JPS6396233A - Steam turbine moving blade and its production - Google Patents

Steam turbine moving blade and its production

Info

Publication number
JPS6396233A
JPS6396233A JP24130086A JP24130086A JPS6396233A JP S6396233 A JPS6396233 A JP S6396233A JP 24130086 A JP24130086 A JP 24130086A JP 24130086 A JP24130086 A JP 24130086A JP S6396233 A JPS6396233 A JP S6396233A
Authority
JP
Japan
Prior art keywords
phase
steam turbine
alloy
rotor blade
moving blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24130086A
Other languages
Japanese (ja)
Inventor
Junshi Shimomura
下村 純志
Ryoichi Kaneko
金子 了市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24130086A priority Critical patent/JPS6396233A/en
Publication of JPS6396233A publication Critical patent/JPS6396233A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a steam turbine moving blade having excellent strength characteristics and showing superior erosion resistance comparable to that of stellite, by precipitating a hard phase in an alpha-phase in the vicinity of a surface, to be in contact with working steam, of a steam turbine moving blade having an alpha+beta structure of a Ti-6Al-4V alloy as base material. CONSTITUTION:A material for a steam turbine moving blade composed of an alpha+beta phase of a Ti-6Al-4V alloy is formed. Subsequently, the surface, of this moving blade, to be in contact with working steam is subjected to dry polishing work, e.g., by dry belt polishing of grain size No.80. In this way, the hard phase 2 is precipitated in the alpha-phase 1', in the vicinity of the polished surface, in the alpha+beta phase 3 constituting the material as illustrated. As a result, the steam turbine moving blade having superior characteristics as mentioned above can easily be manufactured in high quality.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、蒸気タービンのチタン合金動翼に係り、特に
耐エロージヨン性を改良した動翼、及び、その製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a titanium alloy rotor blade for a steam turbine, and particularly to a rotor blade with improved erosion resistance and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来、火力蒸気タービンのチタン合金製動翼の最終段近
傍段落のエロージヨン防止対策については、「原子力火
力発電」31巻9号、「タービンに使用したチタンの経
験」に記載のようにチタンβ合金の動翼への溶射肉盛技
術が公知である。
Conventionally, measures to prevent erosion in the final stage of the titanium alloy rotor blades of thermal power steam turbines have been taken using titanium β alloys, as described in "Nuclear Thermal Power Generation" Vol. 31, No. 9, "Experience with Titanium Used in Turbines". Thermal spray overlay technology for rotor blades is well known.

近年、事業用発電プラントの蒸気タービンにおいては、
効率向上の為に大容量化が進んでいる。
In recent years, in the steam turbines of commercial power generation plants,
Capacity is increasing to improve efficiency.

これに伴って蒸気タービンの大形化が進み、特に蒸気タ
ービンの最終段翼の長翼化が必要となってきている。現
在動翼材料としては、12%Cr1H1が多用されてい
るが、耐遠心強度によって許容回転速度の制約を受け、
その設計しうる限度は、その比重及び強度から遠心力が
翼重量の1号数千倍程度すなわち、3600rpm用で
は翼長が31〜35in程度、又3000rpmでは4
0in程度である。これより長翼では、12%Cr鋼に
代る材料すなわちチタン合金の採用が必要となる。チタ
ン合金は、比強度すなわち強度/密度の比が大であるた
め、12%Crfiに比べ長翼化が図れる。
Along with this, the size of steam turbines has progressed, and in particular, it has become necessary to make the final stage blades of the steam turbine longer. Currently, 12% Cr1H1 is often used as a rotor blade material, but it is limited by the allowable rotation speed due to its centrifugal strength.
The limit that can be designed is that the centrifugal force is approximately several thousand times the weight of the blade due to its specific gravity and strength, that is, the blade length is approximately 31 to 35 inches for 3600 rpm, and 4 inches for 3000 rpm.
It is about 0 inch. For longer blades, it is necessary to use a material instead of 12% Cr steel, that is, a titanium alloy. Since titanium alloy has a high specific strength, that is, a ratio of strength/density, the blade can be made longer than 12% Crfi.

火力用蒸気タービンは、通常、高圧タービン。Steam turbines for thermal power are usually high-pressure turbines.

中圧タービン、低圧タービンにより構成される。It consists of an intermediate pressure turbine and a low pressure turbine.

ボイラで発生した蒸気は、上記各タービンの順に熱エネ
ルギーを運動エネルギーに変換して仕事をするが、その
結果、最終段近傍では蒸気は湿り域に達し、蒸気中には
水滴が存在するようになる。
The steam generated in the boiler converts thermal energy into kinetic energy and performs work in each of the above turbines in order, but as a result, near the final stage, the steam reaches a wet region, and water droplets are present in the steam. Become.

この水滴により、動翼にエロージヨンを生じ最悪の場合
は動翼の破損を生じるに至る。この対策としては、12
%Cr鋼動翼の場合には、動翼先端にGo基合金のステ
ライトを銀ロー付或いは溶接により取付け、エロージョ
ン防止を図っている。
These water droplets cause erosion of the rotor blades, and in the worst case, lead to damage to the rotor blades. As a countermeasure for this, 12
In the case of a %Cr steel rotor blade, Go-based alloy Stellite is attached to the tip of the rotor blade by silver brazing or welding to prevent erosion.

チタン合金翼については、エロージヨン防止対策として
、ステライトに代る密度の小さいチタン系β合金例えば
、T i −15M o −5Z β合金を、チタン合
金の翼に溶射肉盛してエロージョン防止を図っている。
For titanium alloy blades, as a measure to prevent erosion, a low-density titanium-based β alloy instead of Stellite, such as T i -15M o -5Z β alloy, is thermally sprayed overlay on the titanium alloy blade to prevent erosion. There is.

上記のチタン合金のエロージョン防止の技術に関しては
、溶射肉盛を実施することによる動翼の変形、或いは、
肉盛部と動翼との密着が完璧でない場合運転中に接合部
に亀裂を生じるといった弊害が伴う。
Regarding the above-mentioned techniques for preventing erosion of titanium alloys, deformation of the rotor blade by performing thermal spray overlay, or
If the adhesion between the built-up part and the rotor blade is not perfect, there will be problems such as cracks occurring in the joint during operation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述したように、蒸気タービンの長翼化の達成の為には
、その製造性、加工性よりチタン合金の動翼、すなわち
、Ti、−6Al−4V合金が使用される。
As mentioned above, in order to make the blades of a steam turbine longer, titanium alloy rotor blades, that is, Ti, -6Al-4V alloy, are used because of their manufacturability and workability.

第3図は、耐エロージヨン性評価に通常用いられるキャ
ビテーション試験結果と対象材料の硬度との関係を示し
た図表である。Ti−6Al−4v合金は、12%Cr
m合金に比べ耐エロージヨン性は良好であるが、同図に
示されたように従来の12%Crm動翼のエロージヨン
防止材であるステライト(Δ印で示す)に比べてエロー
ジヨンを受は易い。また、チタン合金のエロージョン防
止材である。Ti−15Mo−52r−3An或いはT
 i −15M o −5Z rもステライトに比べ耐
エロージヨン性は劣る。
FIG. 3 is a chart showing the relationship between the results of a cavitation test commonly used to evaluate erosion resistance and the hardness of the target material. Ti-6Al-4v alloy contains 12% Cr
It has better erosion resistance than M alloy, but as shown in the figure, it is more susceptible to erosion than Stellite (indicated by Δ), which is the erosion prevention material for conventional 12% Cr rotor blades. It is also an erosion prevention material for titanium alloys. Ti-15Mo-52r-3An or T
i-15Mo-5Zr also has inferior erosion resistance compared to stellite.

本第3図は耐エロージヨン性と硬度との関係を示したも
のであるが、傾向としては硬度の高いもの程、耐キャビ
テーション性は良好となる。しかし、例えば12%Cr
鋼とTi−6AA−4V合金、或いは、ステライトとβ
合金(Ti−15M。
FIG. 3 shows the relationship between erosion resistance and hardness, and the tendency is that the higher the hardness, the better the cavitation resistance. However, for example, 12%Cr
Steel and Ti-6AA-4V alloy or stellite and β
Alloy (Ti-15M.

−5Zr−3AQ、 Ti−15Mo−5Zr)とを比
較すると、硬度が低くても耐キャビテーション性に優れ
たものがあり、本図に示されたようにβ合金に比べて硬
度の低いステライトが一番耐キャビテーション性が良好
である。
-5Zr-3AQ, Ti-15Mo-5Zr), some have excellent cavitation resistance even if they have low hardness, and as shown in this figure, Stellite, which has lower hardness than β alloy, Excellent cavitation resistance.

従って、チタン合金のキャビテーション防止材としては
、ステライトと同様の耐キヤビテーシヨン機構を持つチ
タン材料の開発が望まれる。
Therefore, as a titanium alloy cavitation prevention material, it is desired to develop a titanium material that has a cavitation resistance mechanism similar to that of stellite.

本発明は上述の事情に鑑みて為されたもので、蒸気ター
ビン動翼として好適な母材強度を有し。
The present invention has been made in view of the above-mentioned circumstances, and has a base material strength suitable for use as a steam turbine rotor blade.

しかも耐エロージヨン性に優れた表層を有する蒸気ター
ビン動翼、及び、その製造方法を提供しようとするもの
である。
Moreover, it is an object of the present invention to provide a steam turbine rotor blade having a surface layer with excellent erosion resistance, and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

蒸気タービン動翼材に使用されるT i −6A Q−
4V合金は、熱処理により種々の組織となる。
Ti-6A Q- used for steam turbine rotor blade material
4V alloy becomes various structures by heat treatment.

通常、第4図に示す製造工程により製作され、その組織
は第2図に示す初析α相及び針状のα+β組織となる。
Usually, it is manufactured by the manufacturing process shown in FIG. 4, and its structure becomes a pro-eutectoid α phase and an acicular α+β structure shown in FIG.

この組織は、蒸気タービン動翼の母材としては、強度靭
性、疲労強度等の点から最良である。耐エロージヨン性
を良好とする為にこの母材の組織は変えないことが望ま
しい。
This structure is the best as a base material for steam turbine rotor blades in terms of strength, toughness, fatigue strength, etc. In order to improve erosion resistance, it is desirable that the structure of this base material is not changed.

こうした要請に応えるべく創作した本発明の蒸気タービ
ン動翼は、Ti−6AI2 4V合金のα+β組織を母
材とした蒸気タービン動翼において、該動翼が作動蒸気
と接する面近傍のα相内に硬化相を析出せしめて耐エロ
ージヨン性に優れた薄層を形成したことを特徴とする。
The steam turbine rotor blade of the present invention, which was created in response to these demands, has a steam turbine rotor blade whose base material is the α+β structure of Ti-6AI2 4V alloy, in which the blade is in the α phase near the surface where the rotor blade contacts the working steam. It is characterized by forming a thin layer with excellent erosion resistance by precipitating a hardened phase.

また、上記の発明に係る動翼を製造するに好適なように
創作した本発明の蒸気タービン動翼製造方法は、先ずT
i−6Al−4V合金のα+β相よりなる蒸気タービン
動翼の素材を構成し、該動翼が作動蒸気と接する面に乾
式研摩加工を施し、素材を構成していたα+β相中の研
摩面に近接するα相中に硬化相を析出せしめることを特
徴とする。
Further, the method for manufacturing a steam turbine rotor blade of the present invention, which has been created to be suitable for manufacturing the rotor blade according to the above-mentioned invention, first
The material of the steam turbine rotor blade is made of the α+β phase of i-6Al-4V alloy, and the surface of the rotor blade that comes into contact with the working steam is dry polished, and the polished surface of the α+β phase that made up the material is It is characterized in that a hardened phase is precipitated in the adjacent α phase.

〔作用〕[Effect]

α+β相の母材は動翼として好適な強度特性を有し、し
かも、析出した硬化層は優れた耐エロージョン性を発揮
する。
The α+β phase base material has strength characteristics suitable for a rotor blade, and the precipitated hardened layer exhibits excellent erosion resistance.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。第1
図は、第4図に示した製造工程によって製作されたTi
−6Al−4V合金の蒸気タービン動翼の表面を粒度8
0番の乾式ベルト研摩により仕上げ研摩した組織を示す
。この組織は、研摩を実施しない(或いは、湿式研摩に
より表面仕上げをした)第2図に示すT i −6A 
Q−4V合金の組織(すなわちα相1とα+β相2とよ
りなる組m>と異なり、α相1中に硬化相2が生じてい
る。この硬化相2の生じた組織の耐エロージヨン性は、
第3図に◎印で示すとおりTi−6Al−4v合金に比
べて著しく向上しており、ステライトに匹敵する。すな
わち、この組織の効果は、ステライトの耐エロージヨン
機構に匹敵しており、チタン系の耐エロージヨン材とし
て有効に働く。
An embodiment of the present invention will be described below with reference to FIG. 1st
The figure shows Ti manufactured by the manufacturing process shown in Figure 4.
- The surface of steam turbine rotor blades made of 6Al-4V alloy has a grain size of 8
The structure is shown after being finished polished by No. 0 dry belt polishing. This structure is similar to the T i -6A shown in FIG. 2 without polishing (or with surface finishing by wet polishing).
Unlike the structure of Q-4V alloy (that is, the set m consisting of α phase 1 and α + β phase 2), a hardened phase 2 is generated in the α phase 1. The erosion resistance of the structure in which this hardened phase 2 is generated is ,
As shown by the mark ◎ in FIG. 3, it is significantly improved compared to the Ti-6Al-4v alloy and comparable to Stellite. That is, the effect of this structure is comparable to the erosion-resistant mechanism of stellite, and it works effectively as a titanium-based erosion-resistant material.

この組織が形成される深度は、ベルト研摩時の押し付は
力、及び研摩時間により、0 、1 m+11位の深度
までは任意に選ぶことが出来る。その為、母材の健全性
を損わずに耐エロージヨンの表面処理を実施することが
できる。
The depth at which this structure is formed can be arbitrarily selected up to a depth of about 0.1 m+11 m, depending on the pressing force during belt polishing and the polishing time. Therefore, erosion-resistant surface treatment can be performed without impairing the integrity of the base material.

〔発明の効果〕〔Effect of the invention〕

本発明の蒸気タービン動翼は、Ti−6AΩ−4v合金
の優れた強度特性を有し、しかもステライトに匹敵する
耐エロージョン性を発揮する。
The steam turbine rotor blade of the present invention has the excellent strength properties of Ti-6AΩ-4v alloy, and exhibits erosion resistance comparable to Stellite.

本発明の方法によれば、上記発明に係る蒸気タービン動
翼を容易に、しかも高品質で製造することが出来る上に
、溶射、溶接などを用いないので母材に対して好ましか
らざる熱影響を及ぼしたり、溶は込み不良を生じたり、
酸化被膜の生成やその巻き込みを生じたりする虞れが無
く、均一な製品品質を保証できる。
According to the method of the present invention, the steam turbine rotor blade according to the above invention can be manufactured easily and with high quality, and since thermal spraying, welding, etc. are not used, there is no undesirable thermal effect on the base material. or cause poor weld penetration,
There is no risk of the formation of an oxide film or its entrainment, and uniform product quality can be guaranteed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はT i −6A Q−4V合金蒸気タービン動
翼素材を乾式ベルトにより研摩した表面付近の組織を示
す検鏡組織図である。 第2図はTi−6Al−4V合金の無処理及び湿式研摩
を実施したタービン動翼材料の検鏡組織図である。 第3図はキャビテーション減量と硬度の関係を示す図表
、第4図は蒸気タービン動翼の製造工程を示すブロック
図である。 1.1′・・・α相、2・・・硬化相、3・・・α+β
相。
FIG. 1 is a microscopic structure diagram showing the structure near the surface of a T i -6A Q-4V alloy steam turbine rotor blade material polished by a dry belt. FIG. 2 is a microscopic microstructure diagram of a turbine rotor blade material made of Ti-6Al-4V alloy and subjected to no treatment and wet polishing. FIG. 3 is a chart showing the relationship between cavitation weight loss and hardness, and FIG. 4 is a block diagram showing the manufacturing process of a steam turbine rotor blade. 1.1'...α phase, 2... hardened phase, 3... α+β
phase.

Claims (1)

【特許請求の範囲】 1、Ti−6Al−4V合金のα+β組織を母材とした
蒸気タービン動翼において、該動翼が作動蒸気と接する
面近傍のα相内に硬化相を析出せしめて耐エロージヨン
性に優れた薄層を形成したことを特徴とする蒸気タービ
ン動翼。 2、Ti−6Al−4V合金のα+β相よりなる蒸気タ
ービン動翼の素材を構成し、該動翼が作動蒸気と接する
面に乾式研摩加工を施し、素材を構成していたα+β相
中の研摩面に近接するα相内に硬化相を析出せしめるこ
とを特徴とする蒸気タービン動翼の製造方法。
[Claims] 1. In a steam turbine rotor blade whose base material is an α+β structure of a Ti-6Al-4V alloy, a hardened phase is precipitated in the α phase near the surface of the rotor blade in contact with the working steam to improve durability. A steam turbine rotor blade characterized by the formation of a thin layer with excellent erosion resistance. 2. The material of the steam turbine rotor blade is made of the α+β phase of Ti-6Al-4V alloy, and the surface of the rotor blade that comes into contact with the working steam is dry polished to polish the α+β phase that made up the material. A method for manufacturing a steam turbine rotor blade, characterized in that a hardened phase is precipitated in an α phase close to a surface.
JP24130086A 1986-10-13 1986-10-13 Steam turbine moving blade and its production Pending JPS6396233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24130086A JPS6396233A (en) 1986-10-13 1986-10-13 Steam turbine moving blade and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24130086A JPS6396233A (en) 1986-10-13 1986-10-13 Steam turbine moving blade and its production

Publications (1)

Publication Number Publication Date
JPS6396233A true JPS6396233A (en) 1988-04-27

Family

ID=17072228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24130086A Pending JPS6396233A (en) 1986-10-13 1986-10-13 Steam turbine moving blade and its production

Country Status (1)

Country Link
JP (1) JPS6396233A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170122235A (en) * 2015-04-17 2017-11-03 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Manufacturing Method of Steam Turbine Rotor and Steam Turbine Rotor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170122235A (en) * 2015-04-17 2017-11-03 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Manufacturing Method of Steam Turbine Rotor and Steam Turbine Rotor
US10378366B2 (en) 2015-04-17 2019-08-13 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine rotor blade and method for manufacturing steam turbine rotor blade

Similar Documents

Publication Publication Date Title
US6049978A (en) Methods for repairing and reclassifying gas turbine engine airfoil parts
US5956845A (en) Method of repairing a turbine engine airfoil part
EP1577422B1 (en) Erosion and wear resistant protective structures for turbine engine components
JP4460252B2 (en) Cobalt-based alloy for coating equipment subject to erosion by liquid, and method of applying and treating the cobalt-based alloy on the surface of equipment
US5183390A (en) Method of forming a trailing edge on a steam turbine blade and the blade made thereby
US20030088980A1 (en) Method for correcting defects in a workpiece
US7043819B1 (en) Methods for forming metal parts having superior surface characteristics
JP2010000540A5 (en)
JP4974106B2 (en) Laser shock induced airfoil twist cancellation
JPS6014091B2 (en) Porous sealing material for high temperatures
JP4310392B2 (en) Method for treating equipment subject to erosion by liquid and erosion-preventing coating alloy
US20120183410A1 (en) Titanium alloy turbine blade
CN109057873B (en) Steam turbine rotor blade and steam turbine
JP6389052B2 (en) Erosion resistant coating system and treatment method thereof
JP6039355B2 (en) Titanium aluminide construction method and product having titanium aluminide surface
US20040018299A1 (en) Method of forming a diffusion coating on the surface of a workpiece
JPS6396233A (en) Steam turbine moving blade and its production
JP2001107833A (en) Hydraulic machine and its manufacturing device
JPS63255357A (en) Turbine moving blade and its production
CN109023347A (en) A kind of isothermal forging mold laser repair method
JPH01318763A (en) Water wheel rotor blade
JPH01219301A (en) Moving blade for steam turbine
JP3057606B2 (en) Method of manufacturing turbine blade made of titanium alloy
JPH01182505A (en) Manufacture of turbine blade
JPS59180004A (en) Moving blade of steam turbine