JPS6396247A - Fe-ni-co sealing alloy having superior resistance to cracking by ag solder - Google Patents
Fe-ni-co sealing alloy having superior resistance to cracking by ag solderInfo
- Publication number
- JPS6396247A JPS6396247A JP24049786A JP24049786A JPS6396247A JP S6396247 A JPS6396247 A JP S6396247A JP 24049786 A JP24049786 A JP 24049786A JP 24049786 A JP24049786 A JP 24049786A JP S6396247 A JPS6396247 A JP S6396247A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- solder
- sealing
- cracking
- compsn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 39
- 239000000956 alloy Substances 0.000 title claims abstract description 39
- 238000007789 sealing Methods 0.000 title claims abstract description 26
- 238000005336 cracking Methods 0.000 title claims abstract description 13
- 229910000679 solder Inorganic materials 0.000 title abstract description 12
- 229910017709 Ni Co Inorganic materials 0.000 claims abstract description 17
- 229910003267 Ni-Co Inorganic materials 0.000 claims abstract description 17
- 229910003262 Ni‐Co Inorganic materials 0.000 claims abstract description 17
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 12
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 5
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- 239000011521 glass Substances 0.000 abstract description 10
- 239000000919 ceramic Substances 0.000 abstract description 8
- 229910052796 boron Inorganic materials 0.000 abstract description 7
- 229910052759 nickel Inorganic materials 0.000 abstract description 3
- 230000008595 infiltration Effects 0.000 abstract 1
- 238000001764 infiltration Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 11
- 229910052761 rare earth metal Inorganic materials 0.000 description 8
- 238000005219 brazing Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 5
- 229910000531 Co alloy Inorganic materials 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 229910052735 hafnium Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Joining Of Glass To Other Materials (AREA)
Abstract
Description
【発明の詳細な説明】
利用産業分野
この発明は、硬質ガラスあるいはセラミックスと封着す
るFe−Ni−Co系封着合金の改良に係り、結晶粒の
微細化と耐Agろう割れ性の向上を計ったFe−Ni−
Co系封着合金に関する。[Detailed description of the invention] Industrial field of application The present invention relates to the improvement of a Fe-Ni-Co based sealing alloy that seals with hard glass or ceramics, and improves grain refinement and Ag braze cracking resistance. Measured Fe-Ni-
This invention relates to a Co-based sealing alloy.
背景技術
Fe−Ni−Co系合金は、硬質ガラスあるいはセラミ
ックス封着用合金として、従来より多用されてきた。BACKGROUND ART Fe--Ni--Co alloys have been widely used as alloys for sealing hard glass or ceramics.
このFe−Ni−Co系封着合金は、ガラスとの封着あ
るいはセラミックスとAgろう付けしたのち、種々の金
属部材と溶接やろう付けされて接合される。This Fe--Ni--Co based sealing alloy is sealed with glass or brazed with Ag to ceramics, and then joined to various metal members by welding or brazing.
一般に、Agろう付けはH2ガス雰囲気中にて、800
℃〜900℃の温度で実施されるが、Fe−Ni−Co
合金に引張応力が負荷されたり、該合金に残留引張応力
があると、ろう付けの際に溶融したAgろうがFe−N
i−Co合金の結晶粒界に浸透して割れが発生すること
がある。Generally, Ag brazing is performed in an H2 gas atmosphere at 800%
It is carried out at temperatures between ℃ and 900℃, but Fe-Ni-Co
When tensile stress is applied to the alloy or there is residual tensile stress in the alloy, the molten Ag solder during brazing becomes Fe-N.
Cracks may occur by penetrating the grain boundaries of the i-Co alloy.
このため、一般にAgろう付けする前に、封着合金の部
品表面にNiめっきを施し、Fe−Ni−Co合金とA
gろうとの直接の接触を防止する方法が取られていた。For this reason, generally before Ag brazing, Ni plating is applied to the surface of the sealing alloy parts, and the Fe-Ni-Co alloy and A
Measures were taken to prevent direct contact with the wax.
そのためFe−N1−Co系封着合金のAgろう付は時
の割れを防止する技術として、Fe−Ni−Co系封着
合金に希土類元素等を添加含有させて、組成的に耐Ag
ろう割れ性を改善することが提案(特開昭50−123
514号公ff1)されている。Therefore, Ag brazing of Fe-Ni-Co based sealing alloy is a technique to prevent cracking over time, by adding rare earth elements etc. to the Fe-Ni-Co based sealing alloy to make it compositionally resistant to Ag.
Proposal to improve brazeability (Japanese Patent Application Laid-Open No. 50-123
No. 514 ff1).
上記方法は、CeおよびAIまたはSi添加Fe−Ni
−Co合金において、Agろう前に先ず酸化処理を施し
、その後、機械的または化学的方法により表面の酸化被
膜を除去して封着合金の結晶粒界にAgろうが浸入する
のを防止するものである。The above method uses Ce and AI or Si added Fe-Ni.
-Co alloys are first subjected to oxidation treatment before Ag soldering, and then the oxide film on the surface is removed by mechanical or chemical methods to prevent Ag soldering from penetrating into the grain boundaries of the sealing alloy. It is.
また、特公昭51−2894号公報には、希土類添加F
e−Ni−Co合金において、その添加物の効果により
、Agろう付着時に、Agろうの粒界拡敢深さが抑えら
れるとされている。In addition, in Japanese Patent Publication No. 51-2894, rare earth-added F
In the e-Ni-Co alloy, the effect of the additive is said to suppress the depth of grain boundary expansion of the Ag solder during adhesion of the Ag solder.
発明の目的
この発明は、硬質ガラスあるいはセラミックスと封着す
る従来のFe−Ni−Co系封着合金の耐Agろう割れ
性を組成的に改善することを目的とし、がっ効果の発揮
に特別の処理を要しないFe−Ni−Co系封着合金を
目的としている。Purpose of the Invention The purpose of the present invention is to compositionally improve the Ag braze cracking resistance of conventional Fe-Ni-Co sealing alloys for sealing with hard glass or ceramics. The objective is to create a Fe-Ni-Co based sealing alloy that does not require any treatment.
発明の構成と効果
発明者らは、Fe−Ni−Co系封着合金における耐A
gろう割れ性の向上を組成的に改善することを目的に種
々検討した結果、Fe−Ni−Co系合金に、特定量の
B、あるいはNbを含有させることにより、Fe−Ni
−Co系合金の引張応力下で、溶融Agろうの結晶粒界
への侵入が高速で進行するのを、抑制することができ、
耐Agろう割れ性が著しく改善されることを知見し、こ
の発明を完成したものである。Structure and Effects of the Invention The inventors have discovered that the A-resistant
As a result of various studies aimed at improving the brazing resistance compositionally, we found that by incorporating a specific amount of B or Nb into the Fe-Ni-Co alloy, Fe-Ni
- It is possible to suppress the penetration of molten Ag solder into the grain boundaries at high speed under the tensile stress of the Co-based alloy,
This invention was completed based on the finding that Ag braze cracking resistance was significantly improved.
すなわち、この発明は、
Ni 25 wt%〜35 wt%、Co 13 wt
%〜20wt%、さらに、B 0.001wt%〜0.
015wt%、Nb 0.05wt%〜0.30 wt
%のうち1種を含有し、残部はFe及び不可避的不純物
とからなることを特徴とする耐Agろう割れ性のすぐれ
たFe−Ni−Co系封着合金であり、
また、
Ni 25 wt%〜35 wt%、Co 13 wt
%〜20wt%、B 0.001wt%〜0.015w
t%を含有し、さらに、BとTi、 Zr、 Nb、
RESYのうち少なくとも1種を0.005 wt%〜
0.20 wt%含有し、残部はFe及び不可避的不純
物とからなることを特徴とする耐Agろう割れ性のすぐ
れたFe−Ni−Co系封着合金である。That is, this invention includes Ni 25 wt% to 35 wt%, Co 13 wt%
% to 20 wt%, and further B 0.001 wt% to 0.
015wt%, Nb 0.05wt%~0.30wt
It is a Fe-Ni-Co based sealing alloy with excellent Ag wax cracking resistance, characterized by containing one type of Ni 25 wt%, and the remainder consisting of Fe and unavoidable impurities. ~35 wt%, Co13 wt
%~20wt%, B 0.001wt%~0.015w
t%, and further contains B and Ti, Zr, Nb,
At least one type of RESY from 0.005 wt%
It is a Fe-Ni-Co based sealing alloy with excellent Ag braze cracking resistance, and is characterized by containing 0.20 wt% and the remainder consisting of Fe and unavoidable impurities.
この発明による封着合金は、Fe−Ni−Coの基本組
成に、BあるいはNbを添加すること、さらには、Ti
、 Zr、 Nb、 RE、 Yのうち少なくとも1種
を含有することを特徴とするが、前記組成の他、C0.
05wt%以下、N 50 ppm以下、0100 p
pm以下、S 0.025wt%以下、Mn 1.Ow
t%以下、Si 0.5wt%以下であることが好まし
い。The sealing alloy according to the present invention can be obtained by adding B or Nb to the basic composition of Fe-Ni-Co, and further by adding Ti to the basic composition of Fe-Ni-Co.
, Zr, Nb, RE, and Y. In addition to the above composition, C0.
05 wt% or less, N 50 ppm or less, 0100 p
pm or less, S 0.025wt% or less, Mn 1. Ow
It is preferable that Si is 0.5wt% or less.
成分の限定理由
この発明において、Ni 25 wt%〜35 wt%
、Co 13 wt%〜20wt%とするのは、封着用
合金として、硬質ガラスあるいはセラミックス等との強
固な接合性が要求されるため、被接合材との熱膨張係数
が近似または同一であることが必要であり、上記組成範
囲外では、合金の硬質ガラスあるいはセラミックス等と
の熱膨張係数差が大きくなりすぎ実用性がなくなるため
であり、所要熱膨張係数に応じて、Ni及びCoの含有
量を適宜組合せる必要がある。Reason for limiting the components In this invention, Ni 25 wt% to 35 wt%
, Co 13 wt% to 20 wt% is required as a sealing alloy to have strong bonding properties with hard glass or ceramics, etc., so the coefficient of thermal expansion should be similar or the same as that of the material to be bonded. If the composition is outside the above range, the difference in thermal expansion coefficient between the alloy and hard glass or ceramics will become too large to be practical. It is necessary to combine them appropriately.
Bは、この発明による封着合金の特徴であり、高速で進
行する溶融Agろうの結晶粒界への侵入を抑制する効果
があるが、0.001wt%未満では、上記効果が少な
く、また、0.015wt%を超えると、かかる効果が
飽和し、かつ合金の熱間加工性も劣化するため、0.0
01wt%〜0.015wt%の含有とする。B is a characteristic of the sealing alloy according to the present invention, and has the effect of suppressing the penetration of molten Ag solder that progresses at high speed into the grain boundaries, but if it is less than 0.001 wt%, the above effect is small, and If it exceeds 0.015 wt%, this effect will be saturated and the hot workability of the alloy will also deteriorate;
The content is set to be 0.01 wt% to 0.015 wt%.
Nbは、結晶の微細化とAgろうの結晶粒界への侵入抑
制効果を有し、耐Agろう割れ性の改善に有効であるが
、0.05 wt%未漢の含有ではかかる効果が少なく
、また、0.30 wt%を超えると、かかる効果が飽
和し、かつ合金の加工性も劣化するため、0.05 w
t%〜0.30 wt%の含有とする。Nb has the effect of refining crystals and suppressing the penetration of Ag solder into grain boundaries, and is effective in improving Ag solder cracking resistance, but this effect is small when the content is 0.05 wt%. Moreover, if it exceeds 0.30 wt%, this effect will be saturated and the workability of the alloy will also deteriorate, so 0.05 wt%
The content is t% to 0.30 wt%.
この発明において、Bを特定量含有し、さらに、Ti、
Zr、 Nb、 RE(希土類元素)、Yのうち少な
くとも1種を含有するが、上記元素群は、いずれも合金
の結晶粒を微細化してAgろうの拡散侵入を防止する効
果を有し、かかる効果を得るには少なくとも0.005
wt%の添加が必要となる。In this invention, a specific amount of B is contained, and further Ti,
It contains at least one of Zr, Nb, RE (rare earth element), and Y, and all of the above element groups have the effect of refining the crystal grains of the alloy and preventing the diffusion and invasion of Ag solder. At least 0.005 to be effective
wt% addition is required.
また、上記Ti、 Zr、 Nb、 RE、 Y元素群
の添加上限理由は以下のとおりである。Moreover, the reason for the upper limit of addition of the above Ti, Zr, Nb, RE, and Y element groups is as follows.
Tiは0.20wt%を超えると、酸化膜の性状が変り
、ガラス封着時に支障を来たすため好ましくなく、Zr
は0.20wt%を超えると、熱間加工性を劣化させる
ため好ましくなく、
RE、 Yは、0.20wt%を超えると熱間加工性を
劣化させるため好ましくなく、望ましくは0.10wt
%以下である。If Ti exceeds 0.20 wt%, the properties of the oxide film will change and this will cause problems during glass sealing, which is undesirable.
If it exceeds 0.20 wt%, it is undesirable because it deteriorates hot workability. If RE, Y exceeds 0.20 wt%, it is unfavorable because it deteriorates hot workability, and desirably 0.10 wt%.
% or less.
よって、Ti、 Zr、 Nb、 RE(希土類元素)
、Yは、それぞれ0.005wt%〜0.20 wt%
の範囲の含有とする。Therefore, Ti, Zr, Nb, RE (rare earth element)
, Y are 0.005 wt% to 0.20 wt%, respectively.
The content shall be within the range of .
また、Cは、ガラスあるいはセラミックスとの封着時の
加熱工程において、表面よりガスとして発生し、封着界
面に内包され、封着強度を低下させるため、0.05
wt%以下とするのが好ましい。In addition, C is generated as a gas from the surface during the heating process during sealing with glass or ceramics, is included in the sealing interface, and reduces the sealing strength, so 0.05
It is preferable to set it to less than wt%.
Nは、添加元素のHf、 Zrと結合し、その効果を発
揮させるために、ippm以上含有するのが望ましく、
また、合金内に窒化物を生成して、熱間加工性、冷間加
工性を劣化させるため、50 ppm以下とするのが好
ましい。N is desirably contained in an amount of ippm or more in order to combine with the additive elements Hf and Zr and exhibit its effect.
Further, since nitrides are generated in the alloy and deteriorate hot workability and cold workability, the content is preferably 50 ppm or less.
0は、合金の熱間加工性及び冷間加工性を劣化させ、添
加元素のHf、 Zrを安定化して含有しなくなるため
、100 ppm以下の含有が望ましい。0 deteriorates the hot workability and cold workability of the alloy, and the added elements Hf and Zr are stabilized and no longer contained, so the content is preferably 100 ppm or less.
Sは、0.025wt%を超えると、Mnと結合しない
Sの存在により、熱間加工性を劣化するとともに、添加
元素のHf、 Zrを安定して含有しなくなるため、0
.025wt%以下の含有が望ましい。When S exceeds 0.025 wt%, hot workability deteriorates due to the presence of S that does not combine with Mn, and the additive elements Hf and Zr are no longer stably contained.
.. The content is preferably 0.025 wt% or less.
Mnは、熱間加工性を改善するため添加するが、1.0
wt%を超えると、所要の熱膨張係数が得られなくなる
ため、1.0wt%以下の含有が好ましい。Mn is added to improve hot workability, but 1.0
If it exceeds wt%, the required thermal expansion coefficient cannot be obtained, so the content is preferably 1.0 wt% or less.
Siは、鋼塊中の気泡発生を防止する脱酸元素であり、
ガラス封着に重要な表面酸化膜の密着性を改善する効果
があるため添加するが、0.50 wt%を超えると、
材質的に硬化し、冷間加工性が劣化するため、0.50
wt%以下の含有が望ましい。Si is a deoxidizing element that prevents the generation of bubbles in the steel ingot,
It is added because it has the effect of improving the adhesion of the surface oxide film, which is important for glass sealing, but if it exceeds 0.50 wt%,
0.50 because the material hardens and cold workability deteriorates.
The content is preferably less than wt%.
Feは、NiとCoとで本系合金を形成し、上記種々の
含有元素の残余とする。Fe forms the main alloy with Ni and Co, and is the remainder of the various contained elements mentioned above.
実施、例
第1表に示す組成で誘導型溶解炉にて、5kg鋳塊を製
造し、鋳塊に熱間圧延を施し、800℃の軟化処理後、
冷間圧延し、厚み0.25mmのFe−Ni−Co系合
金板を製造した。Implementation Example A 5 kg ingot was produced in an induction melting furnace with the composition shown in Table 1, and the ingot was hot rolled and softened at 800°C.
A Fe-Ni-Co alloy plate having a thickness of 0.25 mm was produced by cold rolling.
さらに、前記の各種合金板より、厚み0.25mmX幅
5皿×長さ100皿の試験片を切出した。Furthermore, test pieces measuring 0.25 mm in thickness, 5 plates in width, and 100 plates in length were cut out from the various alloy plates described above.
ついで、前記試験片の中央部に、厚み0.05mmX幅
り皿×長さ20mm寸法のAg72%−Cu28%系A
gろう合金板を巻き着け、840℃に保持した水素炉内
で、試験片の一端を固定し、他端に錘にて引張力を加え
、錘荷重を種々変えて、試験片を破断させた。Next, a Ag72%-Cu28% system A having dimensions of 0.05 mm thickness x width plate x length 20 mm was placed in the center of the test piece.
G A brazing alloy plate was wrapped around the test piece, one end of the test piece was fixed in a hydrogen furnace maintained at 840°C, a tensile force was applied to the other end with a weight, and the weight load was varied to cause the test piece to break. .
破断試験において破断までの時間1分、60分に対応す
る荷重(σ1 kgf/mm2 )(σ60 kgf/
mm2 )にて、耐Agろう割れ強度を評価し、その結
果を第2表に示した。In the rupture test, the load corresponding to the time to rupture of 1 minute and 60 minutes (σ1 kgf/mm2) (σ60 kgf/
The Ag braze cracking resistance was evaluated using mm2), and the results are shown in Table 2.
また、水素雰囲気中で850℃で30分間保持した時の
平均結晶粒径を測定し、その結果を第2表に示す。Further, the average crystal grain size was measured when the sample was held at 850° C. for 30 minutes in a hydrogen atmosphere, and the results are shown in Table 2.
第2表の結果から明らかなように、この発明によるFe
−Ni−Co系封着合金は、その平均結晶粒径が微細化
されるとともに、耐Agろう割れ強度が著しく向上して
いることが分る。As is clear from the results in Table 2, Fe
It can be seen that the -Ni-Co based sealing alloy has a finer average grain size and significantly improved Ag braze cracking resistance.
以下余白Margin below
Claims (1)
t%、さらに、B0.001wt%〜0.015wt%
、Nb0.05wt%〜0.30wt%のうち1種を含
有し、 残部はFe及び不可避的不純物とからなることを特徴と
する耐Agろう割れ性のすぐれたFe−Ni−Co系封
着合金。 2 Ni25wt%〜35wt%、Co13wt%〜20w
t%、B0.001wt%〜0.015wt%を含有し
、さらに、Ti、Zr、Nb、RE、Yのうち少なくと
も1種を0.005wt%〜0.20wt%含有し、残
部はFe及び不可避的不純物とからなることを特徴とす
る耐Agろう割れ性のすぐれたFe−Ni−Co系封着
合金。[Claims] 1 Ni 25wt% to 35wt%, Co13wt% to 20w
t%, and further B0.001wt% to 0.015wt%
, 0.05wt% to 0.30wt% of Nb, and the remainder is Fe and unavoidable impurities. . 2 Ni25wt%~35wt%, Co13wt%~20w
t%, B0.001wt% to 0.015wt%, and further contains 0.005wt% to 0.20wt% of at least one of Ti, Zr, Nb, RE, and Y, with the remainder being Fe and unavoidable elements. A Fe-Ni-Co based sealing alloy with excellent Ag braze cracking resistance, characterized by comprising a certain amount of impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24049786A JPS6396247A (en) | 1986-10-09 | 1986-10-09 | Fe-ni-co sealing alloy having superior resistance to cracking by ag solder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24049786A JPS6396247A (en) | 1986-10-09 | 1986-10-09 | Fe-ni-co sealing alloy having superior resistance to cracking by ag solder |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16047390A Division JPH03211256A (en) | 1990-06-18 | 1990-06-18 | Fe-ni-co series sealing alloy having excellent cracking resistance in ag brazing filler metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6396247A true JPS6396247A (en) | 1988-04-27 |
JPH0373615B2 JPH0373615B2 (en) | 1991-11-22 |
Family
ID=17060394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24049786A Granted JPS6396247A (en) | 1986-10-09 | 1986-10-09 | Fe-ni-co sealing alloy having superior resistance to cracking by ag solder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6396247A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS565950A (en) * | 1979-06-27 | 1981-01-22 | Sumitomo Special Metals Co Ltd | Fe-ni-co alloy with superior stress corrosion crack resistance |
-
1986
- 1986-10-09 JP JP24049786A patent/JPS6396247A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS565950A (en) * | 1979-06-27 | 1981-01-22 | Sumitomo Special Metals Co Ltd | Fe-ni-co alloy with superior stress corrosion crack resistance |
Also Published As
Publication number | Publication date |
---|---|
JPH0373615B2 (en) | 1991-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1326143C (en) | Ferritic stainless steel and processing therefore | |
CN110977245B (en) | Process preparation method of nickel-chromium-molybdenum alloy welding wire for ball valve surfacing | |
CA1066922A (en) | Heat-resistant allow for welded structures | |
JPS60248859A (en) | Fin material of plate fin type heat exchanger for ultra-high pressure | |
GB2037322A (en) | Super heat resistant alloys having high ductility at room temperature and high strength at high temperatures | |
JPH11291086A (en) | Submerged arc welding method for high cr ferritic heat resistant steel | |
JPH08150478A (en) | Submerged arc welding method for high strength cr-mo steel and weld metal | |
JPS6396247A (en) | Fe-ni-co sealing alloy having superior resistance to cracking by ag solder | |
JPH0841596A (en) | High aluminum alloy steel excellent in fused carbonate corrosion resistance | |
JPH0561036B2 (en) | ||
JPH03211256A (en) | Fe-ni-co series sealing alloy having excellent cracking resistance in ag brazing filler metal | |
JPS6396246A (en) | Fe-ni-co sealing alloy having superior resistance to cracking by ag solder | |
JP2523677B2 (en) | Low thermal expansion lead frame material | |
JPH0148337B2 (en) | ||
JPS6113912B2 (en) | ||
JP2757118B2 (en) | Fe-Ni-Mn based alloy excellent in hot workability and method for producing the same | |
JPS62224493A (en) | Wire for welding 9cr-2mo steel | |
JPH0627301B2 (en) | High strength low thermal expansion alloy for ceramic bonding | |
JPS6224893A (en) | Low melting point cu-ag alloy brazing filler metal having good wettability | |
JPS648692B2 (en) | ||
JPS60238446A (en) | Alloy for lead frame for ic with superior corrosion resistance | |
JPS60258444A (en) | Heat resistant alloy | |
JPS63149B2 (en) | ||
JPH0237830B2 (en) | 9CRR1MOKOYOSETSUYOWAIYA | |
JP2024016642A (en) | Fe-Ni ALLOY FOR MASK FRAMES, AND MASK FRAME |