べて極めて少ないことを示している。
As is clear from Table 1, the liposome immobilized with IgG by the method of the present invention using LPS as a spacer is a method wherein IgG is immobilized with a ganglioside, which is a low molecular weight glycolipid, as a spacer (the method of the conventional method (ii) above). ) Compared to IgG
The binding amount was about twice as high, and the activity retention rate of the encapsulated AP before and after the coupling reaction with IgG was 30 times that of the latter.
While it is about 45%, it is much higher at 60-80%. This indicates that the liposome suffers much less damage in the coupling reaction for binding IgG in the method of the present invention than in the conventional method.

また、第1図及び第2図から明らかな如く、本発明の方
法によりIgGを固定化したリポソーム(LPSをスペーサー
として使用)ではImmunolysisが明らかに認められるの
に対し、低分子糖脂質であるガングリオシドをスペーサ
ーとしてIgGを固定化したリポソームではImmunolysisが
全く認められなかった。
In addition, as is clear from FIGS. 1 and 2, Immunolysis was clearly observed in the liposome (where LPS was used as a spacer) on which IgG was immobilized by the method of the present invention, whereas ganglioside, which is a low molecular weight glycolipid, was observed. Immunolysis was not observed at all in the liposomes on which IgG was immobilized using the as a spacer.

実施例3.ペプチド結合リポソームの製造 REV法で調製したリポソーム(LPS2mg含有)懸濁液2mlに
メタ過ヨウ素酸ナトリウム2.14mgを0.3M重炭酸ナトリウ
ム緩衝液1mlに溶かした溶液を加え、室温で1時間撹拌
した後、遠沈管に移し、4℃、34,000rpmで40分間×2
回遠心分離を行った。その間、洗浄は0.01M炭酸カリウ
ム緩衝液で行い、最後に同緩衝液2mlに懸濁させた。こ
れにhCGのβ−サブユニットのC末端ペプチド(CTP118
〜145)3mg(約1μmol)を同緩衝液1mlに溶かした溶液
を加え、室温で2時間撹拌した後水素化ホウ素ナトリウ
ム0.9mgを同緩衝液100μに溶解して加え、更に1時間
撹拌した。これを遠沈管に移し、4℃、34,000rpmで40
分間×3回遠心分離を繰り返した。この間、洗浄は0.01
M HEPES緩衝液で行い、最後に同緩衝液2mlに懸濁させ、
4℃で保存した。
Example 3 Production of peptide-bonded liposomes A solution of 2.14 mg of sodium metaperiodate in 1 ml of 0.3M sodium bicarbonate buffer was added to 2 ml of a liposome (containing 2 mg of LPS) prepared by the REV method, and the mixture was allowed to stand at room temperature for 1 hour. After stirring for an hour, transfer to a centrifuge tube, and 4 minutes at 34,000 rpm for 40 minutes x 2
Centrifugation was performed. Meanwhile, washing was performed with 0.01 M potassium carbonate buffer, and finally, the suspension was suspended in 2 ml of the same buffer. In addition to this, the C-terminal peptide of the β-subunit of hCG (CTP118
~ 145) A solution of 3 mg (about 1 µmol) in 1 ml of the same buffer was added, and the mixture was stirred at room temperature for 2 hours, then 0.9 mg of sodium borohydride was added to 100 µ of the same buffer, and the mixture was further stirred for 1 hour. Transfer this to a centrifuge tube, and 40 at 34,000 rpm at 4 ℃.
The centrifugation was repeated 3 times for 3 minutes. During this time, wash 0.01
Perform with M HEPES buffer, and finally suspend in 2 ml of the same buffer,
Stored at 4 ° C.

上記のようにして調製したペプチドリポソームのペプチ
ド含量をフルオレッサミンを用いた螢光測定法で求めた
結果、9.6nmolのペプチドが結合していることがわかっ
た。即ち脂質1μmol当り約1.5nmolのペプチドが結合し
ていることになる。
The peptide content of the peptide liposome prepared as described above was determined by a fluorescence measurement method using fluoresamine, and it was found that 9.6 nmol of the peptide was bound. That is, about 1.5 nmol of peptide is bound to 1 μmol of lipid.

〔発明の効果〕〔The invention's effect〕

以上述べた如く、本発明は、有用物質を内包したリポソ
ームに何ら損傷を与えることなく、且つ、極めて効率よ
く免疫活性物質、生理活性物質等をリポソームに固定化
させる方法を提供するものであり、 本発明の方法により抗原又は抗体を固定化した場合に
は、抗体又は抗原と容易に抗原抗体反応してImmunolysi
sが起こるので、安定なImmunolyposomeとして免疫測定
への使用が可能である。
As described above, the present invention provides a method for immobilizing an immunologically active substance, a physiologically active substance or the like in a liposome extremely efficiently without damaging the liposome encapsulating a useful substance. When the antigen or antibody is immobilized by the method of the present invention, the immunolysi
Since s occurs, it can be used as a stable Immunolyposome for immunoassay.

また、本発明の方法により抗原を固定化した場合に
は、このImmunolyposomeを免疫することにより抗体産生
に於ても有効である。
Further, when the antigen is immobilized by the method of the present invention, immunization with this Immunolyposome is also effective in antibody production.

更に、本発明の方法により抗体を固定化した場合には
in vivoで標的細胞へ充分安定に内包物を取り込ませる
ことも期待できる。
Furthermore, when the antibody is immobilized by the method of the present invention,
It can be expected that the inclusions can be incorporated into target cells in vivo sufficiently stably.

等の点に顕著な作用効果を有するものである。It has a remarkable effect on the above points.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例2.に於けるImmunolysisの結果を示す。
また、第2図は比較例1.に於けるImmunolysisの結果を
示す。第1図,第2図共に、縦軸は410nmに於ける吸光
度を、また、横軸は補体の濃度を夫々示し、実線−はIg
G結合リポソームに補体のみを作用させた場合、また、 はIgG結合リポソームに補体と抗IgG抗体(抗血清)とを
作用させた場合を夫々示す。
FIG. 1 shows the results of Immunolysis in Example 2.
Further, FIG. 2 shows the results of Immunolysis in Comparative Example 1. In both FIG. 1 and FIG. 2, the vertical axis represents the absorbance at 410 nm, the horizontal axis represents the concentration of complement, and the solid line − represents Ig.
When only complement is allowed to act on the G-bonded liposome, Shows the case where complement and anti-IgG antibody (antiserum) were allowed to act on IgG-bonded liposomes, respectively.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】リポソームに抗原、抗体等の免疫活性物質
や、ハプテン、薬物等の生理活性物質を固定化するに当
り、予めリポソームに導入された分子量5,000〜30,000
程度の両親媒性化合物を介してこれを行うことを特徴と
する免疫活性物質又は生理活性物質のリポソームへの固
定化法。
1. A method for immobilizing an immunologically active substance such as an antigen or an antibody or a physiologically active substance such as a hapten or a drug on a liposome, a molecular weight of 5,000 to 30,000 previously introduced into the liposome.
A method for immobilizing an immunologically active substance or a physiologically active substance on a liposome, which is characterized in that this is performed through a certain degree of amphipathic compound.
【請求項2】両親媒性化合物の親水性部分を活性化する
ことにより、或は架橋剤若しくは縮合剤を用いることに
よりこれを行う特許請求の範囲第1項記載の固定化方
法。
2. The immobilization method according to claim 1, which is carried out by activating the hydrophilic part of the amphipathic compound or by using a crosslinking agent or a condensing agent.
【請求項3】両親媒性化合物がリポ多糖(LPS)、疎水
性基を有する天然のポリペプチド若しくは疎水性基を導
入した天然のポリペプチド、疎水性基を有する合成ポリ
ペプチド、又は末端を疎水化した親水性ポリマーである
特許請求の範囲第1項又は第2項記載の固定化法。
3. An amphipathic compound wherein lipopolysaccharide (LPS), a natural polypeptide having a hydrophobic group or a natural polypeptide having a hydrophobic group introduced therein, a synthetic polypeptide having a hydrophobic group, or a hydrophobic end group. The immobilization method according to claim 1 or 2, wherein the immobilization method is a hydrophilic polymer.
JP24274686A 1986-05-20 1986-10-13 Immobilization method Expired - Lifetime JPH07107535B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP24274686A JPH07107535B2 (en) 1986-10-13 1986-10-13 Immobilization method
US07/051,349 US4861597A (en) 1986-05-20 1987-05-19 Novel functionallized liposomes and a process for production thereof
EP87107259A EP0247497B1 (en) 1986-05-20 1987-05-19 Novel functionalized liposomes and a process for production thereof
DE8787107259T DE3776966D1 (en) 1986-05-20 1987-05-19 FUNCTIONAL GROUPS OF LIPOSOME AND METHOD FOR THE PRODUCTION THEREOF.
ES198787107259T ES2032776T3 (en) 1986-05-20 1987-05-19 NEW LIPOSOMES FUNCTIONALIZED AND A PROCEDURE FOR THEIR PRODUCTION.
AT87107259T ATE72973T1 (en) 1986-05-20 1987-05-19 LIPOSOMES CARRYING FUNCTIONAL GROUPS AND PROCESSES FOR THEIR PRODUCTION.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24274686A JPH07107535B2 (en) 1986-10-13 1986-10-13 Immobilization method

Publications (2)

Publication Number Publication Date
JPS6396560A JPS6396560A (en) 1988-04-27
JPH07107535B2 true JPH07107535B2 (en) 1995-11-15

Family

ID=17093643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24274686A Expired - Lifetime JPH07107535B2 (en) 1986-05-20 1986-10-13 Immobilization method

Country Status (1)

Country Link
JP (1) JPH07107535B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992004887A1 (en) * 1990-09-25 1992-04-02 Kyowa Hakko Kogyo Co., Ltd. Induction of cytotoxic t cell

Also Published As

Publication number Publication date
JPS6396560A (en) 1988-04-27

Similar Documents

Publication Publication Date Title
US4861597A (en) Novel functionallized liposomes and a process for production thereof
US4762915A (en) Protein-liposome conjugates
AU551950B2 (en) Immunoassay products and methods
US4483929A (en) Liposomes with glycolipid-linked antibodies
US4704355A (en) Assay utilizing ATP encapsulated within liposome particles
EP0932830B1 (en) Fluorescent energy transfer ligand interaction assay on a lipid film
EP0036277B1 (en) Covalently bonded liposome-protein-compositions and method of producing them
WO1986004232A1 (en) Liposome composition and method
JPH06100601B2 (en) Immunological analysis reagent and analysis method using the same
US5210040A (en) Process for coupling antibodies or antibody fragments to liposomes
EP0524804B1 (en) Surface modified liposomes
JPH0355790B2 (en)
JP2539807B2 (en) Test substance extraction method
JPH07107535B2 (en) Immobilization method
JP2527434B2 (en) Liquid for measurement Single reagent
US4971916A (en) Liposome based homogeneous immunoassay for diagnostic tests
JP2577930B2 (en) A new method for measuring anti-streptolysin O
KR19980703763A (en) Picobilisomes, derivatives and uses thereof
JPS60159652A (en) Reagent for immunological analysis
JPS63107742A (en) Novel functional liposome and its preparation
EP0301333A2 (en) Liposome based homogeneous immunoassay for diagnostic tests
JPH0829422A (en) Detecting method by using fluorescent aggregate
JP3239456B2 (en) Method for dissolving liposome membrane and immunoassay using the same
JP2652881B2 (en) Immunoassay method
JP4250704B2 (en) Dry immunoassay reagent