JPS639638A - Air intake device of engine - Google Patents

Air intake device of engine

Info

Publication number
JPS639638A
JPS639638A JP61154701A JP15470186A JPS639638A JP S639638 A JPS639638 A JP S639638A JP 61154701 A JP61154701 A JP 61154701A JP 15470186 A JP15470186 A JP 15470186A JP S639638 A JPS639638 A JP S639638A
Authority
JP
Japan
Prior art keywords
passage
lubricating oil
intake
under
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61154701A
Other languages
Japanese (ja)
Inventor
Koji Yoshimi
吉見 弘司
Takuo Shigemura
重村 拓郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP61154701A priority Critical patent/JPS639638A/en
Publication of JPS639638A publication Critical patent/JPS639638A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/04Charge admission or combustion-gas discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B2053/005Wankel engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To improve the lubrication performance of a gas sealed sliding contact face in a combustion chamber by opening a lubricating oil passage to a flow back passage, in a engine in which, under a low load, intake air in a combustion chamber under a compression stroke flows back to a combustion chamber of the other cylinder under an intake stroke through the flow pack passage. CONSTITUTION:A rotary type control valve 14, which opened fully under a low load is provided in a connecting passage 13 which is a flow back passage connecting together respective operation chambers 12f, 12r of 2 cylinders F, R of a 2-cylinder rotary engine. With this, it is made possible to allow the intake air in the operation chamber under a compression stroke to flow back to the operation chamber of the other cylinder under an intake stroke, under low load condition. In this case, an oil supply port 38 is opened to the connecting passage 13 for making it possible to lead-in the lubricating oil from a metering oil pump 30 to this oil supply port 38 through a switching valve 33 and lubricating oil passage 35. This switching valve 33 is controlled to be switched to the open side of the lubricating oil passage 35 by a lubricating oil control circuit 45 when the control valve 14 is detected to be in open condition by a opening sensor 44.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、エンジンの吸気装置に関するものである。[Detailed description of the invention] [Industrial application fields] The present invention relates to an intake system for an engine.

[従来技術] オツトーサイクルエンジンにおいて、いわゆるポンピン
グ損失を減少させるという見地から、吸気通路に連通ず
る吸気ポートとは独立した還流ポートを各気筒の燃焼室
に開口させるとともに、各還流ポートを複数気筒にわた
って連通ずる還流通路を設け、各還流ポートは吸気ポー
トが閉じろタイミングより遅れて閉じるようにした吸気
方式が提案されている(例えば、特開昭58−1223
15号公報、特開昭58−172429号公報参照)。
[Prior art] In an Otto cycle engine, from the standpoint of reducing so-called pumping loss, a recirculation port that is independent of the intake port that communicates with the intake passage is opened into the combustion chamber of each cylinder, and each recirculation port is connected to multiple cylinders. An intake system has been proposed in which a reflux passage is provided that communicates with the entire reflux port, and each reflux port closes later than the closing timing of the intake port.
(See Japanese Patent Application Laid-Open No. 172429/1982).

このいわゆる還流ポートの遅閉じ方式は、とくにエンジ
ンの低負荷時において、圧縮行程の初期に燃焼室の吸気
を還流通路を介して吸気行程にある他の気筒の燃焼室内
に還流させることができるので、吸気行程におけるボン
ピング損失を低減することができるという利点がある。
This so-called late closing method of the recirculation port allows intake air from the combustion chamber to be recirculated into the combustion chambers of other cylinders in the intake stroke through the recirculation passage at the beginning of the compression stroke, especially when the engine is under low load. , there is an advantage that the pumping loss in the intake stroke can be reduced.

ところで一方、燃焼室内のガスシールの耐摩耗性および
燃焼室の気密性を向上させるためにガスシール摺動面の
潤滑が行なわれるが、この種の潤滑方式の一つとしてガ
スシール摺動面を均一に潤滑するため潤滑油を吸気通路
内または気化器内で燃料と混合して燃焼室内に供給する
いわゆる混気給油方式が知られている。
On the other hand, gas seal sliding surfaces are lubricated to improve the wear resistance of the gas seals in the combustion chamber and the airtightness of the combustion chamber. In order to provide uniform lubrication, a so-called mixed fuel supply system is known in which lubricating oil is mixed with fuel in an intake passage or a carburetor and then supplied into a combustion chamber.

ところが、前記の還流ポートの遅閉じ方式を採用したエ
ンジンにおいては、還流通路が開状態となるエンジンの
低負荷時、とくに軽負荷時には還流通路を通して混合気
がやりとりされることになり、吸気通路を通過する吸気
の流速が非常に小さくなるため、潤滑油と燃料の混合が
十分に行なわれなくなり、よって潤滑効率が低下すると
いう問題点がある。
However, in engines that employ the above-mentioned slow-closing method of the recirculation port, when the recirculation passage is open and the engine is at low load, especially at light loads, the air-fuel mixture is exchanged through the recirculation passage, and the intake passage is closed. Since the flow velocity of the passing intake air becomes very low, there is a problem in that the lubricating oil and fuel are not sufficiently mixed, resulting in a decrease in lubrication efficiency.

[発明の目的コ 本発明は、還流ポートの遅閉じ方式を採用したエンジン
において、上記のような問題点を解決し、混気給油によ
るガスシール摺動面の潤滑効率を高めることを目的とす
る。
[Purpose of the Invention] The purpose of the present invention is to solve the above-mentioned problems in an engine that employs a slow closing method for the recirculation port, and to improve the lubrication efficiency of gas seal sliding surfaces by air-fuel mixture refueling. .

[発明の構成] このため、本発明においては、吸気ポートとは独立し、
該吸気ポートより遅れて閉じる還流ポートと、複数気筒
の還流ポートを連通ずる還流通路とを備え、低負荷時、
圧縮行程中の燃焼室内の吸気を上記還流通路を介して他
の気筒の吸気行程中の燃焼室内に還流させるようにした
エンジンにおいて、該還流通路に、燃焼室内の潤滑を行
なう潤滑油通路を開口させたことを特徴とするエンジン
の吸気装置を提供するものである。
[Configuration of the Invention] Therefore, in the present invention, independent of the intake port,
Equipped with a reflux port that closes later than the intake port and a reflux passage that connects the reflux ports of multiple cylinders, during low load,
In an engine in which intake air in a combustion chamber during a compression stroke is recirculated through the recirculation passage into a combustion chamber during an intake stroke of another cylinder, a lubricating oil passage for lubricating the inside of the combustion chamber is opened in the recirculation passage. The present invention provides an engine intake device characterized by the following features.

なお、本発明にいう “燃焼室”は、ロータリピストン
エンジンにおいては作動室を意味する。
Note that the "combustion chamber" as used in the present invention means a working chamber in a rotary piston engine.

[発明の効果] 本発明によれば、低負荷時においモ還流通路が開状態に
あるときには、潤滑油が還流通路を流れる流速の大きな
混合気中に噴射されるため、潤滑油と燃料の混合が促進
され燃焼室内のガスシール摺動面の均一な潤滑ができ潤
滑効率を向上させることができる。さらに還流通路が閉
状態にあるときには、制御弁回りに残留する潤滑油によ
り制御弁のシール性を向上させる効果も得られる。
[Effects of the Invention] According to the present invention, when the oil return passage is open during low load, the lubricating oil is injected into the air-fuel mixture flowing through the return passage at a high flow rate, so that the mixture of lubricating oil and fuel is reduced. This promotes uniform lubrication of the sliding surfaces of the gas seals in the combustion chamber, and improves lubrication efficiency. Furthermore, when the recirculation passage is in a closed state, the lubricating oil remaining around the control valve also has the effect of improving the sealing performance of the control valve.

[実施例] 以下、2気筒ロークリピストンエンジンについて、本発
明の実施例を添付の図面を参照しながら、具体的に説明
するが、本発明はこれに限定されるものではなく、3気
筒以上のロータリピストンエンジン、さらに2気筒以上
のレシプロエンジンにも適用できることはもちろんであ
る。
[Example] Hereinafter, an example of the present invention will be specifically described with reference to the attached drawings regarding a two-cylinder low-repetition piston engine. However, the present invention is not limited thereto, and Of course, the present invention can also be applied to rotary piston engines, as well as reciprocating engines with two or more cylinders.

第1図に2気筒ロータリピストンエンジンを図式的に示
すように、ロークリピストンエンジンEは、フロント、
リヤ2つの気筒F、Rで構成され、これらフロント、リ
ヤの気筒F、Rを隔てる中間ハウジングlの両側面1f
、lrには、それぞれ1次吸気ポート2(2rが開口さ
れる一方、各外壁を構成する各サイドハウジング3.4
の内側面31゜41には、2次吸気ポート5f、5rが
開口されている。
As shown schematically in Fig. 1, the two-cylinder rotary piston engine E has a front
Both sides 1f of the intermediate housing l, which is composed of two rear cylinders F and R, and separates these front and rear cylinders F and R.
, lr, the primary intake ports 2 (2r) are opened, and each side housing 3.4 forming each outer wall is opened.
Secondary intake ports 5f and 5r are opened on the inner surface 31°41 of the cylinder.

そしてよく知られているように、各気筒F、Rのロータ
6f、6rは、各頂辺をロータハウジング7f、7rの
トロコイド内周面に摺接させつつ遊星回転運動を行なっ
て、吸入、圧縮、爆発、燃焼。
As is well known, the rotors 6f and 6r of each cylinder F and R perform a planetary rotational motion while sliding their top sides on the trochoid inner peripheral surfaces of the rotor housings 7f and 7r to perform suction and compression. , explosion, combustion.

排気の各行程を連続的に繰返す。Repeat each exhaust stroke continuously.

上記各1次吸気ポート:H,2rは、1次吸気通路8の
集合部8Cから分岐した各分岐1次吸気通路8「、8r
に連通され、1次吸気通路8の集合部8Cの上流には、
アクセルペダル16の踏み込みに応じて開閉される1次
スロットル弁9が介設されている。また、上記各2次吸
気ポート5f、  5rは、2次吸気通路10の集合部
10cから分岐した各分岐2次吸気通路10「、10r
に連通され、2次吸気通路10の集合部10cの上流に
は、1次スロットル弁9が設定開度以上に開かれるとこ
れに連動してリンク機構17を介°して開かれる2次ス
ロットル弁11が介設されている。
Each of the above primary intake ports: H, 2r represents each branch primary intake passage 8', 8r branched from the gathering part 8C of the primary intake passage 8.
, and upstream of the collecting portion 8C of the primary intake passage 8,
A primary throttle valve 9 that opens and closes in response to depression of the accelerator pedal 16 is provided. Further, each of the secondary intake ports 5f and 5r is connected to each branched secondary intake passage 10', 10r branched from the gathering part 10c of the secondary intake passage 10.
A secondary throttle valve is connected to the primary throttle valve 9 and is opened via a link mechanism 17 when the primary throttle valve 9 is opened beyond the set opening degree. A valve 11 is provided.

第1図に示すように、上記中間ハウジング1には、その
厚み方向に貫通してフロント、リヤ2つの気筒F、Rの
作動室12f、12rを連通する還流通路ないし連通路
13(以下単に連通路13という)を設け、この連通路
I3には、これを開閉するロータリ式の制御弁14を介
設している。該制御弁14は燃料制御回路18によって
1次スロットル弁9のスロットル開度が設定開度以下の
低負荷時には、図示していないアクチュエータによって
全開となり、一方、スロットル開度が設定開度より大き
くなると全開となるようにされている。
As shown in FIG. 1, the intermediate housing 1 has a reflux passage or a communication passage 13 (hereinafter simply a communication passage) that passes through the intermediate housing 1 in its thickness direction and communicates the working chambers 12f and 12r of the two front and rear cylinders F and R. A rotary control valve 14 for opening and closing the communication passage I3 is provided in the communication passage I3. The control valve 14 is fully opened by an actuator (not shown) when the throttle opening of the primary throttle valve 9 is lower than the set opening by the fuel control circuit 18 during low load, and on the other hand, when the throttle opening is larger than the set opening. It is designed to be fully opened.

第2図にフロント側の気筒Fについて示すように、上記
連通路13は、そのフロント側開口13fの位置が、吸
気ポート2fよりもロータ6fの回転方向にみてリーデ
ィング側に設定されている。
As shown in FIG. 2 for the front cylinder F, the front opening 13f of the communication passage 13 is set on the leading side of the intake port 2f when viewed in the rotational direction of the rotor 6f.

第1図において、制御弁14が閉じているときには、連
通路I3を有しない普通のロータリピストンエンジンと
同様な状態で運転される。
In FIG. 1, when the control valve 14 is closed, the engine operates in the same manner as a normal rotary piston engine without the communication passage I3.

これに対して、制御弁14が開いている場合には、連通
路13は次のように作用する。すなわち、フロント側作
動室12fの吸気行程の終期から圧縮行程の前段にかけ
ては、位相差によりリヤ側作動室12rは吸気行程の前
段にある。従って、フロント側作動室+2f内の圧力は
、リヤ側作動室12rの圧力よりも高くなっている。こ
の間、フロント側連通ポート13fとリヤ側連通ポート
13rはともに開いており、連通路13は連通状建にあ
るため、フロント側作動室+2f内の吸気はリヤ側作動
室12rに流入する。これによって、フロント側作動室
12f内の圧力上昇は小さくなるとともにリヤ側作動室
12r内の減圧も小さくなる。このためボンピング損失
は減少する。その後、リヤ側作動室12rが吸気行程の
終期に至った時点から圧縮行程の前段にかけては、位相
差によりフロント側作動室12fは吸気行程の前段にあ
る。従って、リヤ側作動室12r内の圧力はフロント側
作動室12r内の圧力よりも高くなっている。この間、
リヤ側連通ポート13rとフロント側連通ポート13f
はともに開いており、連通路13は連通状態にあるため
、リヤ側作動室12r内の吸気はフロント側作動室12
fに流入する。
On the other hand, when the control valve 14 is open, the communication passage 13 acts as follows. That is, from the end of the intake stroke of the front side working chamber 12f to the front stage of the compression stroke, the rear side working chamber 12r is located at the front stage of the intake stroke due to the phase difference. Therefore, the pressure in the front working chamber +2f is higher than the pressure in the rear working chamber 12r. During this time, both the front side communication port 13f and the rear side communication port 13r are open, and since the communication passage 13 is in a communicating configuration, the intake air in the front side working chamber +2f flows into the rear side working chamber 12r. As a result, the pressure increase in the front working chamber 12f becomes smaller, and the pressure decrease in the rear working chamber 12r also becomes smaller. Therefore, the pumping loss is reduced. Thereafter, from the time when the rear side working chamber 12r reaches the end of the intake stroke to the front stage of the compression stroke, the front side working chamber 12f is located at the front stage of the intake stroke due to the phase difference. Therefore, the pressure in the rear working chamber 12r is higher than the pressure in the front working chamber 12r. During this time,
Rear side communication port 13r and front side communication port 13f
are both open and the communication passage 13 is in communication, so the intake air in the rear working chamber 12r flows into the front working chamber 12.
flows into f.

これによってリヤ側作動室12r内の圧力上昇は小さく
なるとともにフロント側作動室12f内の減圧も小さく
なる。このためボンピング損失は減少する。以下、フロ
ント側作動室121’とリヤ側作動室12rの間でこの
ような作用が繰り返される。
As a result, the pressure increase in the rear working chamber 12r becomes smaller, and the pressure decrease in the front working chamber 12f also becomes smaller. Therefore, the pumping loss is reduced. Thereafter, such an action is repeated between the front side working chamber 121' and the rear side working chamber 12r.

第3図は、本発明にかかる連通路I3内に潤滑油を供給
できるようにした吸気装置を備えた2気筒ロータリピス
トンエンジンシステムを示している。ガスシール摺動面
の潤滑は、シールの耐摩耗性を向上させるとともにガス
シールの気密性を向上させる働きをする。本実施例では
、潤滑油を吸気と混合して作動室へ供給する混気給油方
式に加えて、潤滑油を直接作動室へ供給するダイレクト
給油方式も併用している。
FIG. 3 shows a two-cylinder rotary piston engine system equipped with an intake device capable of supplying lubricating oil into the communication passage I3 according to the present invention. Lubrication of the sliding surface of the gas seal serves to improve the wear resistance of the seal as well as the airtightness of the gas seal. In this embodiment, in addition to the mixture oil supply method in which lubricating oil is mixed with intake air and supplied to the working chamber, a direct oil supply method is also used in which lubricating oil is directly supplied to the working chamber.

第3図に示すように上記システムは、潤滑油を吐出する
ためのメタリングオイルポンプ3o、制御弁14の開閉
に対応して混気給油される潤滑油の供給経路を切り替え
るための切替弁33、吸気通路を通して混気給油を行う
ためにフロント、リヤの各分岐1次吸気通路8f、8r
にそれぞれ開口している給油ポート3’N、37r、連
通路13を通して混気給油を行うために連通路13に開
口している給油ポート38、作動室へダイレクト給油を
行うためにフロント、リヤの各作動室12f。
As shown in FIG. 3, the above system includes a metering oil pump 3o for discharging lubricating oil, and a switching valve 33 for switching the supply route of lubricating oil supplied with mixed air in response to the opening and closing of the control valve 14. , front and rear branch primary intake passages 8f and 8r to supply air-fuel mixture through the intake passage.
Refueling ports 3'N and 37r are open to the respective parts, refueling ports 38 are opened to the communication passage 13 for supplying air-fuel mixture through the communication passage 13, and front and rear oil supply ports are open for direct oil supply to the working chamber. Each working chamber 12f.

12rにそれぞれ開口しているダイレクト給油ポート3
6r、36r、および複数の潤滑油通路31゜31f、
31r、32,34.34(34r、35を備えている
Direct oil supply ports 3 each open to 12r
6r, 36r, and multiple lubricating oil passages 31°31f,
31r, 32, 34.34 (34r, 35 are provided.

第4図は制御弁14近傍の拡大平面断面図であり、第5
図は第4図のA−A線断面図である。これらの図jこ示
すように制御弁14内には、円形膚断面の半径方向内向
きに制御弁14の貫通孔41に開口している内側開口4
0と、半径方向外向きに開口しており給油ポート38と
接続できるようになっている外側開口42の間を連通ず
る給油孔39が穿設されている。
FIG. 4 is an enlarged plan sectional view of the vicinity of the control valve 14, and FIG.
The figure is a sectional view taken along the line A--A in FIG. 4. As shown in these figures, there is an inner opening 4 in the control valve 14 that opens radially inward in the circular skin cross section into the through hole 41 of the control valve 14.
0 and an outer opening 42 that opens radially outward and can be connected to the oil supply port 38.

第3図において、メタリングオイルポンプ3゜は、ガス
シール摺動面の潤滑を行うための潤滑油を、エンジンの
回転数と負荷に応じて計量し供給するポンプであって、
一般的にはプランジャポンプが用いられ図示していない
エキセントリックシャフトによって回転が与えられると
ともにストロークは調節可能となっている。切替弁33
は制御弁14に対して設けた制御弁開度センサ44によ
って検出される制御弁14の開閉状態を入力として、潤
滑油の制御回路45(第3図参照)によって制御弁14
が開状態にあるときは潤滑油通路32と潤滑油通路35
が接続され、制御弁I4が開状態にあるときは潤滑油通
路32と潤滑油通路34が接続されるように作動する三
方弁である。
In FIG. 3, the metering oil pump 3° is a pump that measures and supplies lubricating oil for lubricating the gas seal sliding surface according to the engine speed and load,
Generally, a plunger pump is used, and rotation is provided by an eccentric shaft (not shown), and the stroke is adjustable. Switching valve 33
The control valve 14 is controlled by the lubricating oil control circuit 45 (see FIG. 3) using the open/closed state of the control valve 14 detected by the control valve opening sensor 44 provided for the control valve 14 as input.
is in the open state, the lubricating oil passage 32 and the lubricating oil passage 35
It is a three-way valve that operates so that the lubricating oil passage 32 and the lubricating oil passage 34 are connected when the control valve I4 is in the open state.

上記潤滑油供給ノステムの運転方法について具体的に説
明する。
A method of operating the lubricating oil supply nostem will be specifically explained.

第3図において、メタリングオイルポンプ30には、ダ
イレクト給油するための給油系統と混気給油するための
給油系統が独立して接続されており、メタリングオイル
ポンプ30から吐出された潤滑油は、上記の2系統に分
割して作動室12r。
In FIG. 3, a lubrication system for direct lubrication and a lubrication system for mixed lubrication are independently connected to the metering oil pump 30, and the lubricating oil discharged from the metering oil pump 30 is , the working chamber 12r is divided into the two systems mentioned above.

12rに供給される。ダイレクト給油される潤滑油は、
メタリングオイルポンプ30から潤滑油通路31を通し
て分岐部31cに至り、ここからフロント側作動室12
fへは潤滑油通路31fを通してダイレクト給油ポート
36f経由で給油され、一方リャ側作動室12rへは潤
滑油通路31rを通してダイレクト給油ポート36r経
由で給油される。
12r. Lubricating oil that is directly supplied is
The metering oil pump 30 passes through the lubricating oil passage 31 to the branch part 31c, and from there the front working chamber 12
The rear working chamber 12r is supplied with oil through the direct oil supply port 36f through the lubricating oil passage 31r.

これに対して、混気給油される潤滑油は、低負荷時にお
いて制御弁14が開いており、連通路13が開状態にあ
るときには、切替弁33は潤滑油制御回路45によって
潤滑油通路32と潤滑油通路35が接続するようにセッ
トされるので、潤滑油通路32から切替弁33を経由し
て潤滑油通路35を通して給油ポート38に至り、さら
に第4図に示す制御弁14内の給油孔39を通して内側
開口40から貫通孔41を通過する混合気中に吐出され
る。逆に制御弁14が閉じており連通路13が閉状態に
あるときには、切替弁33は潤滑油制御回路45によっ
て潤滑油通路32と潤滑油通路34が接続するようにセ
ットされ、潤滑油は潤滑油通路32から切替弁33を経
由して潤滑油通路34を通して分岐部34cに至り、こ
こからフロント側1次吸気通路8fへは潤滑油通路34
「を通して給油ポート37fから吸気通路8r内を通過
する吸気中に吐出され、一方すャ側I次吸気通路8rへ
は潤滑油通路34rを通して給油ポート37rから1次
吸気通路8r内を通過する吸気内に吐出される。
On the other hand, when the control valve 14 is open at low load and the communication passage 13 is in the open state, the lubricating oil supplied with mixed air is controlled by the lubricating oil control circuit 45 to Since the lubricating oil passage 32 is connected to the lubricating oil passage 35 via the switching valve 33 and the lubricating oil passage 35 to the lubricating oil port 38, the oil supply in the control valve 14 shown in FIG. The mixture is discharged through the hole 39 from the inner opening 40 into the air-fuel mixture passing through the through hole 41 . Conversely, when the control valve 14 is closed and the communication passage 13 is in the closed state, the switching valve 33 is set by the lubricating oil control circuit 45 so that the lubricating oil passage 32 and the lubricating oil passage 34 are connected, and the lubricating oil is lubricated. The oil passage 32 passes through the switching valve 33 and the lubricating oil passage 34 to reach the branching part 34c, and from there the lubricating oil passage 34 goes to the front side primary intake passage 8f.
It is discharged into the intake air passing through the intake passage 8r from the oil supply port 37f through the lubricating oil passage 34r, and the intake air passing through the primary intake passage 8r from the oil supply port 37r through the lubricating oil passage 34r. is discharged.

エンジンの低負荷時において、制御弁14が開き連通路
13が開状態になったときには、フロント、リヤの各分
岐1次吸気通路8f、 8rを通過する吸気の流速は非
常に小さくなる。したがって、たとえこのような吸気中
に潤滑油を吐出しても、潤滑油と燃料の十分な混合が行
なわれず、有効な混気給油が行なわれない。しかし、こ
のとき連通路13には、エンジンのサイクルの進行に応
じて、圧縮行程中の作動室内から他方の気筒の吸気行程
中の作動室内へ圧力によって大きな流速で混合気が通過
する。したがって、本発明では、連通路13が開状態に
ある場合には、潤滑油をこのような流速の大きな還流銀
白に吐出することによって潤滑油と燃料の十分な混合を
行なわせガスシール摺動面の潤滑効率が向上するように
している。
When the engine is under low load and the control valve 14 is opened to open the communication passage 13, the flow velocity of the intake air passing through the front and rear branched primary intake passages 8f and 8r becomes extremely small. Therefore, even if lubricating oil is discharged into such intake air, the lubricating oil and fuel will not be sufficiently mixed, and effective air-fuel mixture supply will not be performed. However, at this time, as the engine cycle progresses, the air-fuel mixture passes through the communication passage 13 at a high flow rate due to pressure from the working chamber during the compression stroke to the working chamber during the intake stroke of the other cylinder. Therefore, in the present invention, when the communication path 13 is in the open state, the lubricating oil is discharged into the reflux with such a high flow rate, so that the lubricating oil and fuel are sufficiently mixed and the gas seal sliding surface The lubrication efficiency is improved.

一方、エンジンの負荷量が増し制御弁I4が閉じられ連
通路13が閉状態となったときには、フロント、リヤの
各分岐1次吸気通路8f、 8rを通過する吸気の流速
は十分大きくなるため、潤滑油はこのような吸気中に吐
出される。
On the other hand, when the engine load increases and the control valve I4 is closed and the communication passage 13 is closed, the flow velocity of the intake air passing through the front and rear branch primary intake passages 8f and 8r becomes sufficiently large. Lubricating oil is discharged during such intake.

また制御弁14が閉じられたときには連通路13を完全
に遮断する必要がある。ところで、本発明においては、
第4図、第5図に示すとおり制御弁14が開いていると
きに、連通路13に吐出される潤滑油の一部は制御弁1
4の回転摺動面の隙間43内に入り、この潤滑油は制御
弁14が閉じられたときにもその位置に残留する。この
残留する潤滑油は閉弁時制御弁14をシールする効果が
あり、上記の連通路13を完全に遮断する。
Furthermore, when the control valve 14 is closed, the communication path 13 must be completely shut off. By the way, in the present invention,
As shown in FIGS. 4 and 5, when the control valve 14 is open, a portion of the lubricating oil discharged into the communication passage 13 is
The lubricating oil enters the gap 43 of the rotating sliding surface of the control valve 14, and remains there even when the control valve 14 is closed. This remaining lubricating oil has the effect of sealing the control valve 14 when the valve is closed, completely blocking the communication path 13 mentioned above.

以上説明したように、本発明はエンジンの低負荷時にお
ける制御弁14の開弁時のガスシール摺動面の潤滑効率
を向上させるとともに、制御弁14の閉弁時におけるシ
ール性を向上させるものである。
As explained above, the present invention improves the lubrication efficiency of the gas seal sliding surface when the control valve 14 is open when the engine is under low load, and also improves the sealing performance when the control valve 14 is closed. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例にかかるロータリピストンエン
ジンの断面説明図、 第2図は上記ロークリピストンエンジンの側面断面説明
図、 第3図は本発明に係る吸気装置を備えたロークリピスト
ンエンジンの展開説明図、 第4図は制御弁と連通孔及び潤滑油通路の接続状況を示
す上記ロータリピストンエンジンの部分平面断面図、 第5図は第4図のA−A線断面図である。 F、R・・・フロント側1 リヤ側気筒、8・・・1次
吸気通路、   9・・・スロットル弁、IO・・・2
次吸気通路、  13・・・連通路、14・・・制御弁
、  18・・・アクチュエータ、30・・・メタリン
グオイルポンプ、33・・・切替弁。 特 許 出 願 人  マツダ株式会社代 理 人 弁
理士 前出 葆ほか2名高1因 第20 第3囚
FIG. 1 is a sectional explanatory diagram of a rotary piston engine according to an embodiment of the present invention, FIG. 2 is a side sectional explanatory diagram of the rotary piston engine, and FIG. 3 is a rotary piston engine equipped with an intake device according to the present invention. FIG. 4 is a partial plane cross-sectional view of the rotary piston engine showing the connection status of the control valve, communication hole, and lubricating oil passage; FIG. 5 is a cross-sectional view taken along the line A-A in FIG. 4. . F, R...Front side 1 Rear side cylinder, 8...Primary intake passage, 9...Throttle valve, IO...2
Sub-intake passage, 13... Communication passage, 14... Control valve, 18... Actuator, 30... Metering oil pump, 33... Switching valve. Patent applicant: Mazda Motor Corporation representative Patent attorney: Mr. Hajime and 2 others

Claims (1)

【特許請求の範囲】[Claims] (1)吸気ポートとは独立し、該吸気ポートより遅れて
閉じる還流ポートと、複数気筒の還流ポートを連通する
還流通路とを備え、低負荷時、圧縮行程中の燃焼室内の
吸気を上記還流通路を介して他の気筒の吸気行程中の燃
焼室内に還流させるようにしたエンジンにおいて、 該還流通路に、燃焼室内の潤滑を行なう潤滑油通路を開
口させたことを特徴とするエンジンの吸気装置。
(1) Equipped with a reflux port that is independent of the intake port and closes later than the intake port, and a reflux passage that communicates the reflux ports of multiple cylinders, and at low load, the intake air in the combustion chamber during the compression stroke is refluxed. An intake system for an engine in which a lubricating oil passage for lubricating the inside of the combustion chamber is opened in the recirculation passage, in an engine configured to recirculate air into a combustion chamber during an intake stroke of another cylinder through a passage. .
JP61154701A 1986-06-30 1986-06-30 Air intake device of engine Pending JPS639638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61154701A JPS639638A (en) 1986-06-30 1986-06-30 Air intake device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61154701A JPS639638A (en) 1986-06-30 1986-06-30 Air intake device of engine

Publications (1)

Publication Number Publication Date
JPS639638A true JPS639638A (en) 1988-01-16

Family

ID=15590058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61154701A Pending JPS639638A (en) 1986-06-30 1986-06-30 Air intake device of engine

Country Status (1)

Country Link
JP (1) JPS639638A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100319652A1 (en) * 2009-06-18 2010-12-23 Rotary Engine Technologies, Inc. Rotor housing assembly for rotary engine and related devices and methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100319652A1 (en) * 2009-06-18 2010-12-23 Rotary Engine Technologies, Inc. Rotor housing assembly for rotary engine and related devices and methods

Similar Documents

Publication Publication Date Title
EP0587151A1 (en) Supercharged internal combustion engine
EP0469596B1 (en) Multi-cylinder two cycle internal combustion engine
US4756284A (en) Intake system for internal combustion engine
JPS639638A (en) Air intake device of engine
US3958539A (en) Fuel injection type rotary piston engine
JPH06280600A (en) Rotary piston engine
USRE29759E (en) Fuel injection type rotary piston engine
US3901198A (en) Fuel injection type rotary piston engine
US4750458A (en) Intake system for rotary piston engine
JPH0447389Y2 (en)
JPH03264733A (en) Exhaust device of rotary engine
JPS6355324A (en) Intake device of two-cylinder rotary piston engine
JPH03194125A (en) Dilution gas reducing device for rotary piston engine
JPS635562B2 (en)
JPH0346184Y2 (en)
JPH0447388Y2 (en)
JPS6318136A (en) Suction device for rotary piston engine
JPH0128244Y2 (en)
JPS6224768Y2 (en)
JPS639635A (en) Air intake device of rotary piston engine
JPS639637A (en) Rotary piston engine with pumping loss reduction device
JPS62225722A (en) Exhaust gas reflux amount control device for engine
JPH04203323A (en) Air intake device of engine
JPS63179132A (en) Rotary piston engine with pumping loss reducing device
JPH0652046B2 (en) Lubrication device for rotary piston engine