JPS6393493A - Laser beam machine - Google Patents

Laser beam machine

Info

Publication number
JPS6393493A
JPS6393493A JP61240084A JP24008486A JPS6393493A JP S6393493 A JPS6393493 A JP S6393493A JP 61240084 A JP61240084 A JP 61240084A JP 24008486 A JP24008486 A JP 24008486A JP S6393493 A JPS6393493 A JP S6393493A
Authority
JP
Japan
Prior art keywords
axis
laser beam
theta
deviation
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61240084A
Other languages
Japanese (ja)
Other versions
JPH0435275B2 (en
Inventor
Eikichi Hayashi
林 栄吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61240084A priority Critical patent/JPS6393493A/en
Publication of JPS6393493A publication Critical patent/JPS6393493A/en
Publication of JPH0435275B2 publication Critical patent/JPH0435275B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate processing with high accuracy without necessitating mechanical correction of an optical path by correcting the deviation quantity by the mis-alignment of the optical axis of an incident beam in a projection position and mechanism rotating shaft by the movement control of a parallel movement driving means. CONSTITUTION:An theta axis motor driving switch 20 is turned on to run an thetaaxis motor 14 so that the spot of a laser beam is projected to the inside surface of a work 5 from the top end nozzle 7 of a processing lens 3. The inside surface of the work 5 is cut and the beta angle of the turning angle position of a rotating cylinder 12 at which the max. mis-alignment DELTAL arises is obtd. The max. mis- alignment DELTAL and the theta angle in the turning angle position of the theta axis at which DELTAL arises are inputted to ten keys 19 to calculate Ftheta=DELTAL.cos(theta-beta). Reading of the angle theta is executed by a sensor 17 for angle detection and a Z-axis motor 11 is run to move a Z-axis cylinder 9 by the moving distance G=-F(theta)=-DELTAL.cos(theta-beta). The laser beam processing in the Z-axis direction is thus executed.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は、レーザビームを集束して立体形状の被加工
物を加工対象とするレーザ加工装置に関するもので、特
に、回転する反射鏡を用いて隔向させた集束するレーザ
ビームの位置補正に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a laser processing device that focuses a laser beam to process a three-dimensional workpiece, and particularly relates to a laser processing device that focuses a laser beam to process a three-dimensional workpiece. This invention relates to position correction of focused laser beams that are separated from each other.

[従来技術] 従来の、この種の公知技術を特許公報で挙げると、特開
昭60−24295号公報、特開昭60−121411
号公報、特開昭61−1494号公報、特開昭61−4
6390号公報等がおる。
[Prior art] Conventional known technologies of this type are listed in patent publications such as JP-A-60-24295 and JP-A-60-121411.
No. 61-1494, Japanese Patent Application Laid-open No. 61-4
There are publications such as No. 6390.

この種のレーザ加工装置は、直交するY軸、Y軸、Z軸
の3軸の平行移動軸を有するもので、Z軸はレーザビー
ムを集光する加工レンズが上下動作を行い、Y軸及びY
軸については、被加工物を移動させるもの、レーザビー
ムを移動させるもの、或いは、X@またはY軸のいずれ
か一方の軸が被加工物を移動し、他方の軸がレーザビー
ムを移動させるもの等がある。
This type of laser processing device has three parallel movement axes, the Y-axis, Y-axis, and Z-axis, which are orthogonal to each other. Y
Regarding the axes, those that move the workpiece, those that move the laser beam, or those that move the workpiece with either the X@ or Y axis and the other axis that moves the laser beam. etc.

このように、3軸駆動制御を行うレーザ加工装置におい
て、1軸レーザビームを移動させるものについて、第5
図の1軸レーザビームによる加工の展開説明図を用いて
説明する。
In this way, in a laser processing device that performs three-axis drive control, the fifth
This will be explained using the developed explanatory diagram of processing using a uniaxial laser beam shown in the figure.

図において、(1)はレーザ発振器、(2)はレーザビ
ームを偏向させる反射鏡、(3)はレーザビームを集束
させる加工レンズ、(4)は被加工物でおる。前記反射
鏡(2)及び加工レンズ(3)は被加工物(4)の表面
に対して、即ち、XlN1に対して平行に移動される。
In the figure, (1) is a laser oscillator, (2) is a reflecting mirror that deflects the laser beam, (3) is a processing lens that focuses the laser beam, and (4) is a workpiece. The reflecting mirror (2) and the processing lens (3) are moved relative to the surface of the workpiece (4), ie parallel to XlN1.

レーザ発振器(1)から出力されたレーザビームは、反
射鏡(2)及び加工レンズ(3)からなる光学系手段が
集束したレーザビームのスポットを被加工物(4)に照
射する。このとき、入射ビームの光学的軸と機械的軸と
のずれによる角度αが生じた場合には、図示した破線で
示す経路で反射鏡(2)及び加工レンズ(3)に入射し
、移動ストロークL[m]の量に対して機械的基準位置
A1または機械的基準位置A2より、角度α及びレーザ
発振器(1)から加工レンズ(3)までの光路長に略比
例した Ll  [m]または L2[m]だけ、ずれ
て被加工物(4)の表面に照射されることになる。但し
、加工レンズ(3)の焦点距離はf [m]とする。
A laser beam output from a laser oscillator (1) is focused by an optical system consisting of a reflecting mirror (2) and a processing lens (3) and irradiates the workpiece (4) with a laser beam spot. At this time, if an angle α occurs due to a misalignment between the optical axis and the mechanical axis of the incident beam, the incident beam enters the reflecting mirror (2) and the processing lens (3) along the path shown by the broken line in the figure, and the movement stroke From the mechanical reference position A1 or A2 for the amount of L [m], Ll [m] or L2 is approximately proportional to the angle α and the optical path length from the laser oscillator (1) to the processing lens (3). The surface of the workpiece (4) is irradiated with a deviation of [m]. However, the focal length of the processed lens (3) is f [m].

したがって、実際の加工に必たっては、予め、一定量の
ずれWi  Ll〜 m2  [m]を見込んでレーザ
ビームのスポットの制御指令値を変更するか、或いは、
ずれ量 L1〜 L2  [TrL]の方向に被加工物
(4)を移動すればよい。
Therefore, in actual processing, the control command value of the laser beam spot must be changed in advance by anticipating a certain amount of deviation Wi Ll~m2 [m], or,
The workpiece (4) may be moved in the direction of the deviation amount L1 to L2 [TrL].

[発明が解決しようとする問題点] しかし、レーザビームの機械的軸と実際の入射ビームの
光学的軸がずれている場合には、レーザビームを反射鏡
で偏向し、加工レンズで集束して被加工物にレーザビー
ムのスポットを照射する光学系手段が、レーザビームの
機械的軸を中心に回転する三次元の立体形状物を加工す
る場合に、精度上の問題が生ずる。
[Problems to be solved by the invention] However, when the mechanical axis of the laser beam and the optical axis of the actual incident beam are misaligned, the laser beam is deflected by a reflecting mirror and focused by a processed lens. Accuracy problems arise when optical system means for irradiating a workpiece with a spot of a laser beam processes a three-dimensional three-dimensional object that rotates around the mechanical axis of the laser beam.

即ち、第6図の1軸レーザビームが回転して旋回加工す
る場合の説明図に示すように、レーザ発振器(1)より
出力された垂直方向のレーザビームは、反射鏡(2)で
水平方向に変更され、加工レンズ(3)を通り円筒状の
被加工物(5)に照射される。反則′i!1.(2)と
加工レンズ(3)はレーザビーム入射光軸(Z軸方向)
を中心に回転動作するように侶成され、円筒状の被加工
物(5)を加工する。このとき、レーザ発振器(1)よ
り出力されたレーザビームが上記機械的回転軸より略α
角度だけずれを生じ、図示した破線の経路で反射鏡(2
)及び加工レンズ(3)に入射したとすると、照射スポ
ット位置はレーザビームのずれ方向に加工レンズ(3)
がきたときと、その180度反対方向にきたときとは、
機械的基準位置Bからそれぞれ−L[m]、+  L[
m]のずれか生ずる。
That is, as shown in the explanatory diagram of the case in which a uniaxial laser beam rotates and performs turning processing in Fig. 6, a vertical laser beam output from a laser oscillator (1) is turned horizontally by a reflecting mirror (2). The beam is changed to irradiate the cylindrical workpiece (5) through the processing lens (3). Foul'i! 1. (2) and processing lens (3) are laser beam incident optical axis (Z-axis direction)
The machine is configured to rotate around the cylindrical workpiece (5). At this time, the laser beam output from the laser oscillator (1) is approximately α
There is a deviation by the angle, and the reflector (2
) and the processing lens (3), the irradiation spot position will be in the direction of deviation of the laser beam from the processing lens (3).
When it comes, and when it comes 180 degrees in the opposite direction,
-L[m] and +L[ from mechanical reference position B, respectively
m] deviation occurs.

例えば、第7図は円筒状被加工物(5)に実際に加工を
行った場合、前記ずれ吊 L[m]の軌跡を示すもので
ある。図のように、凶械的基準位置Bに対して、最大ず
れffl+  L [m]、最小ずれfJi−L[m]
となり、加工精度が乱れるという問題点がめった。
For example, FIG. 7 shows the locus of the deviation L [m] when a cylindrical workpiece (5) is actually machined. As shown in the figure, the maximum deviation ffl+L [m] and the minimum deviation fJi-L [m] with respect to the brutal reference position B.
As a result, the problem that machining accuracy was disturbed was a rare problem.

上記問題点を解決する方法として、前記光学的軸と機械
的回転軸のずれを同一にする方法がおる。
As a method for solving the above-mentioned problems, there is a method of making the deviation between the optical axis and the mechanical rotation axis the same.

それには、レーザ発j辰器(1)または光路の反射鏡(
2)の調節により、ずれを補正することも考えられるが
、複雑な光路または複雑な駆動系を有するものにおいて
は、これらの調節が必ずしも容易でなかった。また、遠
赤外線であろCO2レーザ等の場合は、適当な検出、計
測手段がなく、高精度のレーザビームのスポットの位置
検出が不可能でおる等の問題があり、この種のレーザ加
工装置の高精度化を阻んでいる。
For this purpose, a laser emitter (1) or a reflector in the optical path (
Although it is possible to correct the deviation by the adjustment in 2), it has not always been easy to make these adjustments in devices that have a complicated optical path or a complicated drive system. In addition, in the case of far-infrared rays or CO2 lasers, there are problems such as the lack of appropriate detection and measurement means, making it impossible to detect the position of the laser beam spot with high precision. This is hindering high precision.

そこで、この発明はかかる上記の問題点を解決するため
になされたもので、機械的に光路の補正をすることなく
高精度の加工を容易としたレーザ加工装置の提供を目的
とするものである。
Therefore, the present invention was made to solve the above-mentioned problems, and aims to provide a laser processing device that facilitates high-precision processing without mechanically correcting the optical path. .

[問題点を解決するための手段] この発明にかがるレーザ加工装置は、入射ビーム方向を
旋回軸として回転駆動する旋回駆動手段と、前記入射ビ
ーム方向に平行する平行移動軸を駆動する平行移動駆動
手段と、前記旋回駆動手段の駆動により、集束したレー
ザビームを被加工物に照射する照射位置の入射ビームの
光学的軸と機械的回転軸のずれによる偏差量を、前記入
射ビーム方向に平行する平行移動軸を駆動する平行移動
駆動手段の移動変量として制御する制御手段とを具備す
るものである。
[Means for Solving the Problems] A laser processing apparatus according to the present invention includes a rotation drive means that rotates the direction of the incident beam as a rotation axis, and a parallel drive means that drives a translation axis parallel to the direction of the incident beam. By driving the movement drive means and the rotation drive means, the amount of deviation due to the deviation between the optical axis and the mechanical rotation axis of the incident beam at the irradiation position where the focused laser beam is irradiated onto the workpiece is adjusted in the direction of the incident beam. and control means for controlling as a movement variable of a parallel movement driving means that drives parallel translation axes.

[作用] この発明においては、レーザビームを偏向させる反射鏡
を旋回駆動手段で回転させる場合、集束したレーザビー
ムを被加工物に照射する照射位置の入射ビームの光学的
軸と機械的回転軸のずれによる偏差量が、旋回駆動手段
の軸方向、即ち、入射ビーム方向に平行する平行移動軸
方向に生じる。
[Function] In the present invention, when the reflecting mirror that deflects the laser beam is rotated by the rotation driving means, the optical axis of the incident beam at the irradiation position and the mechanical rotation axis of the focused laser beam at the irradiation position to irradiate the workpiece are adjusted. A deviation amount due to the shift occurs in the axial direction of the rotation drive means, that is, in the direction of the translation axis parallel to the incident beam direction.

そこで、入射ビーム方向に平行する平行移動軸を駆動す
る平行移動駆動手段の移動変量として、前記光学的軸と
機械的回転軸のずれによる偏差量を設定して平行移動駆
動手段を制御31)すれば、前記光学的軸と機械的回転
軸のずれによる偏差量を補償することができる。
Therefore, as the movement variable of the translation drive means that drives the parallel translation axis parallel to the incident beam direction, the deviation amount due to the deviation between the optical axis and the mechanical rotation axis is set to control the translation drive means 31). For example, it is possible to compensate for the amount of deviation due to the misalignment between the optical axis and the mechanical rotation axis.

[実施例] 第1図はこの発明の実施例のレーザ加工装置の基本的要
部、構成図でおる。
[Embodiment] FIG. 1 is a diagram showing the basic main parts and configuration of a laser processing apparatus according to an embodiment of the present invention.

図において、(1)はレーザを発振及び出力するレーザ
発振器、(2)は反射鏡(6)で垂直方向の下に向うレ
ーザビームを水平方向に変更する反射鏡、(3)は反射
鏡(2)で水平方向に変更されたレーザビームを集光し
、円筒状の被加工物(5)にスポットを照射する加工レ
ンズで、レーザビームは加工レンズ(3)の先端のノズ
ル(7)より、円筒状の被加工物(5〉の内面に照射さ
れ切断加工される。(6)は前記したレーザ発振器(1
)より水平に出力されたレーザビームを垂直方向に変更
する反射鏡、(8)は被加工物(5)を載置する加工テ
ーブル、(9)は加工テーブル(8)のスライダー(1
0)に摺動し、Z軸モータ(11)により垂直方向に摺
動されるZ軸筒、〈12)は反射鏡(2)、加工レンズ
(3)を保持し、Z軸筒(9)の内面ベアリング(13
)に摺動し、θ軸モータ(14)によりZ軸のまわりに
回転駆動される回転筒でおる。(15)はZ軸モータ(
11)により垂直方向に摺動されるZ軸筒(9)に取付
けられたコード盤で、前記コード盤(15)にはZ軸筒
(9)の回転始点となる始点検出用センナ(16)及び
1度毎の角度を検出する角度検出用センサ(17)を有
している。なお、前記始点検出用センサ(16)及び角
度検出用セン丈(17)はフォトカプラからなり、コー
ド=<15>に設けられたスリットの位置及びスリット
の数を検出している。(18)はZ軸モータ(11)、
θ軸モータ(14)を同時制御するマイクロコンピュー
タCPUを制御回路として搭載したNC制御装置であり
、その回路図を第3図に示す。このNC制御D装置(1
8)には最大ずれiL[mE及びそのときの角度を入力
するテンキー(19)、θ軸モータ(14〉を駆動する
θ軸モータ駆動スイッチ(20>、Z@モータ(11)
を駆動する7軸モータ駆動スイツチ(21)及びこの発
明の要旨としない他の制御関係のスイッチ及び表示手段
を有している。
In the figure, (1) is a laser oscillator that oscillates and outputs a laser, (2) is a reflector (6) that changes the vertically downward laser beam to a horizontal direction, and (3) is a reflector ( This is a processing lens that focuses the laser beam changed horizontally in step 2) and irradiates a spot on the cylindrical workpiece (5).The laser beam is sent from the nozzle (7) at the tip of the processing lens (3). , the inner surface of the cylindrical workpiece (5) is irradiated and cut. (6) is the laser oscillator (1) described above.
), (8) is the processing table on which the workpiece (5) is placed, and (9) is the slider (1) of the processing table (8).
0) and vertically slid by the Z-axis motor (11); inner bearing (13
) and is a rotating cylinder that is rotated around the Z-axis by a θ-axis motor (14). (15) is the Z-axis motor (
11), which is attached to a Z-axis tube (9) that slides in the vertical direction, and the cord disk (15) is equipped with a senna (16) for detecting the starting point of the rotation of the Z-axis tube (9). It also has an angle detection sensor (17) that detects angles by 1 degree. The starting point detection sensor (16) and the angle detection sensor (17) are made of photocouplers, and detect the position and number of slits provided in code=<15>. (18) is the Z-axis motor (11),
This is an NC control device equipped with a microcomputer CPU as a control circuit that simultaneously controls the θ-axis motor (14), and the circuit diagram thereof is shown in FIG. This NC control D device (1
8) includes a numeric keypad (19) for inputting the maximum deviation iL[mE and the angle at that time, a θ-axis motor drive switch (20>) that drives the θ-axis motor (14>), and a Z@motor (11).
It has a 7-axis motor drive switch (21) that drives the 7-axis motor drive switch (21), and other control-related switches and display means that are not the subject matter of this invention.

このように構成されたこの実施例のレーザ加工装置につ
いて、その原理動作を第2図のこの発明の詳細な説明図
を用いて説明する。
The principle operation of the laser processing apparatus of this embodiment configured as described above will be explained with reference to the detailed explanatory diagram of the present invention shown in FIG.

まず、駆動系のZ軸モータ(11)により垂直方向に摺
動される軸をZ軸、及び駆動系のθ軸モータ(14)に
よりZ軸のまわりに回転駆動される回転筒(12)の軸
をθ軸とする。
First, the shaft that is vertically slid by the Z-axis motor (11) of the drive system is the Z-axis, and the rotary cylinder (12) is rotated around the Z-axis by the θ-axis motor (14) of the drive system. Let the axis be the θ axis.

レーザ発振器(1)より出力されたレーザビームが反射
鏡(6)で隔面され、Z軸に対して角度αだけずれて反
射鏡(2)及び加工レンズ(3)に入射した場合、加工
レンズ(3)の焦点距離をf[TrL]として軸の回転
方向に対するレーザビームの角度ずれがないとすると、
Z軸の動作を止めてθ軸の回転のみで加工を行ったとき
には、レーザビームはθ軸の回転動作により、第7図の
従来例の説明で示した円筒状の被加工物の展開図の破線
に承り経路を進行する。
When the laser beam output from the laser oscillator (1) is separated by the reflecting mirror (6) and enters the reflecting mirror (2) and the processing lens (3) at an angle α with respect to the Z axis, the processing lens Assuming that the focal length in (3) is f[TrL] and there is no angular deviation of the laser beam with respect to the rotational direction of the axis,
When the Z-axis operation is stopped and processing is performed only by rotating the θ-axis, the laser beam rotates around the θ-axis to produce the developed view of the cylindrical workpiece shown in the explanation of the conventional example in Fig. 7. Follow the dashed line and proceed along the route.

即ち、集束するレーザビームのスポットは、θ軸の回転
により、最大で± 1.−[TrL]のずれが生じ、正
弦波形状のずれとなり、θ軸の回転角度の関数で前記ず
れが表現される。そこで、前記最大ずれ± l  [m
]が生ずるθ軸の回転角度、即ち、回転筒(12)の回
動角度位置(θ°)と、前記ずれF(θ)との関係は、 F(θ)=  1−cosθ = 1−φCOSωを 倶し、ωは0帖の回転角速度、 tは時間、 となる。
That is, the spot of the focused laser beam can vary by up to ±1. A deviation of -[TrL] occurs, resulting in a sinusoidal deviation, and the deviation is expressed as a function of the rotation angle of the θ axis. Therefore, the maximum deviation ± l [m
] The relationship between the rotation angle of the θ-axis at which this occurs, that is, the rotation angular position (θ°) of the rotary cylinder (12), and the deviation F(θ) is as follows: F(θ) = 1-cosθ = 1-φCOSω , ω is the rotational angular velocity of 0 chapters, t is time, and becomes.

こ(Dfz大’fn+  L [m3または−L[7n
]を測定しておくことにより、θ軸モータ(14)の回
動角度位置と、前記ずれF(θ)との関係がF(θ)=
  L−CO5ω↑ で表現でき、このF(θ)がZ軸方向のずれとなる。
This (Dfz large'fn+L [m3 or -L[7n
] By measuring θ-axis motor (14), the relationship between the rotation angle position of the θ-axis motor (14) and the above-mentioned deviation F(θ) can be determined as F(θ)=
It can be expressed as L-CO5ω↑, and this F(θ) is the deviation in the Z-axis direction.

そこで、駆動系のZ軸上−タ(11)により垂直方向に
1舌動されるZ軸方向のずれを、Z軸モータ(11)に
にり垂直方向に摺動されるZ@筒(9)の移動距離Gを
、 G=−F(θ) =−[・COSθ =−1−cosωt とすれば、前記Z軸方向のずれとなる回転筒(12)の
回動角度位置(θ°)と、前記ずれF(θ)−1−co
sωt を相殺することができる。
Therefore, the shift in the Z-axis direction caused by one vertical movement by the Z-axis motor (11) of the drive system is compensated for by ) is set as G=-F(θ) =-[・COSθ=-1-cosωt, then the rotation angle position (θ°) of the rotary cylinder (12) resulting in the deviation in the Z-axis direction is and the above deviation F(θ)-1-co
sωt can be canceled out.

したがって、0@モータ(14)の回動角度位置、また
は回転筒(12)の回動角度位置(θ°)に応じて、Z
軸モータ(11)により垂直方向に摺動されるZ軸筒(
9)の移動路idGを、G=−L−CO8θ とすれば、レーザ光1辰器(1)より出力されたレーザ
ビームが反射鏡(6)で偏向され、Z軸に対して角度α
だけずれて反射鏡(2〉及び加工レンズ(3)に入射し
た場合のずれを補正することができる。
Therefore, Z
The Z-axis cylinder (
If the moving path idG in 9) is set as G=-L-CO8θ, the laser beam output from the laser beam unit (1) is deflected by the reflecting mirror (6), and the angle α with respect to the Z axis is
It is possible to correct the deviation in the case where the light is incident on the reflecting mirror (2> and the processing lens (3)) with a deviation by a certain amount.

または、θ軸モータ(14)の回動角度位置と、Z軸モ
ータ(11)により垂直方向に回動されるZ@筒(9)
の移動距離Gを同期状態とし、θ軸モータ(14)の加
工回転角速度をωとすれば、Z軸モータ(11)の移動
回転角速度をωとして、Z軸筒(9)の移動距離Gを G=−LψCOSωt とすることにより、レーザ発振器(1)より出力された
レーザビームが反射鏡(6)で偏向され、Z@に対して
角度αだけずれて反射鏡(2)及び加工レンズ(3)に
入射した場合のずれを補正することができる。
Or, the rotation angle position of the θ-axis motor (14) and the Z@tube (9) rotated in the vertical direction by the Z-axis motor (11).
If the moving distance G of is in a synchronous state and the machining rotational angular velocity of the θ-axis motor (14) is ω, then the moving rotational angular velocity of the Z-axis motor (11) is ω, and the moving distance G of the Z-axis cylinder (9) is By setting G=-LψCOSωt, the laser beam output from the laser oscillator (1) is deflected by the reflecting mirror (6), and is shifted by an angle α with respect to Z@ and is directed to the reflecting mirror (2) and processing lens (3). ), it is possible to correct the deviation when the beam is incident on the

次に、この発明の実施例のレーザ7JO工装置を加工制
御する揚台の、Z軸に対する角度αのずれを補正する「
加工制御補正ルーチン」を第4図のフローチャートを用
いて説明する。
Next, the deviation of the angle α with respect to the Z axis of the lifting platform that controls the processing of the laser 7JO machining device according to the embodiment of the present invention is corrected.
The process control correction routine will be explained using the flowchart shown in FIG.

まず、Z軸モータ(11)を駆動するZ@モータ駆動ス
イッチ(21)をオフとし、NC制御装置(18)のθ
軸モータ(14)を駆動するθ軸モータ駆動スイッチ(
20〉をオンとすることにより、θ軸モータ(14)を
回転させ、加工レンズ(3)の先端のノズル(7)より
、円筒形状被検材の被加工物(5)の内面にレーザビー
ムのスポットを照射し、その円筒形状被検材の被加工物
(5)の内面を切断加工し、最大ずれ L [m]が生
ずる回転筒(12)の回動角度位置のβ度を1作る。
First, the Z@motor drive switch (21) that drives the Z-axis motor (11) is turned off, and the θ of the NC control device (18) is turned off.
θ-axis motor drive switch (
20> is turned on, the θ-axis motor (14) is rotated, and a laser beam is applied from the nozzle (7) at the tip of the processing lens (3) to the inner surface of the cylindrical workpiece (5). The spot is irradiated to cut the inner surface of the cylindrical workpiece (5), and the rotation angle position of the rotary cylinder (12) at which the maximum deviation L [m] occurs is set to 1 degree β. .

そして、ステップS1で最大すれ L [m]をテンキ
ー(19)で入力し、ステップS2で最大ずれ L [
m]が生ずるθ軸の回動角度位置のβ度をテンキー(1
9)で入力する。ステップS3で F(θ)=シ・cos (θ−B) を計算し、各角度毎にF (1)、 F (2>、・・
・。
Then, in step S1, input the maximum deviation L [m] using the numeric keypad (19), and in step S2, input the maximum deviation L [m].
Enter the β degree of the rotation angle position of the θ axis where m] occurs on the numeric keypad (1
9). In step S3, F(θ)=Sh・cos(θ−B) is calculated, and F(1), F(2>,...
・.

F (360)をメモリに収納する。ステップS4でθ
軸モータ(14)を回転させ、ステップS5で角度検出
用センサ(17)で角度θの読込みを行い、ステップS
6でZ軸モータ(11)を回転させ、Z軸方向に、 G=−F (θ) =−L−CO3(θ−β) 移動し、Z軸方向のレーザ加工を行う。なお、Z軸方向
のレーザ加工制御がg(t)であるとき、G=cx(↑
)−F(θ) =g(t)−L’CO6(θ−β) で移動され、Z軸方向のレーザ加工を行う。
Store F (360) in memory. In step S4, θ
The shaft motor (14) is rotated, the angle θ is read by the angle detection sensor (17) in step S5, and the angle θ is read in step S5.
6, the Z-axis motor (11) is rotated and moved in the Z-axis direction as follows: G=-F (θ) =-L-CO3 (θ-β) to perform laser processing in the Z-axis direction. Note that when the laser processing control in the Z-axis direction is g(t), G=cx(↑
)-F(θ) =g(t)-L'CO6(θ-β) to perform laser processing in the Z-axis direction.

また、ステップS7でレーザ加工の終了信号があるまで
、ステップS4からステップS7の処理を繰返し、レー
ザ加工の終了信号によって、ステップS8でθ軸モータ
(14)を停止し、ステップS9でZ軸モータ(11)
を停止する。
Further, the processes from step S4 to step S7 are repeated until a laser processing end signal is received in step S7, and in response to the laser processing end signal, the θ-axis motor (14) is stopped in step S8, and the Z-axis motor (14) is stopped in step S9. (11)
stop.

このように、この実施例のレーザ加工装置は、レーザビ
ームを偏向させる反銅鏡(2)が、入射ビーム方向を回
転筒(12)のθ軸として、回転駆動するθ軸モータ(
14)からなる旋回駆動手段と、前記レーザビームの入
射ビーム方向に平行する平行移動軸のZ軸を駆動するZ
軸モータ(11)からなる平行移動駆動手段と、前記レ
ーザビームを偏向させる反射鏡(2)で偏向され、加工
レンズ(3)で集束して被加工物(5)にレーザビーム
を照射する光学系手段と、前記旋回駆動手段の駆動によ
り、光学系手段が集束したレーザビームを被加工物(5
)に照射する照射位置の入射ビームの光学的軸ど機械的
回転軸の角度αのずれによる偏差量を、前記入射ビーム
方向に平行する平行移動軸を駆動覆−る平行移動駆動手
段の移動変量として制御するマイクロコンピュータCP
 tJを制御回路として搭載したNC制御装置(18)
からなる制御手段とを具備するものでおる。
As described above, in the laser processing apparatus of this embodiment, the anti-copper mirror (2) that deflects the laser beam is rotated by the θ-axis motor (
14); and a Z-axis for driving the Z-axis of the parallel movement axis parallel to the incident beam direction of the laser beam.
A parallel movement drive means consisting of a shaft motor (11), and an optical system that irradiates the workpiece (5) with a laser beam that is deflected by a reflecting mirror (2) that deflects the laser beam and focused by a processing lens (3). By driving the system means and the rotation driving means, the optical system means directs the focused laser beam to the workpiece (5).
) of the incident beam at the irradiation position due to the deviation of the angle α between the optical axis and the mechanical axis of rotation, the movement variable of the translation driving means that drives the translation axis parallel to the direction of the incident beam. Microcomputer CP to control as
NC control device equipped with tJ as a control circuit (18)
and a control means consisting of:

特に、この実施例では、θ軸モータ(14)からなる旋
回駆動手段の駆動により、光学系手段か集束したレーザ
ビームを被加工物(5)に照射する照射位置の入射ビー
ムの光学的軸と機械的回転軸の角度αのずれににる偏差
量を、θ軸モータ(14)によりZ軸のまわりに回転駆
動される回転筒(12)の回動角度毎に補正しているが
、0軸モータ(14)によりZ軸のまわりに回転駆動さ
れる回転筒(12)の回転と、Z軸モータ(11)の移
動との関係を、Z軸のまわりに回転駆動される回転筒(
12)の回動角速度、即ち、θ軸モータ(14)の回転
角速度ωとすれば、Z軸方向のずれとなる回転筒(12
)の回動角度位置(θ°)と、ずれF(θ)は、 F(θ)=  L−003wt となるから、ZNIモータ(11)により垂直方向にt
J動されるZ軸筒(9)の移動距離Gを、その回転角速
度ω及び位相差のない同期状態のG=−[・COSωt とすれば、前記実施例の場合と同様に、光学的軸と機械
的回転軸の角度αのずれによる偏差量を、補正すること
ができる。なお、前記状態は位相差のない同期状態を前
(足としているか、位相差が一定で変化しない場合も、
回転角速度ωで補正することができる。
Particularly, in this embodiment, by driving the rotation drive means consisting of the θ-axis motor (14), the optical system means is aligned with the optical axis of the incident beam at the irradiation position where the focused laser beam is irradiated onto the workpiece (5). The amount of deviation due to the deviation of the angle α of the mechanical rotation axis is corrected for each rotation angle of the rotating cylinder (12) that is rotationally driven around the Z-axis by the θ-axis motor (14). The relationship between the rotation of the rotary tube (12) that is rotationally driven around the Z-axis by the shaft motor (14) and the movement of the Z-axis motor (11) is expressed as follows:
12), that is, the rotational angular velocity ω of the θ-axis motor (14), the rotational angular velocity of the rotating cylinder (12) which causes a deviation in the Z-axis direction.
) rotation angle position (θ°) and the deviation F(θ) are F(θ) = L-003wt, so the ZNI motor (11) rotates t in the vertical direction.
If the moving distance G of the Z-axis cylinder (9) that is moved by J is set as G=-[・COSωt in a synchronous state with no rotational angular velocity ω and phase difference, then as in the case of the previous embodiment, the optical axis It is possible to correct the amount of deviation due to the deviation of the angle α between the mechanical rotation axis and the mechanical rotation axis. Note that the above state is based on the synchronized state with no phase difference, or even if the phase difference is constant and does not change,
It can be corrected by the rotational angular velocity ω.

なお、上記実施例では、円筒形状被検何の被加工物(5
)の内面を加工し、最大ずれ L[m]が生ずるθ軸の
回転筒(12)の回動角度位置βを得ているが、レーザ
発1辰器(1)の出力を低下させ、2次元画像素子で最
大ずれ l  [711]及び最大ずれ I  [m]
が生ずるθ軸の回動角度位置βを検出することにより、
最大ずれ L[TrL]及び最大ずれ L[711]が
生ずるθ軸の回動角度位置βを得ることができる。
In the above embodiment, the cylindrical workpiece (5
) to obtain the rotation angular position β of the rotating cylinder (12) on the θ axis where the maximum deviation L [m] occurs, but by reducing the output of the laser emitting device (1), Maximum deviation l [711] and maximum deviation I [m] in dimensional image element
By detecting the rotation angle position β of the θ axis where
The rotation angle position β of the θ axis at which the maximum deviation L[TrL] and the maximum deviation L[711] occur can be obtained.

[発明の効果] 以上のように、本発明のレーザ加工装置は、レーザビー
ムを偏向させる反射鏡を旋回軸として回転駆動する旋回
駆動手段と、レーザビームの入射ビーム方向に駆動する
平行移動駆動手段と、加工レンズで集束して被加工物に
レーザビームを照射する光学系手段と、旋回駆動手段の
駆動によって変化する光学系手段が集束したレーザビー
ムを被加工物に照射する照射位置の入射ビームの光学的
軸と機械的回転軸のずれによる偏差量を、入射ビーム方
向に駆動する平行移動駆動手段の移動変量として制御す
る制御手段を具備するものでおるから、光学系手段が集
束したレーザビームを被加工物に照射する照射位置の入
射ビームの光学的軸と機械的回転軸のずれによる偏差量
を平行移動駆動手段の移動制御で補正できるものである
から、殿械的に光路の補正をすることなく高精度の加工
が容易となる。
[Effects of the Invention] As described above, the laser processing apparatus of the present invention includes a rotation driving means for rotationally driving a reflecting mirror that deflects a laser beam about a rotation axis, and a parallel movement driving means for driving in the incident beam direction of the laser beam. , an optical system means for irradiating the workpiece with a laser beam focused by a processing lens, and an incident beam at an irradiation position for irradiating the workpiece with the laser beam focused by the optical system means that changes by driving the rotation drive means. The laser beam focused by the optical system means is equipped with a control means for controlling the amount of deviation due to the misalignment between the optical axis and the mechanical rotation axis as a movement variable of the parallel movement drive means for driving in the direction of the incident beam. Since the amount of deviation due to the deviation between the optical axis and the mechanical rotation axis of the incident beam at the irradiation position at which the beam is irradiated onto the workpiece can be corrected by controlling the movement of the parallel movement drive means, it is possible to mechanically correct the optical path. High-precision machining is facilitated without the need for

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例のレーザ加工装置の基本的要
部構成図、第2図はこの発明の実施例のレーザ加工装置
の原理説明図、第3図はこの発明の実施例のレーザ90
工装置の制御手段の回路図、第4図IJこの発明の実施
例のレーザ加工装置の補正を行う「加工制御補正ルーチ
ン」のフローチャート、第5図は1軸レーザヒームによ
る加工の説明図、第6図は1軸レーザビームが回転して
旋回7J[]工する場合の原理説明図、第7図は円筒状
被加工物に加工を行った場合のずれ量の軌跡を示す展開
説明図である。 図において、 2:反則鏡、      3:加工レンズ、4.5:被
加工物、  11:Z軸モータ、12:回転筒、   
 14:θ軸モータ、18:NC制御装置、 である。 なお、図中、同−符号及び同一記号は、同一または相当
部分を示ず。
FIG. 1 is a basic configuration diagram of the main parts of a laser processing apparatus according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of the principle of a laser processing apparatus according to an embodiment of this invention, and FIG. 90
FIG. 4 is a circuit diagram of the control means of the processing device; FIG. 4 is a flowchart of the "processing control correction routine" for correcting the laser processing device according to the embodiment of the present invention; FIG. 5 is an explanatory diagram of processing using a single-axis laser beam; The figure is an explanatory diagram of the principle when a uniaxial laser beam rotates and performs turning 7J[], and FIG. 7 is a developed explanatory diagram showing the trajectory of the amount of deviation when machining a cylindrical workpiece. In the figure, 2: nonconforming mirror, 3: processing lens, 4.5: workpiece, 11: Z-axis motor, 12: rotating cylinder,
14: θ-axis motor, 18: NC control device. In addition, in the figures, the same reference numerals and the same symbols do not indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 レーザビームを偏向させる反射鏡が、入射ビーム方向を
旋回軸として回転駆動する旋回駆動手段と、 前記レーザビームの入射ビーム方向に平行する平行移動
軸を駆動する平行移動駆動手段と、前記レーザビームを
偏向させる反射鏡で偏向され、加工レンズで集束して被
加工物にレーザビームを照射する光学系手段と、 前記旋回駆動手段の駆動により、光学系手段が集束した
レーザビームを被加工物に照射する照射位置の入射ビー
ムの光学的軸と機械的回転軸のずれによる偏差量を、前
記入射ビーム方向に平行する平行移動軸を駆動する平行
移動駆動手段の移動変量として制御する制御手段と、 を具備することを特徴とするレーザ加工装置。
[Scope of Claims] Rotating drive means for rotating a reflecting mirror that deflects a laser beam with the direction of the incident beam as a rotation axis; and translation drive means for driving a parallel axis parallel to the direction of the incident beam of the laser beam. an optical system means for irradiating the workpiece with a laser beam that is deflected by a reflecting mirror that deflects the laser beam and focused by a processing lens; and a laser beam focused by the optical system means by driving the rotation drive means. The amount of deviation due to the deviation between the optical axis and the mechanical rotation axis of the incident beam at the irradiation position where the beam is irradiated onto the workpiece is controlled as a movement variable of a parallel movement drive means that drives a parallel movement axis parallel to the direction of the incident beam. A laser processing device comprising: a control means for controlling; and a laser processing device.
JP61240084A 1986-10-08 1986-10-08 Laser beam machine Granted JPS6393493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61240084A JPS6393493A (en) 1986-10-08 1986-10-08 Laser beam machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61240084A JPS6393493A (en) 1986-10-08 1986-10-08 Laser beam machine

Publications (2)

Publication Number Publication Date
JPS6393493A true JPS6393493A (en) 1988-04-23
JPH0435275B2 JPH0435275B2 (en) 1992-06-10

Family

ID=17054244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61240084A Granted JPS6393493A (en) 1986-10-08 1986-10-08 Laser beam machine

Country Status (1)

Country Link
JP (1) JPS6393493A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170182A (en) * 2005-12-19 2007-07-05 Boc Edwards Kk Vacuum pump
CN101972894A (en) * 2010-09-26 2011-02-16 武汉华工激光工程有限责任公司 Laser drilling machine for curvedly drilling tipping paper

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170182A (en) * 2005-12-19 2007-07-05 Boc Edwards Kk Vacuum pump
CN101972894A (en) * 2010-09-26 2011-02-16 武汉华工激光工程有限责任公司 Laser drilling machine for curvedly drilling tipping paper
WO2012037789A1 (en) * 2010-09-26 2012-03-29 武汉华工激光工程有限责任公司 Laser boring machine for curve boring in tipping paper
US20130193120A1 (en) * 2010-09-26 2013-08-01 Wuhan Huagong Laser Engineering Co., Ltd. Laser Puncher for Punching Hole on Tipping Paper in a Curved Manner
US9149890B2 (en) * 2010-09-26 2015-10-06 Wuhan Huagong Laser Engineering Co., Ltd Laser puncher for punching hole on tipping paper in a curved manner

Also Published As

Publication number Publication date
JPH0435275B2 (en) 1992-06-10

Similar Documents

Publication Publication Date Title
CN107717211B (en) Robot system and laser processing
JPH11245068A (en) Laser processing device
CN108602160B (en) Laser processing machine
CN109719386A (en) Laser-processing system
JPS6393493A (en) Laser beam machine
JP2638017B2 (en) Laser beam scanner
JPS6040682A (en) Marking device with laser light
JPH0871780A (en) Laser beam positioning machining method and device therefor
JP2967939B2 (en) Laser marking device
JPH11145536A (en) Laser device
JP3285256B2 (en) Automatic alignment adjustment method and apparatus for laser robot
JP2991623B2 (en) Laser processing apparatus and dam bar processing method
JPH02121789A (en) Optical scan laser beam machine
JPS62127191A (en) Laser trimming device
JP3194247B2 (en) Temperature compensation device and temperature compensation method for laser processing
JP3578274B2 (en) Numerically controlled machine tool
JPS6376784A (en) Rotary head for laser beam machine
JPH06155065A (en) Laser beam machine
JPH01122682A (en) Laser beam machine
JPH01130894A (en) Laser beam machine
JPS61123492A (en) Laser working device
JPH10103937A (en) Optical axis inclination measuring method for laser light and apparatus therefor
JPH04282413A (en) Position posture control device of laser oscillator
JPS63235090A (en) Laser beam machining apparatus
JPH08132268A (en) Laser beam machining equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees