JPS6395111A - Production of trichlorosilane - Google Patents

Production of trichlorosilane

Info

Publication number
JPS6395111A
JPS6395111A JP24154886A JP24154886A JPS6395111A JP S6395111 A JPS6395111 A JP S6395111A JP 24154886 A JP24154886 A JP 24154886A JP 24154886 A JP24154886 A JP 24154886A JP S6395111 A JPS6395111 A JP S6395111A
Authority
JP
Japan
Prior art keywords
reaction
trichlorosilane
silicon tetrachloride
metal
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24154886A
Other languages
Japanese (ja)
Inventor
Kaoru Inoue
薫 井上
Hiroji Miyagawa
博治 宮川
Masayoshi Ito
正義 伊藤
Kiyougo Koizumi
鏡悟 小泉
Noriyuki Yanagawa
紀行 柳川
Masami Murakami
雅美 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP24154886A priority Critical patent/JPS6395111A/en
Publication of JPS6395111A publication Critical patent/JPS6395111A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To economically carry out conversion of silicon tetrachloride into trichlorosilane in good yield, by converting the silicon tetrachloride into a liquid state and carrying out reaction in the presence of a specific additive in reacting the silicon tetrachloride with metallic silicone and hydrogen to produce the trichlorosilane. CONSTITUTION:Silicon tetrachloride is reacted with metallic silicone and hydrogen or hydrogen and hydrogen chloride to produce trichlorosilane. In the process, the reaction is carried out in the presence of metallic copper, a metal halide and acidic compound. The reaction is particularly preferably carried at 150-400 deg.C temperature. The metallic halide is selected from chlorides, bromides and iodides of Cu, Ti, V, Cr, Mn, Co, Zr, etc. The acidic compound is selected from chlorides, bromides of iodides of Ga, Zr, Hf, Sb, Nb, Ta, Be, etc., and acidic metal oxides or acidic metal sulfides.

Description

【発明の詳細な説明】 産呈上皇剋亙分互 本発明は四塩化ケイ素と水素からトリクロロシランを製
造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing trichlorosilane from silicon tetrachloride and hydrogen.

皿米立五五 近年のエレクトロニクス産業の発展に伴ない多結晶シリ
コン、単結晶シリコン、モノシランガス等の需要は急激
に増大しており今後ますますその需要は増加の一途をた
どることが見込まれている、ここにおいてトリクロロシ
ランは上記シリコン物質の原料として最も大量に利用さ
れているものである0例えば高純度多結晶シリコンはト
リクロロシランの熱分解によって製造されており3現在
全世界での高純度多結晶シリコンの殆どがこの方法で製
造されている。また最近トリクロロシランの不均化反応
によってモノシランが製造される方法が実用化されつつ
あり極めてトリクロロシランの需要は今後その重要性が
増大する。しかしながら、これらの方法においては、ト
リクロロシランが消費されるとともに大量の四塩化ケイ
素が副生する。たとえばトリクロロシランの熱分解によ
る高純度多結晶シリコンの製造においては、トリクロロ
シランの約60%が四塩化ケイ素として副生し、また、
トリクロロシランの不均化によるモノシランの製造にお
いては実質的に半ノシランの3倍モルの四塩化ケイ素が
副生ずる事になる。従ってこの副生じた四塩化ケイ素は
例えばアエロジル等の原料として利用することでトリク
ロロシランの生産コストを低減する方法等が知られてい
るが。
With the development of the electronics industry in recent years, demand for polycrystalline silicon, single crystal silicon, monosilane gas, etc. has increased rapidly, and demand is expected to continue to increase in the future. Here, trichlorosilane is used in the largest quantity as a raw material for the silicon material mentioned above.For example, high-purity polycrystalline silicon is produced by thermal decomposition of trichlorosilane. Most silicon is manufactured using this method. Furthermore, recently, a method for producing monosilane by disproportionation reaction of trichlorosilane has been put into practical use, and the demand for trichlorosilane will become extremely important in the future. However, in these methods, trichlorosilane is consumed and a large amount of silicon tetrachloride is produced as a by-product. For example, in the production of high-purity polycrystalline silicon by thermal decomposition of trichlorosilane, approximately 60% of trichlorosilane is produced as silicon tetrachloride, and
In the production of monosilane by disproportionation of trichlorosilane, substantially three times the mole of silicon tetrachloride as half-nosilane is produced as a by-product. Therefore, a method is known in which the by-produced silicon tetrachloride is used as a raw material for, for example, Aerosil, thereby reducing the production cost of trichlorosilane.

実質上張も優れた四塩化ケイ素の利用方法はこれを再び
トリクロロシランに変換し、上記方法の原料として再利
用することである。例えば四塩化ケイ素をトリクロロシ
ランに変換することによって、トリクロロシランの不均
化によるモノシランの製造は実質的には金属ケイ素と水
素によってモノシランを製造するプロセスに帰着し、こ
のプロセスは最近実用化されつつある。
A method of utilizing silicon tetrachloride, which has excellent substantially tensile properties, is to convert it back into trichlorosilane and reuse it as a raw material for the above-mentioned method. For example, by converting silicon tetrachloride to trichlorosilane, the production of monosilane by disproportionation of trichlorosilane essentially results in a process of producing monosilane with metallic silicon and hydrogen, a process that has recently been put into practical use. be.

従って四塩化ケイ素をトリクロロシランに変換する技術
はきわめて有用であり、特にこれを安価、簡便かつ効率
よく行うことはプロセスの経済上極めて重要である。
Therefore, the technology for converting silicon tetrachloride into trichlorosilane is extremely useful, and in particular, it is extremely important from the economic point of view of the process to be able to do this at low cost, simply, and efficiently.

従来、四塩化ケイ素をトリクロロシランに変換する方法
としては次の方法が知られている。
Conventionally, the following method is known as a method for converting silicon tetrachloride into trichlorosilane.

(1)四塩化ケイ素と水素を1000”C前後またそれ
以上の温度で反応させトリクロロシランを製造する方法
(1) A method for producing trichlorosilane by reacting silicon tetrachloride and hydrogen at a temperature of around 1000"C or higher.

(2)四塩化ケイ素水素および金属ケイ素をsoo ’
c付近で反応させトリクロロシランを製造する方法。
(2) Silicon hydrogen tetrachloride and metallic silicon soo'
A method for producing trichlorosilane by reacting near c.

(3)四塩化ケイ素、水素、金属ケイ素及び塩化水素を
500℃付近で反応させトリクロロシランを製造する方
法。
(3) A method of producing trichlorosilane by reacting silicon tetrachloride, hydrogen, metallic silicon, and hydrogen chloride at around 500°C.

(1)の方法に関してはたとえば特開昭57−3711
号においては1100−1600℃で水素および四塩化
ケイ素を上記温度の発熱体に吹き付ける方法でトリクロ
ロシランが60%の収率で得られている。また特開昭5
7−156318号では第一段目で900℃の温度にお
いて水素と四塩化ケイ素をモル比H2/5tCIa・2
で反応させ25%の収率でトリクロロシランを得ている
。また特開昭59−45920号においてはプラズマ中
で四塩化ケイ素と水素を反応させてトリクロロシランを
得ている。また特開昭60−81010号においては1
200−1400℃の温度範囲で四塩化ケイ素と水素を
反応させて約30%、の収率でトリクロロシランを得て
いる。
Regarding the method (1), for example, Japanese Patent Application Laid-Open No. 57-3711
In No. 1, trichlorosilane was obtained in a yield of 60% by spraying hydrogen and silicon tetrachloride onto a heating element at 1100-1600°C. Also, JP-A-5
No. 7-156318, in the first stage, hydrogen and silicon tetrachloride were mixed at a molar ratio of H2/5tCIa・2 at a temperature of 900°C.
Trichlorosilane was obtained with a yield of 25%. Furthermore, in JP-A-59-45920, trichlorosilane is obtained by reacting silicon tetrachloride with hydrogen in plasma. In addition, in Japanese Patent Application Laid-Open No. 60-81010, 1
Silicon tetrachloride and hydrogen are reacted in a temperature range of 200-1400°C to obtain trichlorosilane with a yield of about 30%.

(2)の方法は(1)の方法に比較して比較的低温で反
応が進行し、エネルギー的に有利な方法であると云える
。また(2)の方法でさらに有効に反応を進行させるた
めに塩化水素ガスを使用する(3)の方法も当然のこと
ながら同様な特長を存している。(2)及び(3)の方
法に関しては触媒を用いることが有効であり銅化合物ま
たは金属銅を触媒としている0例えば特開昭56−73
617号においては銅粉を触媒として350〜600℃
で流動床反応を行いトリクロロシランを得ている。又特
開昭58−11042号においては銅担持又は銅及びニ
ッケルを担持した触媒を用いて反応を行いトリクロロシ
ランを得ている。
Method (2) can be said to be an energetically advantageous method since the reaction proceeds at a relatively low temperature compared to method (1). Naturally, method (3) in which hydrogen chloride gas is used to promote the reaction more effectively than method (2) also has similar features. Regarding methods (2) and (3), it is effective to use a catalyst, and a method using a copper compound or metallic copper as a catalyst is effective, for example, in JP-A-56-73.
No. 617 uses copper powder as a catalyst at 350 to 600°C.
A fluidized bed reaction was performed to obtain trichlorosilane. Furthermore, in JP-A-58-11042, trichlorosilane is obtained by conducting a reaction using a catalyst supported with copper or with copper and nickel supported.

これらの方法において1例えば(1)の方法では。One of these methods is, for example, method (1).

かなり高い四塩化ケイ素の転化率でトリクロロシランが
得られているが、とりわけ30%以上の収率でトリクロ
ロシランを得るためには1000”C以上の高温で反応
を行わねばならずこれに費やすエネルギーは真人なもの
である。加えて、高温反応であるため、塩素化ケイ素に
よる反応器等の腐食が激しくさらに、望ましくない高分
子量のクロロシラン類が不可避的に副生ずる等の欠点を
有しており未だ実用化には程遠いものである。
Trichlorosilane has been obtained with a fairly high conversion rate of silicon tetrachloride, but in order to obtain trichlorosilane with a yield of 30% or higher, the reaction must be carried out at a high temperature of 1000"C or higher, which requires energy consumption. In addition, since it is a high-temperature reaction, the reactor etc. are severely corroded by silicon chloride, and undesirable high molecular weight chlorosilanes are inevitably produced as by-products. It is still far from being put into practical use.

これに対し、(2)及び(3)の方法は熱力学的見地か
らも、トリクロロシランの製造に有用な方法であり、前
記した様にトリクロロシランの不均化によるモノシラン
を製造する方法で副生する四塩化ケイ素を変換しトリク
ロロシランを製造することは特に(2)の方法では実質
的にはケイ素と水素からモノシランを製造することとな
るため、非常に有用な方法であると云える。なお、(3
)の方法に於いては、トリクロロシランの収量は多いが
、塩化水素は四塩化ケイ素のトリクロロシランへの変換
には関与せず、実質的には金属シリコンからトリクロロ
シランを合成することに過ぎない、従って、四塩化ケイ
素の再利用という観点からすれば(2)の方法よりは幾
分有用性は劣るが、一方、トリクロロシランの収量が多
いと云う利点も有しており、塩化水素の使用量を少量に
して行うことにより、その特徴を発揮させることが望ま
しい。
On the other hand, methods (2) and (3) are useful methods for producing trichlorosilane from a thermodynamic point of view, and as mentioned above, they are secondary to the method for producing monosilane by disproportionation of trichlorosilane. It can be said that converting the silicon tetrachloride produced to produce trichlorosilane is a very useful method, especially since method (2) essentially produces monosilane from silicon and hydrogen. In addition, (3
), the yield of trichlorosilane is high, but hydrogen chloride does not participate in the conversion of silicon tetrachloride to trichlorosilane, and the method essentially only synthesizes trichlorosilane from metallic silicon. Therefore, from the point of view of reusing silicon tetrachloride, it is somewhat less useful than method (2), but on the other hand, it has the advantage of increasing the yield of trichlorosilane, and the use of hydrogen chloride is It is desirable to bring out its characteristics by using a small amount.

さらに、これら(2)及び(3)の方法を組合せたプロ
セスも知られている(特開昭60−36318号)。
Furthermore, a process that combines methods (2) and (3) is also known (Japanese Patent Application Laid-open No. 36318/1983).

以上の方法において、四塩化ケイ素の有効再利用という
観点からすれば(2)の方法が最も優れておす、マたト
リクロロシランの生成という観点からすれば(3)の方
法も優れた方法であり捨てがたい。
Among the above methods, method (2) is the best from the viewpoint of effective reuse of silicon tetrachloride, and method (3) is also excellent from the viewpoint of producing matatrichlorosilane. Hard to throw away.

すなわち、(2)または(3)の方法は経済性も高(特
に(2)の方法は現在本命の方法として実用化されつつ
ある。
That is, method (2) or (3) is highly economical (method (2) in particular is currently being put into practical use as the preferred method).

しかしながら、(2)の方法においては1反応温度が通
常500〜600℃で行われており、 300℃以下の
反応温度においては実質上トリクロロシランが生成した
例はない、従って当然のことながら1本発明におけるが
如く、四塩化ケイ素の臨界温度以下で四塩化ケイ素を液
体状として気体−液体一固体相の不均一反応によるトリ
クロロシランを製造した例は従来全く知られていない。
However, in method (2), one reaction temperature is usually carried out at 500 to 600°C, and there is no example in which trichlorosilane is substantially produced at a reaction temperature of 300°C or lower. As in the present invention, there has been no known example of producing trichlorosilane by a heterogeneous gas-liquid-solid phase reaction using silicon tetrachloride as a liquid at a temperature below the critical temperature of silicon tetrachloride.

またこの(2)の方法においては、従来大量かつ連続的
にトリクロロシランを製造する場合唖は、気体一固体相
流動床装置が用いられている。しかしながら、その場合
、流動床を用いるため1反応により粒度の小さくなった
ケイ素金属や触媒成分の揮散等による有効成分の損失、
高温反応による触媒成分の揮散、装置の腐食、更には高
分子量のクロロシラン類の生成によるトリクロロシラン
の選択率の低下、高温であるためエネルギーの大量使 
用等といった。工業化するためにはさらに解決さるべき
多くの欠点を有している。
In the method (2), a gas-solid phase fluidized bed apparatus has conventionally been used to continuously produce trichlorosilane in large quantities. However, in this case, since a fluidized bed is used, there is a loss of active ingredients due to volatilization of silicon metal and catalyst components whose particle size has become smaller due to one reaction.
Volatilization of catalyst components due to high-temperature reactions, corrosion of equipment, decrease in selectivity of trichlorosilane due to the formation of high molecular weight chlorosilanes, and large use of energy due to high temperatures.
Such as business. It has many drawbacks that need to be further resolved in order to be industrialized.

本発明者らはこれらに鑑み鋭意検討した結果。The inventors of the present invention have made extensive studies in view of these considerations.

500 ’C前後の温度では勿論のこと、300″C以
下の低温においてさえも、更に驚くべきことにこれより
低温度の四塩化ケイ素の臨界温度以下に於いてさえも、
四塩化ケイ素を液体状態で反応させしかも高収率でかつ
四塩化ケイ素の単位体積当たりの処理量を増大させてト
リクロロシランを製造する極めて経済的利点の高い方法
を見出し本発明を完成するにいたった。
Not only at temperatures around 500'C, but even at low temperatures below 300'C, and even surprisingly below the critical temperature of silicon tetrachloride,
The present inventors discovered an extremely economically advantageous method for producing trichlorosilane by reacting silicon tetrachloride in a liquid state with high yield and increasing the throughput per unit volume of silicon tetrachloride, and completed the present invention. Ta.

又里曳旦豊 すなわち1本発明の目的は、上記トリクロロシランの熱
分解による多結晶シリコンの製造またはトリクロロシラ
ンの不均化反応によるモノシランの製造に於いて、副生
ずる四塩化ケイ素をトリクロロシランへ変換し、四塩化
ケイ素を有効に利用する極めて経済性の高い方法を提供
することにある。
An object of the present invention is to convert by-produced silicon tetrachloride into trichlorosilane in the production of polycrystalline silicon by thermal decomposition of trichlorosilane or the production of monosilane by disproportionation reaction of trichlorosilane. The object of the present invention is to provide an extremely economical method for converting and effectively utilizing silicon tetrachloride.

本発明に従えば、四塩化ケイ素と金属ケイ素を水素若し
くは水素及び塩化水素と反応せしめてトリクロロシラン
を製造する方法において、該反応を、金属銅、金属ハロ
ゲン化物及び酸性化合物の存在下に行うことを特徴とす
るトリクロロシランの製造方法が提供される。
According to the present invention, in the method for producing trichlorosilane by reacting silicon tetrachloride and silicon metal with hydrogen or hydrogen and hydrogen chloride, the reaction is carried out in the presence of copper metal, a metal halide, and an acidic compound. A method for producing trichlorosilane is provided.

光皿五皿丞 以下本発明の詳細な説明する。Light plate Gosarajo The present invention will be explained in detail below.

本発明で行う四塩化ケイ素のトリクロロシランへの変換
は基本的に次式 %式%() で表わされる。この反応は平衡反応であり、温度が高い
ほど、圧力が高いほど、さらにH2/5IC14モル比
が高いほど反応が右方向へ進行する。また、後述するよ
うに、四塩化ケイ素の臨界温度である233.6℃(現
実的には230℃以下)以下の温度で四塩化ケイ素を液
体状態としての低温気相−液相一固体相反応でトリクロ
ロシランを製造した例は今まで知られていなかったが1
本発明においては上記反応を金属銅、金属ハロゲン化物
及び酸性化合物と云う特定の添加物の存在下に行うこと
で高温では勿論、300℃以下の低温変更には四塩化ケ
イ素を液体状態として液体状態で反応させてトリクロロ
シランを収率よく製造することを可能ならしめたもので
ある。また当然のことであるが塩化水素ガスを本発明反
応系内に加えることによって明らかにトリクロロシラン
の収量を増大させる結果をもたらす手段を採用しても良
い。
The conversion of silicon tetrachloride into trichlorosilane carried out in the present invention is basically expressed by the following formula % (%). This reaction is an equilibrium reaction, and the higher the temperature, the higher the pressure, and the higher the H2/5IC14 molar ratio, the more the reaction proceeds in the right direction. In addition, as will be described later, a low-temperature gas-liquid-solid phase reaction occurs when silicon tetrachloride is in a liquid state at a temperature below 233.6°C (actually 230°C or lower), which is the critical temperature of silicon tetrachloride. Until now, there has been no known example of trichlorosilane being produced using
In the present invention, by performing the above reaction in the presence of specific additives such as metal copper, metal halides, and acidic compounds, silicon tetrachloride is kept in a liquid state not only at high temperatures but also at low temperatures below 300°C. This makes it possible to produce trichlorosilane in good yield by reacting with Naturally, it is also possible to adopt a method that clearly increases the yield of trichlorosilane by adding hydrogen chloride gas into the reaction system of the present invention.

本発明に使用する金属ケイ素の純度等はとくに限定する
ものではなく、冶金ケイ素の低純度品でも高純度ケイ素
でもいずれであっても構わない。
The purity of the metal silicon used in the present invention is not particularly limited, and it may be either low purity metallurgical silicon or high purity silicon.

経済的な観点からすれば前者を使用することが好ましい
、これら金属ケイ素の形態は問わないが好ましくは反応
速度の観点から表面積の大きい粉末状で使用することが
推奨される。勿論1粒状等他の形態で使用することも可
能である。
From an economic point of view, it is preferable to use the former.Although the form of these metal silicons does not matter, from the viewpoint of reaction rate, it is recommended that they be used in the form of a powder with a large surface area. Of course, it is also possible to use it in other forms such as a single grain.

本発明においては、上記反応を金属銅、金属ハロゲン化
物及び酸性化合物の存在下に行うが1本発明で使用する
金属銅は特に限定するものではなく1通常市販の電解銅
が用いられるがその他還元銅も使用可能である。純度に
関してはそれほど問題にする必要はない、金属銅の形態
は問わないが好ましくは反応速度の観点から表面積の大
きい粉末状で使用することが推奨される。勿論1粒状等
他の形態で使用することも可能である。
In the present invention, the above reaction is carried out in the presence of metallic copper, a metal halide, and an acidic compound; 1. The metallic copper used in the present invention is not particularly limited; 1. Usually commercially available electrolytic copper is used; Copper can also be used. There is no need to worry much about the purity, and the form of the metal copper does not matter, but from the viewpoint of reaction rate, it is recommended to use it in the form of a powder with a large surface area. Of course, it is also possible to use it in other forms such as a single grain.

また本発明で使用する金属のハロゲン化物とは、元素長
周期表(ここではMERCK INDEX記載のものに
従うとする)に於いてIb〜VIIb及びIIIa〜V
aの金属の塩化物、臭化物若しくはヨウ化物であり元素
記号で Cu、 Ti、 V 、 Cr、 Mn、 F
e、 Co、 Ni。
In addition, the metal halides used in the present invention are Ib to VIIb and IIIa to V in the long periodic table of elements (here, according to the MERCK INDEX).
It is a chloride, bromide or iodide of metal a, and the element symbol is Cu, Ti, V, Cr, Mn, F
e, Co, Ni.

Zn、  Zr、  Mo、  Ru、  Rh、  
Pd、  Ag、  Sn、  Sb、  W  、 
 Hg。
Zn, Zr, Mo, Ru, Rh,
Pd, Ag, Sn, Sb, W,
Hg.

pt、 pb等の塩化物、臭化物若しくはヨウ化物であ
り、具体的には1分子式でCuC1,CuC1z、 T
iCl3+TlC14+VC11+VC1i+VOC1
,+CrC1g+CrC1z+MnC1z+FeC1z
+FeCl3+CoC1z、NiC1z、ZnC11,
ZrC1a、 ZrOClg。
It is a chloride, bromide or iodide such as pt, pb, etc. Specifically, it has one molecular formula of CuC1, CuC1z, T
iCl3+TlC14+VC11+VC1i+VOC1
, +CrC1g+CrC1z+MnC1z+FeC1z
+FeCl3+CoC1z, NiC1z, ZnC11,
ZrC1a, ZrOClg.

MoC15JoC15,RuC1tJuC13,RhC
l3+PdCl2. AgCl、5nCIZ、 Sn(
:1 a + 5bct3.5bC1s + WCl5
. WCL+ HgzCl z+ HgCl Z、Pt
CIn、PbC1z及びPbC1,等の金属塩化物; 
CuBr。
MoC15JoC15, RuC1tJuC13, RhC
l3+PdCl2. AgCl, 5nCIZ, Sn(
:1 a + 5bct3.5bC1s + WCl5
.. WCL+ HgzCl z+ HgCl Z, Pt
Metal chlorides such as CIn, PbC1z and PbC1;
CuBr.

CuBrz、TiBra+VBrs+CrBrz+Mn
Brz、FeBrg+FeBr、+CoBrx+ N1
Brt+ ZnBrz+ ZrBra、 MoBr3.
 PdBr*+ AgBr。
CuBrz, TiBra+VBrz+CrBrz+Mn
Brz, FeBrg+FeBr, +CoBrx+ N1
Brt+ ZnBrz+ ZrBra, MoBr3.
PdBr*+AgBr.

5nBrz+SnBr4+5bBr2JBr5.Hgz
Br2.HgBrz+及びPbBr2等の金属臭化物:
及′びCul、Ti1a、CrIz+MnIt+ Fe
I2. CoIz+ Nt I!l Zn1z+ Zr
14+ PdIz、 AgI+ SnI it Snl
 a、5b1i、5bls、賀1a、HgzIg、Pt
rz、Pt141 及びPb1i等の金属ヨウ化物など
である。また、ハロゲン原子が二種以上混在したハロゲ
ン化物も有効であり、これらの一種または二種以上の混
合物で使用する。
5nBrz+SnBr4+5bBr2JBr5. Hgz
Br2. Metal bromides such as HgBrz+ and PbBr2:
and Cul, Ti1a, CrIz+MnIt+ Fe
I2. CoIz+ Nt I! l Zn1z+ Zr
14+ PdIz, AgI+ SnI it Snl
a, 5b1i, 5bls, Ka1a, HgzIg, Pt
These include metal iodides such as rz, Pt141 and Pb1i. Further, halides containing two or more types of halogen atoms are also effective, and these halides are used alone or in a mixture of two or more types.

混合物で使用する。Use in mixtures.

次に本発明で使用する酸性化合物とはGa、Zr、Hf
、Sb、Nb+Ta、Mo、InJ、Re+Zn+As
、B、P、 Ti+Pt若しくはBeのフン化物、塩化
物、臭化物若しくはヨウ化物や、更には酸性金属酸化物
又は酸性金属硫化物など非プロトン性の酸性化合物であ
る。具体的には分子式又は組成式でGaCl3.GaC
1z+GaBr3.Gal*+ZrC141HfC1a
 + HfBr 41 Hf I a + 5bFs+
 SbC]s+ 5bCI3.NbFs+NbCl5+
TaF5+TaCl5+TaBrs1MoFh+MoC
l5+ InCl3+InBr!+’1n13.WCI
thJeC15,ReCl5.ZnC1z、 BCI:
++BBra+ BI:++ SI’lC1a + 5
nC1z + TiC14+ TiBr4+ TlCl
 21 P tcIa、等の含ハロゲン化物+ BeO
,Cr2O5,PzOs、Ti0z+Alz(Soa)
z、AIzOz  ・XCrzOz、AIjOt・Fe
Js+MnO。
Next, the acidic compounds used in the present invention are Ga, Zr, Hf
, Sb, Nb+Ta, Mo, InJ, Re+Zn+As
, B, P, Ti+Pt or Be fluorides, chlorides, bromides or iodides, and furthermore, aprotic acidic compounds such as acidic metal oxides or acidic metal sulfides. Specifically, the molecular formula or composition formula is GaCl3. GaC
1z+GaBr3. Gal*+ZrC141HfC1a
+ HfBr 41 Hf I a + 5bFs+
SbC]s+ 5bCI3. NbFs+NbCl5+
TaF5+TaCl5+TaBrs1MoFh+MoC
l5+ InCl3+InBr! +'1n13. W.C.I.
thJeC15, ReCl5. ZnC1z, BCI:
++BBra+ BI:++ SI'lC1a + 5
nC1z + TiC14+ TiBr4+ TlCl
21 P tcIa, etc. halide-containing compound + BeO
, Cr2O5, PzOs, Ti0z+Alz(Soa)
z, AIzOz・XCrzOz, AIjOt・Fe
Js+MnO.

AIzOt  Coo、Altos  ・Mo0z+M
o5t+Mo5z等の酸性金属酸化物又は硫化物等が挙
げられる0本発明に於いてはこれらの1種又は2種以上
の混合物を用いる。但し0本発明においては、金属ハロ
ゲン化物及び酸性化合物とは同一化合物を選択しないも
のとする0例えば、前者でTiの塩化物を選択した場合
は後者ではTiの塩化物を選択しない。
AIzOt Coo, Altos ・Mo0z+M
Examples include acidic metal oxides or sulfides such as O5t+Mo5z. In the present invention, one type or a mixture of two or more of these is used. However, in the present invention, the metal halide and the acidic compound are not the same compound. For example, if Ti chloride is selected for the former, Ti chloride is not selected for the latter.

次に本発明に於ける四塩化ケイ素のトリクロロシランへ
の変換方法について述べる。
Next, a method for converting silicon tetrachloride into trichlorosilane in the present invention will be described.

変換反応は基本的には上記(1)式に従って行われる6
本発明においては1反応は、常圧、加圧、減圧のいずれ
で行っても構わないが1反応平衡上、及び原料処理量等
の観点から、加圧状態で行うことが好ましい。なお、所
定温度で 気体相−液体相−個体相の所謂気−液−面相
の不均一系で行うためには、加圧が必要である。また反
応に使用する水素はあらかじめ反応に不活性な媒体(気
体)たとえばアルゴン、ヘリウム及び/又は窒素等で稀
釈して用いても構わないが1反応平衡1反応速度及び経
済的な観点から水素単独で使用することが好ましい。又
通常予期される程度の不純物を含んでいても差し支えな
い、また反応条件に於いて原料、生成物、および金属鋼
、金属ハロゲン化物及び酸性化合物等の添加物等にたい
して不活性な溶媒2例えばn−ヘキサン、n−へブタン
に代表される脂肪族炭化水素、シクロヘキサン、シクロ
オクタンに代表される脂環式炭化水素及びベンゼン、ト
ルエンに代表される芳香族炭化水素等を使用することも
可能である。
The conversion reaction is basically carried out according to the above formula (1)6
In the present invention, one reaction may be carried out under normal pressure, increased pressure, or reduced pressure, but from the viewpoint of one reaction equilibrium and the throughput of raw materials, it is preferable to carry out under increased pressure. In addition, pressurization is required in order to carry out the process at a predetermined temperature in a heterogeneous system of gas phase, liquid phase, and solid phase, that is, a so-called gas-liquid-surface phase. Hydrogen used in the reaction may be diluted in advance with a medium (gas) inert to the reaction, such as argon, helium, and/or nitrogen, but from the viewpoint of 1 reaction equilibrium 1 reaction rate and economics, hydrogen may be used alone. It is preferable to use it in In addition, solvents that are inert to the raw materials, products, and additives such as metal steel, metal halides, and acidic compounds under the reaction conditions may contain impurities to the extent normally expected. - It is also possible to use aliphatic hydrocarbons such as hexane and n-hebutane, alicyclic hydrocarbons such as cyclohexane and cyclooctane, and aromatic hydrocarbons such as benzene and toluene. .

次に本発明における最も特筆すべき点である四塩化ケイ
素を液体状態として反応させることが可能である利点に
ついて述べる。
Next, the most noteworthy point of the present invention, which is the advantage that silicon tetrachloride can be reacted in a liquid state, will be described.

四塩化ケイ素を液体状態に保持したまま反応させること
は、液体状の四塩化ケイ素と固体金属ケイ素と、および
該液体状四塩化ケイ素中に溶解等によってまたは気液接
触によって取り込まれた水素と、が反応することを意味
するものであり、従って反応場は殆ど実質的に液体−固
体相である。
Reacting silicon tetrachloride while keeping it in a liquid state means that liquid silicon tetrachloride and solid metal silicon, and hydrogen incorporated into the liquid silicon tetrachloride by dissolution or the like or by gas-liquid contact, reacts, and therefore the reaction field is almost essentially a liquid-solid phase.

そこで生成したトリクロロシランはまず液体相で生成し
液体に溶存するが更に気体相に移行する。
The trichlorosilane produced there is first produced in the liquid phase and dissolved in the liquid, but then moves to the gas phase.

この際当然のことであるが四塩化ケイ素も同様に気体相
へ移行する。トリクロロシランと四塩化ケイ素の同一温
度に於ける蒸気圧はトリクロロシランの方がより高いた
め液体相に於ける 5iHCja/SEC1g濃度比よ
りも気体相に於ける5iHC1s/5iC1a濃度比の
方が高くなる。かくして該反応を連続的に行わしめれば
常に液相に於ける5iHC1i/5iC14濃度比は減
少の方向に向かうから1反応平衡の観点から該反応の反
応速度を高める事となり、トリクロロシランの製造に関
してより有利な方向へ反応が進む事となる。従って3通
常の流動床反応の如く、生成ガス組成がそのままの組成
で排出されるのと比較して1反応平衡上常に生成物の組
成が生成物に有利になるように作用させる効果が期待出
来るのである。
At this time, as a matter of course, silicon tetrachloride also transfers to the gas phase. The vapor pressure of trichlorosilane and silicon tetrachloride at the same temperature is higher for trichlorosilane, so the 5iHC1s/5iC1a concentration ratio in the gas phase is higher than the 5iHCja/SEC1g concentration ratio in the liquid phase. . Thus, if the reaction is carried out continuously, the 5iHC1i/5iC14 concentration ratio in the liquid phase will always decrease, so the reaction rate of the reaction will be increased from the viewpoint of one reaction equilibrium, and this will improve the production of trichlorosilane. The reaction will proceed in a more advantageous direction. Therefore, compared to a normal fluidized bed reaction where the product gas composition is discharged as it is, it is possible to expect the effect of making the composition of the product always work in favor of the product in terms of the reaction equilibrium. It is.

更に該反応に於いて無水塩化水素ガスを使用することで
トリクロロシランの生成量もより増大させる事ができる
Furthermore, by using anhydrous hydrogen chloride gas in the reaction, the amount of trichlorosilane produced can be further increased.

以上の如くして1本発明においては1反応温度は100
℃以上好ましくは150℃以上600℃以下。
As described above, in the present invention, the reaction temperature is 100
℃ or higher, preferably 150℃ or higher and 600℃ or lower.

更に好ましくは150″C以上300℃以下で行う。More preferably, the temperature is 150"C or higher and 300"C or lower.

100℃未満の温度ではトリクロロシランの実質的な生
成は望めない、なお本反応を行うに際して原料として仕
込む四塩化ケイ素中に反応平衡量以下のトリクロロシラ
ンが混在していても構わなく。
Substantial production of trichlorosilane cannot be expected at a temperature below 100° C. However, when carrying out this reaction, trichlorosilane may be present in an amount less than the reaction equilibrium amount in the silicon tetrachloride charged as a raw material.

このことは反応によって生成したトリクロロシランを蒸
留等により分離した際四塩化ケイ素中にトリクロロシラ
ンが残存しているものも使用可能であることを意味する
が、好ましくは反応平衡上なるべくトリクロロシランを
含まない若しくはトリクロロシラン含有量が出来るだけ
少ない四塩化ケイ素を使用することが実質的にトリクロ
ロシランの生成量が最も多くなる事となり望ましい。
This means that it is possible to use silicon tetrachloride in which trichlorosilane remains when the trichlorosilane produced by the reaction is separated by distillation, etc., but it is preferable to contain as much trichlorosilane as possible in view of the reaction equilibrium. It is desirable to use silicon tetrachloride with no trichlorosilane content or with as little trichlorosilane content as possible because this will substantially increase the amount of trichlorosilane produced.

次に本発明における原料、金属鋼、金属のハロゲン化物
等の添加物の使用量について述べる0本発明に於ける。
Next, the amounts of raw materials, metal steel, and additives such as metal halides used in the present invention will be described.

金属ケイ素の使用量は特に限定はしないが、バッチ式で
行う場合は四塩化ケイ素に対して1重量%以上で行うこ
とが好ましくこの値未満であると反応とともに金属ケイ
素が消費され有効に反応が行いえな(なる恐れがある。
The amount of silicon metal to be used is not particularly limited, but when conducting batchwise, it is preferably 1% by weight or more based on silicon tetrachloride, and if it is less than this value, silicon metal will be consumed along with the reaction and the reaction will not be effective. I can't do it (there is a risk that it will happen).

又金属銅、金属ハロゲン化物及び酸性化合物等の添加物
の使用量は特に限定はしないが、金属ケイ素に対する金
属原子比(g−atns/g−atws)若しくは中心
元素原子比(g−at+ms/g−at+ms)で金属
銅は0.5%以上、酸性化合物及び金属ハロゲン化物は
それぞれ0.1%以上で行うことが反応速度上好ましい
In addition, the amount of additives such as metallic copper, metal halides, and acidic compounds is not particularly limited. -at+ms), the amount of metal copper is preferably 0.5% or more, and the acidic compound and metal halide are each 0.1% or more in terms of reaction speed.

次に本発明を実際に実施するための具体的な態様につい
て述べる。前記した様に本発明における反応は常圧、加
圧若しくは減圧で行いうるが、原料処理量及び平衡量等
の観点から加圧(水素加圧が好ましい)状態で行われる
ことが望ましい、また流通式反応法もしくはバッチ式反
応のいずれの方法で行うことも可能である。
Next, specific embodiments for actually implementing the present invention will be described. As mentioned above, the reaction in the present invention can be carried out at normal pressure, increased pressure, or reduced pressure, but from the viewpoint of raw material throughput and equilibrium amount, it is preferable to carry out the reaction under pressure (hydrogen pressure is preferable). It is possible to carry out the reaction by either a formula reaction method or a batch reaction method.

本発明に於ける実施方法に関しては特に規定はしないが
実施し易い方法として以下の方法が挙げられる。もちろ
んこれらの方法に本発明は限定されるものではない。
Although the method of carrying out the present invention is not particularly specified, the following method may be mentioned as a method that is easy to carry out. Of course, the present invention is not limited to these methods.

(1)オートクレーブ中に所定量の四塩化ケイ素。(1) A predetermined amount of silicon tetrachloride in an autoclave.

金属ケイ素、金属銅、金属ハロゲン化物及び酸性化合物
を入れたのち所定の圧力に水素で加圧しその後加熱撹拌
反応を行う方法。
A method in which metal silicon, metal copper, metal halides, and acidic compounds are added, then pressurized with hydrogen to a predetermined pressure, and then heated and stirred.

(2)予め所定温度、及び水素で所定圧に保たれた加圧
反応器中に所定量の四塩化ケイ素1w4.金属ハロゲン
化物及び酸性化合物を連続的に導入しかつ生成ガス及び
/又は生成液を連続的に抜出し反応を行う方法。
(2) A predetermined amount of silicon tetrachloride 1w4. A method of continuously introducing a metal halide and an acidic compound and continuously extracting a produced gas and/or a produced liquid to carry out a reaction.

(3)予め金属ケイ素1w4.金属ハロゲン化物及び酸
性化合物を反応器中に入れ所定温度に保ち乍ら水素加圧
で四塩化ケイ素及び水素を連続的に導入し且つ生成ガス
及び/又は生成液を連続的に抜出しながら反応を行い必
要に応じて金属ケイ素、金属銅、金属ハロゲン化物及び
酸性化合物を間歇的に導入する方法。
(3) Metallic silicon 1w4. A metal halide and an acidic compound are placed in a reactor, kept at a predetermined temperature, silicon tetrachloride and hydrogen are continuously introduced under hydrogen pressure, and the reaction is carried out while continuously extracting the product gas and/or product liquid. A method of intermittently introducing metal silicon, metal copper, metal halides, and acidic compounds as necessary.

とりわけ大量にトリクロロシランを製造する方法として
(2)又は(3)の方法が望ましい、加えて連続反応を
行うことで1反応によって金属ケイ素は消費されるが、
銅、金属ハロゲン化物及び酸性化合物は実質上消費され
ない。従って反応を低温で行えばこれらの揮散を防ぐこ
とができるので反応器中で金属ケイ素に対する銅、金属
ハロゲン化物及び酸性化合物との比率が高くても、更に
これらを継足す必要はそれほどないため充分経済的に成
立しうる方法として行える。
In particular, method (2) or (3) is preferable as a method for producing trichlorosilane in large quantities.In addition, by performing continuous reactions, metallic silicon is consumed by one reaction,
Copper, metal halides and acid compounds are virtually not consumed. Therefore, if the reaction is carried out at a low temperature, their volatilization can be prevented, so even if the ratio of copper, metal halides, and acidic compounds to metal silicon is high in the reactor, there is no need to add them further, so it is sufficient. This can be done as an economically viable method.

立里塾来 本発明は四塩化ケイ素をトリクロロシランへ経済的に変
換する極めて有効な方法である。従来不可能であった四
塩化ケイ素の臨界温度以下で操作することにより、四塩
化ケイ素を液体状態で反応器中に導入しかつ液体状態で
反応を行うことができる。従って反応容器を容易に小型
化することが可能となり経済的である。加えて当然のこ
とながら低温で反応を行うことを可能とした結果9反応
装置等の腐蝕を抑制することが可能となり、加えて低エ
ネルギーでトリクロロシランを製造することが可能とな
り経済的効果は非常に太き(工業的にきわめて有用であ
る。すなわち、従来高温反応のため多大のエネルギーを
要していたものが、これにより大幅なエネルギーの削減
が可能となり。
The present invention is an extremely effective method for economically converting silicon tetrachloride to trichlorosilane. By operating below the critical temperature of silicon tetrachloride, which was previously impossible, silicon tetrachloride can be introduced into the reactor in a liquid state and the reaction can be carried out in a liquid state. Therefore, it is possible to easily downsize the reaction container, which is economical. In addition, as a result of making it possible to carry out the reaction at low temperatures, it is possible to suppress corrosion of the 9 reaction equipment, etc. In addition, it is possible to produce trichlorosilane with low energy, and the economic effect is extremely high. (It is extremely useful industrially. In other words, it has become possible to significantly reduce energy consumption for conventional high-temperature reactions that required a large amount of energy.)

低温下、液相(四塩化ケイ素)反応も可能となったため
1反応容器を小型化出来9反応装置の腐食を抑制し、か
つスチーム等の低温の熱媒体が使用出来るなど、大幅な
設備の削減が可能となるのである。
Liquid phase (silicon tetrachloride) reactions are now possible at low temperatures, allowing the size of one reaction vessel to be reduced, preventing corrosion of nine reaction devices, and allowing the use of low-temperature heating media such as steam, resulting in a significant reduction in equipment. becomes possible.

以下本発明を実施例によって更に具体的に説明する。The present invention will be explained in more detail below using examples.

実施例 1 耐圧300Kg/cm”、耐湯500℃のS[l531
6製200m1オートクレーブ(内容積220+111
)にそれぞれ金属ケイ素(純度99.9%、200メツ
シユ) 6.00g(214a+g−at+nL市阪の
金属銅粉末B 6.25g(98,4+wg−ata+
) 、五塩化アンチモン7.48g(25,0mmol
)、塩化第一銅2.48g(25,Om+*ol)及び
四塩化ケイ素88.3g(520mm+ol)を入れた
後室温で水素40Kg/cm”Gに圧入した。その後3
00rpmで撹拌し乍らオートクレーブを260℃に加
熱した。(昇温時間20分)260℃でそれぞれ2.5
.1.5.1.0.0.5.及び0(昇温直後)時間反
応を行った後オートクレーブを5℃に冷却し、常圧に降
圧後反応液をガスクロマトグラフ法によって分析した。
Example 1 S [l531
6 made 200m1 autoclave (inner volume 220+111
) and 6.00 g (214a+g-at+nL) of metallic silicon (99.9% purity, 200 mesh) 6.25 g (98,4+wg-at+nL) of Ichisaka's metallic copper powder B (98,4+wg-at+
), antimony pentachloride 7.48g (25.0mmol
), 2.48 g (25, Om+*ol) of cuprous chloride, and 88.3 g (520 mm+ol) of silicon tetrachloride were then pressurized into hydrogen at 40 Kg/cm"G at room temperature. Then, 3
The autoclave was heated to 260°C while stirring at 00 rpm. (Temperature rising time 20 minutes) 2.5 each at 260℃
.. 1.5.1.0.0.5. After the reaction was carried out for 0 hours (immediately after the temperature was raised), the autoclave was cooled to 5° C., the pressure was lowered to normal pressure, and the reaction solution was analyzed by gas chromatography.

結果は第1表に示したように1.0時間の反応でほぼ平
衡に達しており効率よくトリクロロシランが生成するこ
とがわかった。
As shown in Table 1, the reaction almost reached equilibrium after 1.0 hours of reaction, indicating that trichlorosilane was produced efficiently.

第1表 傘TSC! )リクロロシラン;STC:四塩化ケイ素
を表す、以下同じ。
First table umbrella TSC! ) Lichlorosilane; STC: represents silicon tetrachloride; the same shall apply hereinafter.

実施例 2 実施例1と同一のオートクレーブに実施例1と同一量の
金属ケイ素、金属銅粉末B、塩化第−銅及び四塩化ケイ
素を入れ更に五塩化アンチモンの代わりに第2表に示す
種々の酸性化合物を25mmo 1それぞれ加えて26
0℃0.5時間反応を行った後同様に冷却降圧し各々の
反応液を分析した。結果は第2表に示したように後記比
較例C)と対比することにより、何れの酸性化合物を併
用した場合も好収率のトリクロロシラン生成が確認され
た。
Example 2 The same amounts of silicon metal, copper powder B, cupric chloride, and silicon tetrachloride as in Example 1 were placed in the same autoclave as in Example 1, and in place of antimony pentachloride, various compounds shown in Table 2 were added. Add 25 mmol of acidic compound to each 26
After reacting for 0.5 hours at 0°C, the mixture was similarly cooled and the pressure was lowered, and each reaction solution was analyzed. As shown in Table 2, the results were compared with Comparative Example C) described later, and it was confirmed that trichlorosilane was produced in a good yield no matter which acidic compound was used in combination.

第2表 24 Mo5211.6   88.4実施例 3 実施例2のNo、 1と同一量の金属ケイ素、金属銅粉
末、三塩化アンチモン及び四塩化ケイ素を使用し、更に
塩化第一銅の代わりに第3表に示すような種々の金属ハ
ロゲン化物をそれぞれ 25.0m+wolずつ加えて
実施例2と同一の反応条件(260”c、o、s時間)
で反応を行った後同様にして冷却、降圧後1反応液を分
析した。結果は第3表に示したように後記比較例B)と
比較することにより各々の金属ハロゲン化物でよい反応
活性を認めた。
Table 2 24 Mo5211.6 88.4 Example 3 No. 1 of Example 2 Using the same amounts of metallic silicon, metallic copper powder, antimony trichloride and silicon tetrachloride, and further replacing cuprous chloride. The reaction conditions were the same as in Example 2 (260" c, o, s time) by adding 25.0 m+wol of various metal halides as shown in Table 3.
After the reaction was carried out, one reaction solution was similarly analyzed after cooling and reducing the pressure. As shown in Table 3, the results were compared with Comparative Example B) described below, and it was found that each metal halide had good reaction activity.

第3表 実施例 4 実施例3のNO12と全く同一の反応条件で金属ケイ素
のみを純度98%、150メツシユのもの6.00gに
変えて反応を行った0反応終了後同様にして反応液を分
析したところトリクロロシラン20.0%四塩化ケイ素
80.0%であった。従ってこの結果は実施例3のNo
、 2と同等であり金属ケイ素の純度は一般に市販され
ている98.0%のものを使用して差し支えないことが
明らかになった。
Table 3 Example 4 A reaction was carried out under exactly the same reaction conditions as in Example 3, except that only metallic silicon was replaced with 6.00 g of 150 mesh with a purity of 98%. After the reaction was completed, the reaction solution was prepared in the same manner. Analysis revealed that trichlorosilane was 20.0% and silicon tetrachloride was 80.0%. Therefore, this result corresponds to the No.
, 2, and it became clear that commercially available silicon metal with a purity of 98.0% can be used.

比較例(ブランク試験) 実施例4と同一の反応条件でA)塩化ニッケル及び三塩
化アンチモンを加えない、B)塩化ニッケルのみを加え
ない、C)三塩化アンチモンのみを加えないでそれぞれ
ブランク試験を行った。結果は第4表に示したように塩
化ニッケルと三塩化アンチモンとの相乗効果によること
が明らかとなった。
Comparative Example (Blank Test) A blank test was carried out under the same reaction conditions as in Example 4, with A) not adding nickel chloride and antimony trichloride, B) not adding only nickel chloride, and C) not adding only antimony trichloride. went. As shown in Table 4, the results revealed that this was due to the synergistic effect of nickel chloride and antimony trichloride.

第4表 実施例 5 実施例1〜4と同一のオートクレーブに各々金属ケイ素
(純度9969%、200メツシユ) 9.00 g 
(320mg−atm) 、金属銅粉末B7.OOg 
(110mg−atm )、塩化ニッケル4.86 g
 (37,5a+mol) 、三塩化アンチモン8.5
5 g (37,5wmol)及び四塩化ケイ素176
.7g(1,04mol)を入れ水素を室温で110K
g/cm”Gに圧入してそれぞれ230℃,215℃及
び200℃で5時間反応を行うた後同様にして冷却、降
圧し反応液を分析した。結果は第5表に示したように四
塩化ケイ素を液体状態として反応を行ってもよい収率で
トリクロロシランが生成することが確認された。
Table 4 Example 5 9.00 g of metallic silicon (purity 9969%, 200 mesh) was placed in the same autoclave as Examples 1 to 4.
(320mg-atm), metallic copper powder B7. OOg
(110 mg-atm), nickel chloride 4.86 g
(37,5a+mol), antimony trichloride 8.5
5 g (37,5 wmol) and 176 silicon tetrachloride
.. Add 7g (1.04mol) and hydrogen at room temperature at 110K.
g/cm"G and reacted for 5 hours at 230°C, 215°C, and 200°C, respectively, and then cooled and lowered the pressure in the same manner and analyzed the reaction solution. The results are as shown in Table 5. It was confirmed that trichlorosilane was produced in good yield even when the reaction was carried out using silicon chloride in a liquid state.

第5表 実施例 6 内径25m++、長さ700n+mの5US316製反
応管に金属ケイ素(純度98%) 150g、銅粉末8
10g、塩化ニッケルLogおよび酸化クロム(Crz
(h) 10 gを充填し内圧を10Kg/ca+”G
に保ちながら各々以下の反応温度で四塩化ケイ素と水素
(Hz/5iC14〜2モル比)の混合気体を空間線速
度2.1cm/秒で導入し流動状態でそれぞれ反応を行
った0反応ガスは反応器出口より取り出し、大気圧に降
圧後70℃に保温しながらガスクロマトグラフ法により
ガス状態のまま分析した。第6表に定常状態でのトリク
ロロシランと四塩化ケイ素の組成を示した。この結果は
極めて効率よくトリクロロシランが生成したことを示し
ている。
Table 5 Example 6 A 5US316 reaction tube with an inner diameter of 25 m++ and a length of 700 n+m was filled with 150 g of metallic silicon (purity 98%) and copper powder 8
10g, nickel chloride Log and chromium oxide (Crz
(h) Fill 10 g and increase the internal pressure to 10 Kg/ca+”G
A mixed gas of silicon tetrachloride and hydrogen (Hz/5iC14-2 molar ratio) was introduced at a spatial linear velocity of 2.1 cm/sec at the following reaction temperatures, and the reactions were carried out in a fluidized state.The reaction gases were as follows: The reactor was taken out from the outlet, and after lowering the pressure to atmospheric pressure, it was analyzed in its gas state by gas chromatography while keeping the temperature at 70°C. Table 6 shows the composition of trichlorosilane and silicon tetrachloride in steady state. This result shows that trichlorosilane was produced extremely efficiently.

第6表Table 6

Claims (8)

【特許請求の範囲】[Claims] (1)四塩化ケイ素と金属ケイ素を、水素若しくは水素
及び塩化水素と反応せしめてトリクロロシランを製造す
る方法において、該反応を、金属銅、金属ハロゲン化物
及び酸性化合物の存在下に行うことを特徴とするトリク
ロロシランの製造方法。
(1) A method for producing trichlorosilane by reacting silicon tetrachloride and silicon metal with hydrogen or hydrogen and hydrogen chloride, characterized in that the reaction is carried out in the presence of copper metal, a metal halide, and an acidic compound. A method for producing trichlorosilane.
(2)反応温度が100℃以上である特許請求の範囲第
1項記載の方法。
(2) The method according to claim 1, wherein the reaction temperature is 100°C or higher.
(3)反応温度が150℃〜600℃である特許請求の
範囲第1項記載の方法。
(3) The method according to claim 1, wherein the reaction temperature is 150°C to 600°C.
(4)反応温度が150℃〜400℃である特許請求の
範囲第1項記載の方法。
(4) The method according to claim 1, wherein the reaction temperature is 150°C to 400°C.
(5)金属ハロゲン化物が元素長周期表に於いて I b
〜VIIb及びIIIa〜Va族の金属の塩化物、臭化物若
しくはヨウ化物である特許請求の範囲第1項に記載の方
法。
(5) Metal halides are I b in the long periodic table of elements.
A method according to claim 1, wherein the chloride, bromide or iodide of a metal of group VIIb and IIIa to Va.
(6)金属ハロゲン化物がCu、Ti、V、Cr、Mn
、Fe、Co、Ni、Zn、Zr、Mo、Ru、Rh、
Pd、Ag、Sn、Sb、W、Hg、Pt、Pbの塩化
物、臭化物およびヨウ化物からなる群より選択される金
属ハロゲン化物である特許請求の範囲第5項に記載の方
法。
(6) Metal halide is Cu, Ti, V, Cr, Mn
, Fe, Co, Ni, Zn, Zr, Mo, Ru, Rh,
6. The method according to claim 5, wherein the metal halide is selected from the group consisting of chlorides, bromides, and iodides of Pd, Ag, Sn, Sb, W, Hg, Pt, and Pb.
(7)酸性化合物がGa、Zr、Hf、Sb、Nb、T
a、Mo、In、W、Re、Zn、As、B、P、Ti
、Pt、若しくはBeのフッ化物、塩化物、臭化物若し
くはヨウ化物である特許請求の範囲第1項に記載の方法
(7) Acidic compound is Ga, Zr, Hf, Sb, Nb, T
a, Mo, In, W, Re, Zn, As, B, P, Ti
, Pt, or Be fluoride, chloride, bromide, or iodide.
(8)酸性化合物が酸性金属酸化物若しくは酸性金属硫
化物である特許請求の範囲第1項に記載の方法。
(8) The method according to claim 1, wherein the acidic compound is an acidic metal oxide or an acidic metal sulfide.
JP24154886A 1986-10-13 1986-10-13 Production of trichlorosilane Pending JPS6395111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24154886A JPS6395111A (en) 1986-10-13 1986-10-13 Production of trichlorosilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24154886A JPS6395111A (en) 1986-10-13 1986-10-13 Production of trichlorosilane

Publications (1)

Publication Number Publication Date
JPS6395111A true JPS6395111A (en) 1988-04-26

Family

ID=17075995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24154886A Pending JPS6395111A (en) 1986-10-13 1986-10-13 Production of trichlorosilane

Country Status (1)

Country Link
JP (1) JPS6395111A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020536039A (en) * 2017-10-05 2020-12-10 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Method for producing chlorosilane using a catalyst selected from the group of CO, MO and W

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020536039A (en) * 2017-10-05 2020-12-10 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Method for producing chlorosilane using a catalyst selected from the group of CO, MO and W

Similar Documents

Publication Publication Date Title
CN102884030A (en) Method for making hexafluoro-2-butene
JP6753434B2 (en) Method for producing difluoroethylene
CN101243014B (en) Process for production of silicon
JPS5988308A (en) Silane continuous manufacture
JPH03183613A (en) Production of disilane
JPS5814418B2 (en) Production method of benzoyl chloride
JPS6395111A (en) Production of trichlorosilane
JP3569536B2 (en) Production method of inorganic fluoride gas at room temperature
JP2613262B2 (en) Method for producing trichlorosilane
JPS6395107A (en) Production of trichlorosilane
JPS63100015A (en) Preparation of trichlorosilane
JPS63100014A (en) Preparation of trichlorosilane
EP0215606B1 (en) Process for producing silanes
JP2613261B2 (en) Method for producing trichlorosilane
JPS6395110A (en) Production of trichlorosilane
JPH0788214B2 (en) Method for producing trichlorosilane
JP2013136539A (en) Method for producing tetraalkoxysilane
JP2613260B2 (en) Method for producing trichlorosilane
JPH01313318A (en) Production of trichlorosilane
JPS6395108A (en) Production of trichlorosilane
CN102530960A (en) Trichlorosilane production method used during polycrystalline silicon production
JP2613259B2 (en) Method for producing trichlorosilane
JPS6395109A (en) Production of trichlorosilane
AU602162B2 (en) Process for the preparation of perhalohydrocarbon hypochlorites
US3970679A (en) Process for the production of organotin halides in sulphones as reaction medium